莺琼盆地东方1-1气田岩性圈闭预测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莺琼盆地东方1-1区黄流组一段是一新的探区,截至2011年已完钻6口探井,有三口井获工业气流,被证实为一典型岩性圈闭油气藏。但该区目的层沉积体系属于一种新的沉积类型,许多问题没有定论。井间储层变化复杂,前期研究认为的水道砂体孔隙度大,但渗透率低,但渗透率预测是油藏预测的关键。前期研究在叠后剖面上圈定的亮点砂体,有三口是真亮点,有三口是假亮点,叠前反演及其他烃检技术成功率不高,有多解性。针对以上岩性圈闭预测遇到的问题,论文一方面发展了地震沉积学研究内容和技术理念,另一方面继承和发展了叠前油气检测技术,并将两者有机结合,形成了相控储层预测、物控油藏预测的储层地震学技术体系和应用流程,并应用于该区岩性圈闭预测中,在实际生产中得到效果,在学术研究中获得以下几个方面的创新性成果:
     (1)发展了Wheeler域古地貌属性提取方法,丰富了地震沉积学中地震地貌的表征技术,为精细沉积分析奠定了基础。
     (2)首次开发了一套相控(Wheeler反变换)储层预测的理念和技术,可以用平面相带定量控制反演的砂体雕刻,使剖面砂体解释受沉积控制,解释出的砂体具有成因标志,进而推断其物性。
     (3)开发了分频AVO油气检测软件,剔除多次波软件和三项式AVO叠前属性分析软件,积极发展适应海上资料特点的烃检技术。
     (4)首次将砂体沉积分类和叠前属性相结合,体现了一种“物控油藏”的技术理念,实现了叠前-叠后,地震-地质在储层岩性、物性和含油气性三个层次的综合应用,从而形成了储层地震学技术体系,并在东方1-1区得到成功应用。
     以上储层地震学技术在具体工区应用方面获得以下成果:
     (1)在区域层序划分、地震反射特征和生物组合特征基础上,将目的层黄一段重新划分了1个三级层序(SQl);在SQ1下部依据生物组合特征、测井、地震下蚀沟道特征首次追踪了4个四级地震层序(M1,M2,M3,M4)。
     (2)在区域沉积、岩芯分析及M3地震沟道宽深比统计分析基础上,证实了该区主力层M3为非典型重力流沉积体系
     (3)用成像测井和地震地貌图首次得出主要目的层M3的沉积控制因素:古水流控制四级层序格架,非典型陆坡背景控制古地貌形态和物源供给样式,进而控制四级层序中砂体的分布规律
     (4)对主力层M3做了地震沉积分析,首次根据下蚀沟道的地震地貌划分了充填沟道、迁移沟道和下蚀沟道微相,首次将此微相划分和储层物性联系,认为充填沟道砂体具有好的物性,可以和叠前油气检测配合,提高油气检测精度,形成一套物控油藏的预测方法。
     (5)在M3中用相控预测方法,在有利微相区,用反演剖面刻画了多个有利砂体,为叠前烃类检测打下基础。
     (6)用叠前CRP道集做了部分叠加剖面,对部分叠加剖面做了分频处理,发现分频AVO中有低频亮点现象,在平面上和有利沉积砂体相匹配。
     (7)对叠前道集做多次波剔除,再用三项式AVO提取了P,G,S等叠前属性,发现P剖面亮点特征比叠后剖面对油气检测有利,在P剖面上做的吸收分析对油气检测精度也有提高,在平面上和有利沉积砂体相匹配,开辟了叠前属性和吸收分析联合烃检的新思路。
The Huangliu group at Ying-Qiong Basin eastern13-1region is a new exploratory area and there are6well drillings that have been completed by2011. Three of them get industrial gas and are confirmed as typical lithologic trap oil and gas reservoir. But the target bed of the sedimentary system belongs to a new sedimentary type.So there are many problems not concluded. The change of inter-well reservoir is complex. Previous research considers that the porosity of channel sand body is big, but the permeability is low. Permeability forecast is the key factor forecasting oil deposit. Three of the bright spot sand bodies circled on the post-stack section in the previous research are true bright spot and three of that are false ones. The success rate of pre-stack inversion and other hydrocarbon testing techniques are low which have multiplicity of solutions. Aiming at the problems of lithologic trap forecasting above, this paper on the one hand develops the research content and technique idea of seismic sedimentology, on the other hand it inherits and develops the pre-stack hydrocarbon detection technique. Besides, this paper combines the two aspects, forming the technique system and application flow of reservoir seismology of reservoir prediction and material control oil reserve forecast which is applied in lithologic trap forecasting in this area. This application works well in actual production. This paper gets the following innovation achievements in academic research:
     (1)It develops the extract method of ancient landform property of Wheeler area, enriches the characterization technique of seismic geomorphology of seismic sedimentology, and lays the foundation of fine sedimentation analysis.
