云母晶体最大双折射率温度效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双折射率是表征各向异性晶体光学特性的一个非常重要的物理参数,由材料的成分和晶体结构所决定。双折射率对光波而言,一般都具有较大的色散性。以平行晶体光轴的晶面作为通光面,光在晶体内垂直晶体光轴传播,其双折射率为最大值,称为最大双折射率。最大双折射率是偏光器件设计时的重要参量,此值是波长的函数,也受温度等外界条件的影响。在应用过程中,偏光器件通常要受到温度场及其他外场的影响。晶体的折射率和面形等随温度的变化均要发生变化,从而影响器件的光学性能。通常用折射率温度系数来描述温度对光学晶体折射率的影响。
     经查阅文献资料可知,目前这方面的研究基本集中在晶体最大双折射率随波长变化的测量上,而对晶体最大双折射率随温度变化的研究较少。作为制作单级波片的理想双折射材料云母晶体,由于其晶片太薄,极易产生多次反射,且孔径稍大时面形难以保证,因此研究其温度效应的更少,对云母晶体最大双折射率温度系数的研究至今尚未见到报道。所以,云母晶体最大双折射率随温度变化的精确测量有着重要的意义。本文主要是对云母晶体最大双折射率随温度的变化关系进行了研究。
     文章采用精确测量晶体最大双折射率的连续偏光干涉法对不同厚度的云母波片进行了研究。首先通过实验得到不同温度下云母波片的偏光干涉谱,并对谱线进行了对比分析;然后计算出云母波片的最大双折射率,求出了云母晶体在紫外波段和可见光波谱段的最大双折射率温度系数的表达式;最后获得从紫外至近红外光波段云母晶体的双折射率色散曲线,得到任意波长的双折射率色散公式。论文主要内容分为以下几个部分:
     第一章为绪论部分,主要介绍了偏光器件的发展概况和器件温度效应的研究现状,并简要说明了本论文的创新工作。
     第二章是最大双折射率温度效应的基础理论部分,对最大双折射率的概念、双折射现象的应用和云母晶体分别进行了介绍,对双折射率的温度效应进行了理论分析。分析表明,波片的延迟量随温度的变化是由波片的厚度和双折射率随温度变化引起的。多级波片的延迟相位级数可以从几十个多至上百个,从延迟的物理效果上看与零级波片没有多大区别,但当温度改变时,由于波片级数的不同,受温度变化的影响也将不同,级数越大,厚度影响越明显。而对单级波片,厚度很小,当温度改变时,双折射率的影响更明显。
     第三章主要介绍了偏光干涉法测量双折射率的装置及过程。描述了测量系统的测量原理并绘出了测量系统原理图,说明了测量系统中各部件的选择和测量时程序的流程。对实验得到的不同温度下云母波片的偏光干涉谱进行了对比分析,发现当云母波片的温度升高时,波片的偏光干涉谱整体向短波长方向发生漂移,且温度变化越大,漂移越明显,结果表明云母波片双折射率的影响大于厚度的影响,决定了谱线漂移的方向。
     第四章是数据处理及误差分析部分。通过对偏光干涉谱的极值点所对应波长的精确判断,准确计算出相应温度下云母波片的最大双折射率,求出了云母晶体在紫外波段和可见光波谱段的最大双折射率温度系数的表达式;最后获得从紫外至近红外光波段云母晶体的双折射率色散曲线,经多项式拟合数据处理,得到任意波长的双折射率色散公式。同时,对于实验中可能出现的误差进行了理论分析,得出了提高测量精度的方法,为测试结果的可靠性提供了保证。
     论文的第三章和第四章是本文的核心部分,也是本人的主要工作。总结上述内容,本文的主要创新点是:
     1、首次通过实验测得了不同温度下不同厚度的云母波片的偏光干涉谱,发现波片的偏光干涉谱整体向短波长方向发生漂移,说明云母波片双折射率对其延迟量的影响大于厚度对其延迟量的影响,决定了谱线漂移的方向。
     2、得到云母晶体在紫外波段和可见光波谱段的最大双折射率温度系数的表达式。
     3、用最小二乘法拟合得到了所测各温度的双折射率的色散公式,利用MATLAB程序做出最大双折射率随温度及波长变化的二维曲面图。
     本文实验与理论分析相结合,表明该文实验研究结果具有一定的参考价值,对云母晶体器件的设计与使用提供了重要的理论依据,为云母波片的生产和实用提供了参考价值。
Birefringence is an important optical parameter of nonisotropic crystal,which is determined by materials composition and crystal structure.Generally,the birefringence takes on greater dispersive for light waves.When a light beam transmits perpendicularly to optical axis in crystal by taking crystalline face parallelling optical axis as a clear area,the birefringence is the maximum and named as maximal birefringent index.The maximal birefringent index which is an important parameter designing polarized devices,is the function of wavelength but also vary with temperature and other external conditions.Polarized devices are influenced by outfield especially temperature field when used,so is wave-plate.The optical capability of devices is influenced because of the change of both the refraction index and the appearance which are caused by the change of temperature.So thermal maximal birefringent index coefficient is used to describe the effect on crystal birefringence by the change of temperature.
