细观光测技术及在微电子组件实验研究中应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文抓住复合微电子组件界面断裂力学研究这一国际最新前沿课题,概述了断裂力学与微电子封装组件破坏特性相关的理论和实验研究,指出微电子封装组件破坏特性全面实验研究的迫切性和必要性,并提出了对实验测试技术的新要求。在此基础上,本文对细观测试技术的发展现状进行了综述,分析和论证了其在微电子封装组件破坏特性研究中的优势和不足,进而提出和发展了一些新的细观测试技术,并利用这些细观测试技术对微电子封装组件的破坏特性进行了全面的实验研究。
     本文首次综合应用白光散斑法、数字散斑法、扫描电镜、形貌分析仪、图象处理仪等现代实验测试手段对复合微电子组件中薄膜的厚度,应力-应变曲线和基本力学性能进行了实验研究,成功地利用复合材料分离法得到了超薄膜的应力-应变曲线和基本力学性能。实验结果表明:本文所采用的实验测试手段和复合材料分离法对于微电子组件中常用的薄膜和超薄膜的应力-应变曲线和基本力学性能测量是有效的,且具有普遍意义。
     本文以云纹干涉法为基础,把云纹干涉法和显微、倍增、载波、反转和非线性记录等技术相结合,发展并实现了一种U、V位移场同时测量的超高灵敏度的云纹条纹显微倍增方法,使得现有的光路放大倍数提高十倍,云纹干涉法的测量灵敏度提高一个量级以上,并把这一方法与高温测试技术相结合,提出了一种高温云纹显微倍增光路。以此首次对复合微电子组件热载下裂纹尖端奇异性进行了实验研究。实验发现:热载下组件裂纹尖端位移场具有指数(r~s)奇异性,奇异指数与绕裂尖的材料特性有关。
     本文把虚栅的概念引入到传统的投影云纹法中,把它和全息法巧妙结合,提出并实现了一种宽量程测量复合微电子组件变形直至破坏的新技术一全息类投影云纹法。并以此对热载下微电子封装组件的脱粘、分层、剥
First of all,this research targets the international forward problems with regard to interface mechanics of compound microelectronic module, reviews basic theory of fracture mechanics ,summarizes theoretical and experimental study on failure properties of compound microelectronic packing module, points out its urgency and necessary for overall experimental studys of the failure properties in the microelectronic packing module, and proposes its new requirements of experimental technique.Then,this research summarizes the development of experimental techniques, analyses and proves its merits and demerits. Furthermore some new measurement techniques are proposed and developed, and failure properties of microelectronic packing module are studied for the first time by these techniques.In this research,the thickness, stress-strain curves and some mechanical properties of the thin film in compound microelectronic module are studied by modern experimental methods of white light speckle, digital speckle with use of the spec-troscopy, the surface measurement system and image-processing system. Meanwhile the separative method of composite materials is used successfully. The stress-strain curves and some mechanical properties of thin film and ultra-thin film are ob-tained.The results show that the experimental techniques and the separative method of composite materials in this research are potential to be measure the stress-strain curves and some mechanical properties of the thin film and ultra-thin film in microelectronic packing module.On the basic of moire interferometry, a marvelow combination of moire in-
    terferometry ,micro technique, multiplication technique ,carrier technique, reversal technique and non-linear recording technique is proposed for enlarging and multi-pling moire interference fringes, where the U,V displacement fields are involved at the same time. By using this method, enlarging rate of the common optical system can be increased by ten times and the displaceinent measuring sensitivity of moire interferometry can be incerased over an order of magnitude. On the other hand, a high temperature micro-multiply moire interferometry system is developed by combining this method with high-temperature measuring technique. This method is applied to experimental study for the displacement fields around interlayer crack tip of compound microelectronic module under different thermal loadings. The results show that the displacement fields around crack-tip of module have exponential singularity under thermal loadings.For the first time, virtual gratings is drawn into the projection moire method, and combined with holographic interferometry, then a large measuring range new technique for measuring the whole deformative and damage process of compound microelectron module-holography quasi projection moire method—is proposed. By this method, the experimental study was done for studying the failure modes (deco-hesion, delamination, spalling, buckling, curving and crushing etc) of microelectronic packing module under thermal loadings. The experimental results show: when the mechanical strength of film/substrate bonded systems is weak, the interface will produce decohesion, delamination and spall;If strength of the film is far lesser than the substrate, the film will curve suddenly after delamination;If the film is ductile and the substrate is brittle, the film will buckle from the substrate;otherwise, the film will crush from the substrate.Finally, residual stress and its distribution in microelectronic packing module are measured by moire interferometry. Meanwhile, the singularity around interface crack-tip, influence of metal plasticity, interface fracture resistance and crack growing direction etc in the interface of sandwich specimen were studied by reflection holography-moire interferometry. The results show: the solution of the Dundurs'
    elastic mismatch parameters for bimaterials based on linear-elastic fracture mechanics is suit for small scale yielding in multi-layer electronic packages. First the crack propagation is short along the initial interfacial crack, then the crack grows along 45° direction of the bonded systems and splits out the film ductile layer, finally the crack grows steady-state along the weak bonded interface.