     (2)It, for the first time, develops a set of ideas and techniques of reservoir prediction(Wheeler inverse transformation) forecast which can use sand body carving of phase plane with quantitative control and quantitative retrieval to make profile sand body interpretation get sedimentary control. The sand body interpretated has genetic criteria which thus predicates its physical property.
     (3)It develops frequency demultiplication AVO oil and gas detection software, deletes multiple wave software and demultiplication AVO pre-stack attributes analysis software, actively develops hydrocarbon inspection technology that adapts to the feature of marine data.
     (4)lt combines the seismic sedimentology and prestack attributes for the first time which reflects the idea of "material control oil deposit" technology that realizes the integrated application of prestack-poststack and seismic-geology in reservoir lithology, physical property, and oil-bearing properties, thus forming the technical system of reservoir seismology that is successfully applied in eastern13-1area.
     This doctoral dissertation obtains the following achievements in terms of lithologic trap forecasting technique application at eastern1-1region:
     (1)Based on the regional sequence classification, reflectance signature of the seismic, and combine feature of living things, it reclassifies the first yellow part of subject reservoir into two level three sequence (SQ1、SQ2);It traces4level four seismic sequence (M1, M2, M3, M4) for the first time depending on the combine feature of living things,logging, features of seismic degrading channel.
     (2)It confirms the main layer M3in this region is atypical gravity flow deposit system based on the statistic analysis on area deposition, core, and the ratio of the width and depth of M3seismic channel.
     (3)It gets deposit control element of the main objective layer M3by using imaging logging and seismic geomorphologic map for the first time:paleocurrent control level four sequence grillwork, atypical clinoform background control ancient physiognomy and source supply style. Then it controls the regularity of distribution of sand body in the level four sequence.
     (4)It makes seismic deposit analysis on main layer M3. And it divides microfacies of filling channel, migration channel and degrading channel based on the seismic physiognomy of degrading channel for the first time. It also connects the microfacies division with reservoir permeability for the first time, considering that filling channel sand is of good permeability and it can match with prestack oil gas testing to improve the precision of oil and gas testing to form a set of forecasting technique system of material control oil deposit.
     (5)It uses phase-controlling forecast methods on the prestack part of M3and depicts many favourable sand bodies in the favourable microfacies area which lays the foundation of prestack hydrocarbon inspection.
     (6)It makes part of stack section by using prestack CRP gather to do frequency demultiplication processing on part of stack section and finds out that there is low frequency window phenomenon in fractional frequency AVO which matches with favourable deposit sand body in the plane.
     (7)It does multiple wave deletion on prestack gather and then uses trinomial AVO to collects the prestack nature of P, G, S and so on, and finds out the window feature of section P has more advantages to oil and gas inspection than poststack section. The absorption analysis on section P also improves the the oil and gas inspection precision, and matches with favourable deposit sand body in the plane. This puts forward the new idea of united hydrocarbon inspection on prestack nature and absorption analysis.
引文
[1]Zeng Hongliu, Stephen C Henry, John P Riola. Stratal slicing, part Ⅰ:Real 3-D seismic data[J].Geopgysics,1998,63(2):502-513.
    [2]Zeng Hongliu, Stephen C Henry, John P Riola. Stratal slicing, part Ⅱ:Real 3-D seismic data[J].Geopgysics,1998,63(2):514-522.
    [3]Zeng Hongliu. Seismic geomorphology-based facies classification[J].The Leading Edge,2004,7:644-645.
    [4]Zeng Hongliu, Hentz T F. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, Off shore Louisiana[J].AAPG Bulletin,2004,88(2):153-174.
    [5]Hongliu Zeng, Milo M. Backus. Optimizing thin-bed interpretation with 90°-phase wavelets[A].SEG 2005 Annual Meeting[C].Houston,2005.
    [6]Hongliu Zeng, Charles Kerans, Jerry Lucia.3-D Seismic Detection of Collapsed Paleocave Systems in the Clear Fork/Glorieta Platform, Hobbs Field, New Mexico[A].SEG 2006 Annual Meeting[C].Orleans,2006.