     Refer to some reference literatures,most researches focused on measuring the maximal birefringent index of crystal varying with wavelength basically but not with temperature till now.Mica crystal is a kind of perfect birefringent material for producting single-level wave-plate. Multiple reflection is easy to generate because of its thin wafer.Its surface is distorted when aperture is little larger.So the temperature effect studyied of mica crystal is much less and the research of thermal maximal birefringent index coefficient of mica crystal has not be reported yet.Therefore,the accurate measurement of maximal birefringent index of mica crystal varying with temperature is of great significance.The relation between maximal birefringent index and temperature of mica crystal is studied in the article mostly.
     In this paper,different thickness mica wave-plates are studied in the way of the polarization interference spectrum which measuring the thermal maximal birefringent index coefficients. Firstly,the polarization interference spectrums of mica wave-plates in different temperature are measured and analysed.Then the maximal birefringent index of the mica wave-plate can be calculated exactly and expressions of the thermal maximal birefringent index coefficients for mica crystal are deduced at visible spectral band and ultraviolet spectral band.At last,the dispersion curve is gained from visible spectral band to ultraviolet spectral band and expressions of the birefingent dispersion at random wavelength for mica crystal is achieved.The article is divided into the following parts mainly:
     The first chapter is introduction,in the chapter,the development of polarized devices and the temperature effect are introduced and the innovation work of the article is explained.
     The second chapter is basic knowledge of the maximal birefringent index.The concept of the maximal birefringent index and application of birefringent index and mica crystal are introduced respectively.Then the temperature effect's theoretical analysis is done to birefringent index of wave-plate,the results show that the variation of the retardation is caused by the variation of thickness and birefringence of wave-plate varying with temperature.Many wave-plate phase's series can be de from a few dozen to hundred,but their physical effects in retardation is almost same with single-level wave plate.But the effects will be different because the series of wave-plate is different when the temperature changes.The levels is higher,the influence of thickness is more obvious.For single-level wave-plate,the influence of birefringence is more obvious when the temperature changes,because thickness is very small.
     The third chapter mainly introduces the measurement system to measure thermal birefringent index coefficients in the way of the polarization interference spectrum.First,the survey principle of the measurement system is described and schematic diagram is drew,then the choice of various parts and the survey procedure flow are explained.The polarization interference spectrums of mica wave-plates in different temperature measured by experiments are analysed;The polarization interference spectrums of different thickness mica wave-plates are found to drift to short wavelength.Moreover,the drift is more obvious when the variation of temperature is larger.The results show that the impact of birefringence is greater than thickness for mica wave-plates and determines the direction to drift.
     The fourth chapter is the part of data processing and error analysis.Firstly,through accurate judgment of extreme points of the polarization interference spectrums,the maximal birefringent index of the mica wave-plate can be calculated exactly and expressions of the thermal maximal birefringent index coefficients for mica crystal are deduced at visible spectral band and ultraviolet spectral band.At last,the dispersion curve is gained from visible spectral band to ultraviolet spectral band and expressions of the birefingent dispersion at random wavelength for mica crystal can be achieved through polynomial fitting data processing.At the same time, theoretical analysis is done to the errors that may occur in experiment and it is found that the measuring accuracy will be improved by some methods which can guarantee the reliability of the test results.
     The third and fourth chapters are the most important parts in this paper and my main job. Summing up the above,the innovation of this paper lies in:
     Firstly,for the first time,the polarization interference spectrums of mica wave-plates in different temperature measured by experiments are analysed;The polarization interference spectrums of different thickness mica wave-plates are found to drift to short wavelength. Moreover,the drift is more obvious when the variation of temperature is larger.The results show that the impact of birefringence is greater than thickness for mica wave-plates and determines the direction to drift.
     Secondly,expressions of the thermal maximal birefringent index coefficients for mica crystal are gained at visible spectral band and ultraviolet spectral band.
     Thirdly,expressions of the birefingent dispersion at random wavelength for mica crystal is achieved through least square method and two-dimension hood face chart about the thermal maximal birefringent index following temperature and wavelength through MATLAB process.