引文
[1] R. J. Clifton and F. P. Chiang, Appl. Mech. Rev. Vol. 36, No. 10, pp1279-1281, 1985.
    [2] 贾松良,半导体器件封装技术的发展动向。1993,待发。
    [3] A. G. Evans, The Strength of Ceramics Bonded with Metals, Acta Metall. Vol. 36, No. 8, pp2029-2035, 1988.
    [4] Evans A. G. and Hutchinson J. W. On Crack Path Selection and the Interface Fracture Energy in Bimaterial Systems, Acta Metall. Vol. 27, No. 12, pp3249-3254, 1989.
    [5] Evans A. G. and Hutchinson J. W. Effects of Non-planarity on Mized Mode Fracture Resistance of Bimaterial Interface,Acta Metall. Vol. 37, No. 3, pp917-925, 1989.
    [6] 徐秉业等,《弹塑性力学及其应用》,机械工业出版社,1984。
    [7] Hutchinson J. W. Singular Behavior at the End of A Tensile Crack in A Hardening Material. J. Mech. Phys. Solids, 1968, 16(1), 13-31.
    [8] England A. H. A Crack Between Dissimilar Media. J. Appl. Mech. 32, 400-402, 1965.
    [9] Erdogan F. Stress Distribution in Bonded Dissimilar Materials with Cracks. J. Appl. Mech. 32, 403-410, 1965.
    [10] Rice J. R. and Sih G. C. Plane Problem of Cracks in Dissimilar Media. J. Appl. Mech. 32, 418-423, 1965.
    [11] Williams M. L. The Stress around a Fault or Crack in Dissimilar Media. Bull. Seismol. Soc. Am., 49, 199-204, 1959.
    [12] Dundurs J. Edge-bonded Dissimilar Orthogonal Elastic Wedges. J. Appl. Mech. 36, 650-652, 1969.
    [13] Rice J. R. Elastic Fracture Concepts for Interfacial Cracks. J. Appl. Mech. 55, 98-103, 1988.
    [14] Malyshev B. M. and Salyanik R. L. The Strength of Adhesive Joints Using the Theory of Cracks. Int. J. Fracture, Mech.5, 114-128, 1965.
    [15] Trantina G. C. Combined Mode Crack Extension in Adhesive Jionts. J. Composite Materials. 6,271-285, 1972.
    [16] Anderson G. P., Devries K. L. and Williams M. L. Mixed Mode Stress Field Effect in Adhesive Fracture. Int. J. Fracture, 10,565-583, 1974.
    [17] Hutchinson and Suo Z. Mixed Mode Cracking in Layered Materials. To Be Published in Advances in Applied Mechanics Vol.28, 1990.
    [18] Whitcomb J. D. Parametric Analytical Study of Instability-Related Delamination Growth. Compos. Sci. Technol. 25,19-48, 1986.
    [19] A. G. Evans and J. W. Hutchinson, On the Mechanics of Delamination and Spalling in Compressed Films. Int. J.of Solids and Struct. (20).5, 455-466, 1984.
    [20] A. G. Evans, Residual Stresses and Cracking in Brittle Solids Bonded with A Thin Ductile Layer. Acta Metall. Vol.36, No.8, pp 2037-2046, 1988.
    [21] A. G. Evans, Some Aspects of the Mechanical Strength of Ceramic/Metal Bonded Systems. Acta Metall. Vol.34, No.8, ppl643-1655, 1986
    [22] Drory M. D, M. D. Thouless and A. G. Evans, On the Decohesion of Residually Stressed Thin Films. Acta Metall. Vol.36, No.8, pp2019-2028, 1988.