    [7]Hongliu Zeng, Charles Kerans. Amplitude versus frequency—applications to seismic stratigraphy and reservoir characterization, part Ⅰ:model[A].SEG 2000 Expanded Abstracts[C].Calgary,2000.
    [8]Hongliu Zeng, Charles Kerans, Jerry Lucia. Amplitude versus frequency---applications to seismic stratigraphy and reservoir characterization,part Ⅱ:real 3-D data in Abo reservoir, Kingdom field, West Texas[A].SEG 2000 Expanded Abstracts[C].Calgary,2000.
    [9]Hongliu Zeng.Geomorphology-based, automated seismic facies analysis[A].SEG Int'l Exposition and 72nd Annual Meeting[C].Salt Lake City, Utah,2002.
    [10]Hongliu Zeng,Charles Kerans.Seismic frequency control on carbonate seismic stratigraphy:A case study of the Kingdom Abo sequence, west Texa[J].AAPG Bulletin,2003,87(2):273 -293.
    [11]Hongliu Zeng,T. F. Hentz源于地震沉积学的高精度层序地层学应用:以路易斯安那近海老虎滩地区50号中新统弗米利恩区块为例[J].世界地震译丛,2007,3:54-74.
    [12]Hongliu Zeng,钱华译.委内瑞拉马拉开波湖Mioceno Norte油田的地震沉积学和区域性沉积体系[J].国外油气地质信息,2002,6:36-45.
    [13]Paul de Groot, Geert de Bruin, Nanne Hemstra. How to create and use 3D Wheeler transformed seismic volumes[A].SEG 2006 Annual Meeting[C].New Orleans,2006.
    [14]Friso Brouwer, Geert de Bruin, Paul de Groot. Interpretation of seismic data in the Wheeler domain:integration with well logs, regional geology and analogs[A]. SEG Annual Meeting[C].Las Vegas,USA,2008.
    [15]Geert De Bruin, Nanne Hemstra. Stratigraphic surfaces in the depositional and chronostratigraphic (Wheeler-transformed) domain[J].The Leading Edge,2007,7:1-4.
    [16]Geert de Bruin, Eric Bouanga. Time attributes of Stratigraphic Surfaces, analyzed in the structural and Wheeler transformed domain [A]. E AGE 69th Conference & Exhibition[C].London,UK,2007.
    [17]G. De Bruin, H. Ligtenberg, N. Hemstra. Synchronized sequence stratigraphic interpretation in the structural and chrono-stratigraphic (Wheeler transformed) domain[A].EAGE Workshop Research[C].Grenoble,France,2006.
    [18]H. Ligtenberg, G. De Bruin, N. Hemstra. Sequence Stratigraphic Interpretation in the Wheeler Transformed (Flattened) Seismic Domain[A].EAGE 68th Conference & Exhibition[C].Vienna,Austria,2006.
    [19]应明雄.地震沉积学在塔巴庙D气田的应用研究[D].成都:成都理工大学,2009.
    [20]李斌,宋岩,何玉萍等.地震沉积学探讨及应用[J].地质学报,2009,83(6):821-828.
    [21]陈雪菲,王绪本,刘力辉.地震沉积学在D区的初步应用[J].物探化探计算技术,2010,32(2):126-131.
    [22]董春梅,张宪国,林承焰.地震沉积学的概念、方法和技术[J].沉积学报,2006,24(5):698-706.
    [23]林承焰,张宪国,董春梅.地震沉积学及其初步应用[J].石油学报,2007,28(2):69-72.
    [24]林承焰,张宪国.地震沉积学探讨[J].地球科学进展,2006,21(11):1140-1144.
    [25]董春梅,张宪国,林承焰.有关地震沉积学若干问题的讨论[J].石油地球物理勘探,2006,41(4):405-408.
    [26]刘保国,刘力辉.实用地震沉积学在沉积相分析中的应用[J].石油物探,2008,47(3):266-271.
    [27]魏嘉,朱文斌,朱海龙等.地震沉积学-地震解释的新思路及沉积研究的新工具[J].勘探地球物理进展,2008,31(2):95-101.
    [28]刘春慧,金振奎,刘家铎等.地震数据处理技术在准噶尔盆地东部C25井西区砂体识别中的应用[J].矿物岩石,2007,27(4):104-111.
    [29]张义娜,朱筱敏,刘长利.地震沉积学及其在中亚南部地区的应用[J].石油勘探与开发,2009,36(1):74-80.