     In this paper,the finally results comparing experimental data with experimental data show that the result of the article is of value for the producting mica wave-plate,which offered. parameter choice basis for correctly using and designing mica devices.
引文
[1]金国藩,李景镇.激光测量学[M].北京:科学出版社,1998.216-232.
    [2]E.Ealing Beck Prism Polarizers[M].Mc-Graw-Hill Book Co,1972.190-192.
    [3]Driscoll,W.G.,Vaughan,W.,Handbook of Optics[M].Mc-Graw-Hill Book Co,1978.10-142.
    [4]李国华.棱镜偏光技术与器件[J].应用激光联刊,1982,12(1):60-64.
    [5]李景镇.光学手册[M].陕西:陕西科学技术出版社,1986.506-522.
    [6]云茂金,李国华.晶体相位延迟器测量的λ/4波片法及理论研究[J].激光技术,2001,25(5):328-330.
    [7]赵秋玲,吴福全.光相位延迟器的归一化偏振调制测量[J].光学学报,2002,22(3):360-362.
    [8]宋连科,王佐臣.波片带宽容限与延迟厚度关系探讨[J].光电子·激光,2000,11(2):170-172
    [9]李国华,张大伟.三元复合延迟型退偏器的研制[J].激光技术,2001,26(6):430-432.
    [10]吴福全,李国华,封太忠,李洪珍.多色光石英退偏器的退偏机理及性能研究[J]曲阜师范大学学报,1995,21(4):55-58.
    [11]孔伟金,吴福全,王吉明.薄膜偏光分束镜的研究[J].应用光学,2003,24(4):17-19.
    [12]王霞,吴福全,汪河洲.对消色差相位延迟器全反射相变的探讨[J].激光与光电子学进展,2001,36(4):14-17.
    [13]陈振强,张戈,沈鸿元,黄呈辉,刘文,黄凌雄等.绿宝石激光晶体的主折射率及温度系数的精确测量[J].中国激光,2003,30(9):843-846.
    [14]张德颖,刘文,陈文志等.改性KTP晶体主折射率及主折射率温度系数的测量[J].光学学报,1999,18(8):1134-1137.
    [15]徐浩,沈鸿元等.高掺镁LiNbO_3晶体折射率温度系数的表达式[J].光学学报,1994,14(4):393-397.
    [16]李红霞,吴福全,范吉阳.冰洲石晶体色散方程解析研究及折射率温度系数表达式[J].应用光学,2004,25(5):7-10.
    [17]M.S.El-Bahrawi,N.N.Nagib,S.A.Khodier and H.M.Sidki.Birefringence of muscovite mica[J].Optics & Laser Technology,1998,30(6):411-415.
    [18]A.I.Bailey and Susan M.Kay,Brit.Measurement of refractive index and dispersion of mica,employing multiple beam interference techniques[J].Appl.Phys.,1965(16):39-44.
    [19]李国华,光学[M].济南:山东教育出版社,1990.405.
    [20]李国华,李继仲,宋连科.关于平行分束激光偏光镜的几种设计[J].激光技术,1990,10(4):47-49.
    [21]张大伟,李国华,宋连科,王宁,孙浩杰.云母1/4波片偏振干涉谱的研究[J].光谱学与光谱分析,2002,22(7):21-23.
    [22]M.S.El-Bahrawi,N,N.Nagib,S,A,Khodier,H.M.Sidki Birefringence of muscovite mica[J].Optical&Laser Technology,1998(30):411-415.
    [23]冯伟伟,宋连科,陈立刚等.旋光晶体中圆偏振光折射率与波长的关系探讨[J].激光技术,2004,28(6):639-641.
    [24]Bortfeld D P.J Appl Phys,1972,43(12):5110.
    [25]姚启钧,光学教程[M].北京:人民教育出版社,1981-6.
    [26]Guy Indebetouw,Prapong Klysubun Measurement of induced in film samples using a balanced polarization ring interferometer[J].Optical Communication,1998(151):203-206.
    [27]Feng Weiwei,Lin Lihuang,Chen Ligang etal.A spect roscopic met hod for determing thickness of quartz wave plate[J].Chin.Opt.Lett.,2006,4(12):705-708.
    [28]宋连科,李国华,代作晓等.0.29-2.5m波段晶体双折射率的连续偏光干涉测量[J].光电子·激光,1996,7(6):356-360.
    [29]张何 编译.合成云母[M].上海:科学技术出版社,1962.124.
    [30]李景镇.光学手册[M].陕西:科学技术出版社.1986,1304-1336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700