    [23] Gao H. C. and A. G. Evans, An Experimental Study of the Fracture Resistance of Bimaterial Interface. Mechanics of Materials, 1989, pp245-304.
    [24] Hu M. S. and Evans A. G. The Cracking and Decohesion of Thin Films on Ductile Substrates. Acta Metall. Vol.37, No.3, 1989.
    [25] J. R. Rice, Z. Suo and J. S. Wang, In Metal-Ceramic Interfaces Acta-Scripta Metallurgica Proce. Ser. Vol.4, pp269-294, Pergamon Press Oxford, 1990.
    [26] J. C. Wang and P. M. Anderson, Acta Metall. Vol.39, pp774-784, 1991.
    [27] J. R. Rice, Dislocation from A Cracktip:An Analysis Based on the Perierls Concept. J. Mech. Phys. Solids, Vol. 40, No.2, pp239-246, 1992.
    [28] G. E. Beatz and J. S. Wang, Crack Direction Effects along Copper/Sapphier Interfaces. Acta Metall. Vol. 40, No.7, ppl675-1683, 1991.
    [29] Harland, G. Tompkins, Film Thickness Measurement Using Ellipsometry When the Lower Interface Is Uncharacterized. Thin Solid Films, 181, pp285- 294, 1989.
    [30] Najefi G. Meaturement of Fracture Stress, Young's Modulus and Intrinsts Stress of Heavily Boron-Doped Silicon Microstructures. Thin Solid Films, 181, pp251-258, 1989.
    [31] Koreo Kinosite, Recent Development in the Study of Mechanical Properties of Thin Films. Thin Solid Films, 12, pp17-28, 1972.
    [32] H.M.Smith,Principles of Holography.中译本,中国科学院物理研究所,《全息学原理》翻译组译校,全息学原理,科学出版社,1972。
    [33] D. Gabor, Holography. Proc. IEEE, 60, P656, 1972.
    [34] E. Archbold, J. M. Burch, A. E. Ennos and P. A. Taylor, Visual Observation of Surface Vibration Model Patterns. Nature, 222, pp259-265, 1969.
    [35] E. Archbold, J. M. Butch and A. E. Ennos, Recording of In-Plane Surface Displacement by Double-Exposure Speckle Photography. Optica Acta, 17, pp883-898, 1970.
    [36] X. P. Wu, S. P. He and Z. C. Li, Movement of Space Speckle. Proceedings of The Ⅳ International Congress on Experimental Mechanics. p404, 1981.
    [37] C. Forno, White-Light Speckle Photography for Measuring Deformation, Strain and Skape. Optics and Laser Tech., 7(5), pp217-221, 1975.
    [38] F. P. Chiang and A. Astmdi, White-Light Speckle Method of Experimental Strain Analysis. Applied Optics, 18(4), pp409-411, 1979.
    [39] 刘宝琛、蔺书田、韩刚、姜复本,白光投影散斑法测量物体的挠度和离面振动,清华大学学报,24(3),pp86-91,1984。
    [40] B. Mobasher, A Study of Fracture in Fiber-Reinforced Cement-Based Composites Using Laser Holographic Interferometry. Exp. Mech. 1990.
    [41] 戴福隆,傅承诵,吴岫原,云纹干涉法的波前干涉理论及其发展,中国力学学会第四届全国实验力学学术会文集,武汉,1984。
    [42] Y. Guo, D. Post, The Magic of Carrier Fringes in Moire Interferometry. Exp. Mech. 1989.
    [43] H. S. Johnson, Real-Time Moire Interferometry. Exp. Mech. 1989.
    [44] D. Post, Moire Interferometry. In Handbook on Experimental Mechanics, Ed. A. S. Kobayashi, Prentice Hall, Inc. 1987, Chap.7.
    [45] M. Basehore and D. Post, Displacement Fields(u,w) Obtained Simultaneously by Moire Interferometry. Appl. Opt., 21(14), 1982.
    [46] H. Pih, Laser Diffraction Methods for High- Temperature Strain Measurements. Exp. Mech. 1991.
    [47] Burch J. M., High Resolution Moire Photography. Opt. Eng. 1982.