    [30]张宪国.大港滩海地区地震油藏地质研究[D].东营:中国石油大学,2007.
    [31]陈旭,陈红汉,董玉文等.地震沉积学研究方法评析[J].沉积与特提斯地质,2010,30(1):53-60.
    [32]林正良,王华,李红敬等.地震沉积学研究现状及进展综述[J].地质科技情报,2009,28(5):131-138.
    [33]王正和,蒋能春,吕其彪.地震沉积学概念、方法及其应用研究[J].重庆科技学院学报(自然科学版),2008,10(3):25-27.
    [34]杜伟,陈娣.地震沉积学及其与相关学科的比较认识[J].内蒙古石油化工,2008,19:16-17.
    [35]李秀鹏,曾洪流,查明.地震沉积学在识别三角洲沉积体系中的应用[J].成都理工大学学报(自然科学版),2008,35(6):625-629.
    [36]杨志芳,曹宏.地震岩石物理研究进展[J].地球物理学进展,2009,24(3):893-899.
    [37]徐胜峰,李勇根,曹宏.地震岩石物理研究概述[J].地球物理学进展,2009,24(2):680-691.
    [38]刘浩杰.地震岩石物理研究综述[J].油气地球物理,2009,7(3):1-8.
    [39]唐建伟.地震岩石物理学研究有关问题的探讨[J].石油物探,2008,47(4):398-405.
    [40]李斌,杨迎春,何玉萍等.塔河油田卡拉沙依组地震沉积学研究与储层预测[J].现代地质,2009,23(6):1107-1113.
    [41]阳孝法,张学伟,林畅松.地震地貌学研究新进展[J].特种油气藏,2008,15(6):1-5.
    [42]蒋韧,樊太亮,徐守礼.地震地貌学概念与分析技术[J].岩性油气藏,2008,20(1):28-33.
    [43]董艳蕾,朱筱敏,曾洪流等.歧南凹陷地震沉积学研究[J].中国石油大学学报(自然科学版),2008,32()4:7-13.
    [44]孙运强,廉桂辉,张陈慧.地层切片技术在C80工区的应用[J].内蒙古石油化工,2007,10:99-101.
    [45]郭海洋,巫芙蓉,刘树根等.地震沉积学在GA地区的初步应用[J].物探化探计算技术,2008,30(5):399-405.
    [46]董艳蕾,朱筱敏,曾洪流等.黄骅坳陷歧南凹陷古近系沙一层序地震沉积学研究[J].沉积学报,2008,26(2):234-241.
    [47]陈迎宾,张寿庭,付群等OpendTect系统在层序地层研究中的应用[J].地球物理学进展,2009,24(5):1768-1775.
    [48]陆永潮,杜学斌,陈平等.油气精细勘探的主要方法体系—地震沉积学研究[J].石油实验地质,2008,30(1):1-5.
    [49]李杏莉.岩性油气藏地震预测技术与地震沉积学分析应用研究[D].北京:中国地质大学,2009.
    [50]杨志芳,曹宏.地震岩石物理研究进展[J].地球物理学进展,2009,24(3):893-899.
    [51]徐胜峰,李勇根,曹宏.地震岩石物理研究概述[J].地球物理学进展,2009,24(2):680-691.
    [52]刘浩杰.地震岩石物理研究综述[J].油气地球物理,2009,7(3):1-8.
    [53]唐建伟.地震岩石物理学研究有关问题的探讨[J].石油物探,2008,47(4):398-405.
    [54]刘力辉等.应用自组织神经网络划分地震微相[J].石油地球物理勘探,1996,2(14):90-94.
    [55]罗立民,王允诚.自组织特征映射网络的改进及在储层预测中的应用[J].石油地球物理勘探,32(2):237-246.
    [56]马玉华,林文华.解析信号的瞬时相位与原始信号的等价关系[J].黑龙江大学自然科学学报,1995,12(3):56-60.
    [57]石颖,刘洪.地震信号的复地震道分析及应用.地球物理学进展.2008,23(5):1538-1543
    [58]Wenkai Lu,Yandong Li,Shanwen Zhang et al..Higher-order-statistics and supertrace-based coherence-estimation algorithm[J].GEOPHYSICS,2005,70(3):13-18.
    [59]An Yong,Wei Lichun,Yang Changchun.The most homogeneous dip-scanning method using edge preserving smoothing for seismic nosie attenuation[J].APPLIED GEOPHYSICS,2006,3(4):210-217.
    [60]Kurt J. Marfurt, R. Lynn Kirlin, Steven L. Farmer.3-D seismic attributes using a semblance-based coherency algorithm[J].GEOPHYSICS,1998,63(4):1150-1165.
    [61]Kurt J. Marfurt. Robust estimates of 3D reflector dip and azimuth[J].GEOPHYSICS,2006,71(4):29-40.
    [62]Dalley, R. M,E. E.A. Gevers,G. M. Stampli et al..Dip and azimuth displays for 3Dseismic interpretation[J].First Break,1989,7:86-95.
    [63]Kurt J. Marfurt,V. Sudhaker,Adam Gersztenkorn.Coherency calculations in the presence of structural dip[J].Geophysics,1999,64(1):104-111.
    [64]Kurt J. Marfurt, R. Lynn Kirlin.3-D broad-band estimates of reflector dip and amplitude[J].Geophysics,2000,65(1):304-320.
    [65]Yi Luo, Maher Marhoon, Saleh Al Dossary. Edge-preserving smoothing and applications[J].The Leading Edge,2002,1:136-158.
    [66]Sergey Fomel. Applications of plane-wave destruction filters[J].Geophysics,2002,67(6):1946-1960.
    [67]Christian Hocker, Gijs Fehmers. Fast structural interpretation with structure-oriented filtering[J].The Leading Edge,2002,4:238-243.
    [68]Gils C. Fehmers, Christian F. W. Hocher. Fast structural interpretation with structure-oriented filtering[J]. Geophysics,2003,68(4):1286-1293
    [69]Wang Jun,Chen Yuhong,Xu Dahua et al..Structure-oriented edge-preserving smoothing based on accurate estimation of orientation and edges[J].Applied Geophysics,2009,6(4):367-376.
    [70]Saleh Al Dossary, Kurt J. Marfurt.Lineament-preserving filtering[J].Geophysics,2007,72(1):1-8.
    [71]王龙军.基于三维地震的地震相分析技术研究[D].西安:西安科技大学,2008.
    [72]KG002TY.地震属性精讲[EB/OL].石油软件技术论坛http://www.petrosoftware.cn/bs/thread-489-1-1.html,2008.
    [73]马在田,李庆忠,郑晓东等.地震资料处理技术高级培训班教材[M].北京:中国石油天然气股份有限公司勘探与生产分公司,2002:264-302
    [74]Aki, Richards, P. G. Quantitative seismology[M]:Theory and methods. W.H. Freeman and Co,1980
    [75]熊定钰等,保持地震记录叠前AVO属性的噪声衰减方法[J].石油地球物理勘探,2010;6:856-860
    [76]Patrick, C. Elastic Impedances [J]. The Leading Edge,1999; 18(4):438-452
    [77]Theodoros Klimentos, Attenuation of P-and S-waves as a method of distinguishing gas and condensate from oil and water[J].Geophysics,1995; 2:447-458
    [78]吴东胜,王正允,王方平等.应用地震波速度预测砂岩孔隙度[J].石油与天然气地质,1995;16(3):290-293
    [79]黄绪德,油气预测与油气藏描述[M].南京,江苏科学技术出版社,2003
    [80]冯敬英,何建军,高向东等.辽河油田某地区孔隙度的预测[J].矿物岩石,1999;19(4):25-28
    [81]贺保卫,潘仁芳,莫午零等.用AVO方法从定性到半定量检测砂岩含气性[J].断块油气田,2005;12(1):19-20
    [82]Wyllie M R J, Gregory A R, Gardner L W. Elastic wave velocities in the heterogeneous and porous media[J]. Geophysics,1956; 21:41-70
    [83]Gassmann, F. Uber die elastiztat poroser medien:Viertel jahrsschr.Der Naturforsch.Gesellschaft Zurich[J].1951; 96:1-21
    [84]Biot, M A. Theory of propagation of elastic waves in fluid-saturated porous solid Ⅰ[J]. Low frequency range:J Acoust Soc Am,1956,28:169-178