    [48] Evensen D. A., Pulsed Differential Holographic Measurements of Vibration Modes of High Temperature Panels. NASA Cont. Rep. 1972.
    [49] J. T. Malmo, Interferometric Measurements of High Temperature Objects by Electronic Speckle Patterns Interferometry. Appl. Opt. 1985.
    [50] J. T. Malmo, Interferometric Testing at very High Temperature by TV Holography(ESPI). Exp. Mech. 1988.
    [51] A. Asundi, Logical Moire and Its Application. Exp. Mech. 1991.
    [52] A. Asundi, Digital Moire of Moire. Exp. Tech. 1992.
    [53] John, L. Sallivan, Phase-Stepped Fractional Moire. Exp. Mech. 1991.
    [54] A. S. Voloshin, Fractional Moire Strain Analysis Using Digital Imaging Techniques. Exp. Mech. 1986.
    [55] X. Lin, Q. Yu, Some Improvement on Digital Fringe Multiplication Methods. Exp. Tech. 1993.
    [56] B. Han and D. Post, Immersion Interferometer for Microscopic Moire Interferometry. Exp. Mech. 1992.
    [57] R. Czarnek, J. Lee, T. Rantis, Moire Interferometry with Enhanced Resolution. Exp. Tech. 1991.
    [58] 戴福隆等,《现代光测力学》,科学出版社,1989。
    [59] 戴福隆,卿新林,云纹干涉条纹倍增方法研究,力学学报,Vol.25,No.2,1993.
    [60] 石铃,高频云纹光栅的研制,清华大学工程力学系,1994年工学博士学位论文。
    [61] S. M. Serabian, Out-of-Plane Deflections of Metallic and Composite Pin-Loaded Coupons. Exp. Mech. 1991.
    [62] T. W. Shield, K. S. Kin, Diffraction Theory of Optical Interference Moire and A Device for Production of Variable Virtual Reference Gratings: A Moire Microscope. Exp. Mech. 1991.
    [63] D. T. Read, Scanning Moire at High Magnification Using Optical Methods. Exp. Mech. 1993.
    [64] Obata, Creep Crack Initiation and Growth in Incipient Stage and Localized Strain Distribution at Notch Root in Notched Component of 2024-T6 Aluminum Alloy. Trans. Jap. Soc. of Mech. Eng. 1993.
    [65] Yagawa, Experimental Noncontact Type-Strain Analysis Using Picture Processing. Trans. Jap. Soc. of Mech. Eng. 1983.
    [66] Ohji, An Experimental Study of Creep-Crack Growth Behavior during Incipient Stage of Creep Deformation. Trans. Jap. Soc. of Mech. 1984.
    [67] K. Hatanaka, A Measurement of Three-Dimensional Strains around A Creep-Crack Tip. Exp. Mech. 1992.
    [68] D. Post, New Optical Methods of Moire Fringes Multiplication. Exp. Mech. 1968.
    [69] Johnson L. Moire Techniques for Measuring Strains during Welding. Exp. Mech. 14(4), pp145-151, 1974.
    [70] G. Cloud, R. Radke, Moire Gratings for High Temperatures and Long Times. Exp. Mech. 1979.
    [71] G. L. Cloud and M. Bayer, Moire to 1370℃. Exp. Mech. 1988.
    [72] R. Czarnek, J. J. Wu, High-Temperature, High-Sensitivity Moire Interferometry. Exp. Mech. 1993.
    [73] B. S. J. Kang, Experimental Investigation of Creep-Crack-Tip Deformation Using Moire Interferometry. Exp. Mech. 1992.
    [74] Zhi-shan Luo, The Principle and Application of Sticking Film Moire Interferometry. Exp. Mech. 1990.
    [75] B. S. J. Kang, J Resistance Curves in Aluminum SEN Specimous Using Moire Interferometry. Exp. Mech. 1988.
    [76] J. Fang, F. L. Dai, Holographic Moire for Strain Fringe Patterns. Exp. Mech. 1991.
    [77] Beranek W. J. and Brunisma A. J. A., Determination of Displacement and Strain Fields Using Dual-Beam Holographic-Moire Interferometry. Exp. Mech. 1982.
    [78] 高建新,数字散斑相关方法及其在力学测量中应用,清华大学工程力学系,1989年工学博士学位论文。
    [79] S. M. Graham, The Influence of Grating Characteristics on Moire Fringe Multiplication. Exp. Mech. 1988.
    [80] S. A. Lukasiewica, Filtering of the Experimental Data in Plane Stress and Strain Fields. Exp. Mech. 1993.
    [81] Dohrmann C. R. and Busby H. R. Spline Function Smoothing and Differentiation of Noisy Data on A Rectangular Grid. Proc. 1990 SEM Spring Conf. on Exp. Mech. pp74-84, 1990.
    [82] Wahba G. Smoothing Noisy Data by Spline Functions. Numerische Mathematic, 24, pp383-393, 1975.
    [83] Tessler A. Least-Squares Penalty-Constrained Finite-Element Method for Generation Strain Fields from Moire Fringe Patterns. Proc. 1987 SPIE Conf. on Photomechanics and Speckle Metrology, 1987.
    [84] 王建成,LVRIPD装置镀膜技术研究,清华大学物理系,1992年工学硕士学位论文。
    [85] 刘宝琛,《实验断裂与损伤力学测试技术》,机械工业出版社,1994。
    [86] 沈观林,《复合材料力学》,清华大学工程力学系,1987。
    [87] 游明俊,《信息光学基础实验》,兵器工业出版社,1989.9。
    [88] J.W.Goodman,《付立叶光学导论》(中译本),科学出版社,1970。
    [89] Kang B. S. J., Wang F. X. and Lu Q. K. High Temperature Moire Interferometry for Use to 550℃. Proceedings of 1990 SEM Fall Conference, pp457-464, 1990.
    [90] Bao G., Ho S., Fan B. and Suo Z. Orthotropy Rescaling and Calibration of Fracture Specimens for Unidirectional Composites. Submitted for Publication, 1990.
    [91] Jenson H. M. Mixed Mode Fracture Analysis of the Blister Test., To Be Published, 1990.
    [92] Chai H. Three-Dimensional Fracture Analysis of Thin Film Debonding. Int. J. Fracture, In Press, 1990.
    [93] Haigren J. A., ttuang T. C. and Blount E. I. Measurement of Residual Stresses in Review. Report at the SAE Golden Anniversary Meeting, Detroit, 1955.
    [94] SAE Rep. J936, Methods of Residual Stress Measurement. Soc. Auto. Eng. Inc., New York, 1965.
    [95] Tebedge N., Alpsten G. A. and Tall L. Measurements of Residual Stresses-A Study of Methods. Fritz Eng. Lab. Rep. No. 337,8, 1971, Lehigh Univ.
    [96] Clover R. J. and Boag J. M. A Review of Mechanical Methods for Residual Stress Measurement. Rep., No., 82-404-K, Ontario Hydro, Toronto, 1982.
    [97] Fukuoka H., Toda H. and Naka H. Nondestructive Residual-Stress Measurement in A Wide-Flanged Beam by Acoustoelasticity. Exp. Mech. 23(3), 120-128, 1983.
    [98] Rund C. O. A Review of Nondestructive Methods for Residual Stress Measurement. J. Metals, 33(7), 35-40, 1981.
    [99] Bert C. W. and Thompson G. L. A Method for Measuring Planar Residual Stresses in Rectangularly Orthotropic Materials. J. Comp. Mat. 2(4), 244-253, 1968.
    [100] Ajovalasit A. Measurement of Residual Stresses by the Hole-Drilling Method: Influence of Hole Eccentricity. J. Strain Analysis, 14(4), 171-178, 1979.
    [101] D. Job, K. Y. Byun and J. Ha, Thermal Residual Stresses in Thick Graphite/Epoxy Composite Laminates-Uniaxial Approach. Exp. Mech. 70-76, 1992.
    [102] Wang J. S. and Suo Z. Experimental Determinaion of Interfacial Toughness Using Brazil-Nut-Sandwich. Acta Met. 38, 1279-1290, 1990.
    [103] Atkinson C., Smelser R. E. and Sanchez J. Combined Mode Fracture Via the Cracked Brazilian Disk Test. Int. J. Fracture, 18, 279-291, 1982.
    [104] R. Tonin, D. A. Bies, Analysis of 3-D Uibrations from Time-Averaged Holograms. Appl. Opt., 17, pp3713, 1978.
    [105] 杨振凡,《光学信息处理》(中译本),南开大学出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700