    [85]Biot, M A. Theory of propagation of elastic waves in fluid-saturated porous solid Ⅱ[J]. High frequency range:J Acoust Soc Am,1956,28:179-191
    [86]云美厚,高君,贺玉山等.储层速度和密度与孔隙度、泥质含量以及含水饱和度的关系[J].勘探地球物理进展,2004;27(2):104-107
    [87]Nur A. Critical porosity:a key to relating physical properties to porosity in rocks[J]. The Leading Edge,1998; 17(3):357-362
    [88]殷八斤,曾濒,杨在岩.AVO技术的理论与实践[M].北京:石油工业山版社,1995
    [89]陈信平.漫谈AVO[J].中国海上油气,1997;17(1):51-56
    [90]徐仲达,屠浩敏,邬庆良.平面波反射系数与AVO技术[J].石油物探,1991:30(3):1-210
    [91]邹才能,张颖.油气勘探开发实用地震新技术[M].北京:石油工业出版社,2002:275-321
    [92]Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics,1985; 50(2):609-614
    [93]程冰洁,张玉芬.AVO简化方程的物理意义及其在油气识别中的应用[J].物探化探计算技术,2003;25(1):26-30
    [94]郑晓东.Zoeppritz方程的近似及其应用[J].石油地球物理勘探,1991:26(2):129-144
    [95]杨绍国,周熙襄.Zoeppritz方程的级数表达式及近似[J].石油地球物理勘探,1994;29(4):399-412
    [96]Mallick. A simple approximation to the P-wave reflection coefficient and its implication in the inversion of amplitude variation with offset data[J]. Geophysics,1993; 58:544-552
    [97]Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis[J]. Geophysics,1994; 59(9):1362-1376
    [98]孙鹏远,孙建国,卢秀丽.P-P波AVO近似对比研究:定量分析[J].石油地球物理勘探,2002;37(S):172-179
    [99]孙鹏远.多属性AVO分析及弹性参数反演方法研究:[D],吉林大学,吉林:2004
    [100]郑晓东.AVO理论和方法的一些新进展[J].石油地球物理勘探,1992;27(3):305-317
    [101]Castagna J P, Swan H W, Foster D J. Framework for AVO gradient and intercept interpretation[J]. Geophysics,1998; 63:948-956
    [102]伍向阳,陈祖安.干岩石体积模量估计[J].地球物理学报,2001;44(Z1):146-151
    [103]许云书.基于模拟退火的AVO反演方法[J].新疆石油学院学报,2004;16(1):39-42
    [104]王山山,李灿平.快速模拟退火地震反演[J].地球物理学报,1995;38(增1):123-134
    [105]刘振宽,金成志,吴世旗等.模拟退火波阻抗反演及其应用[J].大庆石油地质与开发,2003;22(6):67-68
    [106]任义庆,徐仲达,马在田.应用模拟退火法反演横波速度[J].石油地球物理勘探,1996;31(5):677-684
    [107]孙建国,马中高,郝培栋.用改进的模拟退火法反演子波参数[J].石油物探,1998;37(3):77-81
    [108]谢云.模拟退火算法的原理及实现[J].高等学校计算数学学报,1999;21(3):212-218
    [109]李文勇,李泉永.基于模拟退火的全局优化算法[J].桂林电子工业学院学报,2001;21(2):33-36
    [110]姚姚.地球物理非线性反演模拟退火法的改进[J].地球物理学报,1995;38(5):643-650
    [111]刘鹏程,纪晨.改进的模拟退火-单纯形综合反演方法[J].地球物理学报,1995;38(2):199-204
    [112]王山山,李青仁,管叶君.约束模拟退火反演[J].石油地球物理勘探,1995;30(1):27-35
    [113]张霖斌,姚振兴,纪晨等.快速模拟退火算法及应用[J].石油地球物理勘探,1997;32(5):654-660
    [114]顾汉明,江涛,王家映.改进快速模拟退火方法进行AVO岩性参数反演[J].地球科学,1999;24(4):418-422
    [115]李景叶,陈小宏.用改进的模拟退火算法进行叠后时移地震数据反演[J].石油地球物理勘探,2003:38(4):392-395
    [116]谢玉洪.高分辨率地震勘探技术在莺歌海盆地大气区勘探中的应用[J].天然气业,1999,19(1):60~64.
    [117]谢玉洪.天然气地震勘探与开发方法研究.内部资料.
    [118]谢玉洪.构造活动型盆地层序地层分析及天然气成藏模式[M].地质出版社,2009.
    [119]谢玉洪,陈志宏,陈殿远.含气储层非均质性评价技术研究及其应用[J].石油地球物理勘探,2007,46(4):353~358.
    [120]谢玉洪,王振峰,解习农等.莺歌海盆地坡折带特征及其对沉积体系的控制[J].地球科学,2004,29(5):569-574.
    [121]谢玉洪,王振峰,周家雄,姜平.多角度同步反演在南海西部气田开发中的应用[J].石油天然气学报,2006,28(1):37-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700