云的垂直重叠和热带地区气溶胶间接效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云自身的辐射效应和云与气溶胶相互作用的辐射效应对于气候系统中的辐射过程有着十分重要的影响,且两者目前是预测未来气候变化中最大的不确定性的来源之一。因此,本文通过结合主动被动卫星遥感资料和次网格随机云生成器,一方面分析云重叠问题中的重要参数—抗相关厚度的时空分布,为未来气候模式发展更精确的参数化方案提供基于卫星观测的参考;另一方面分析全球深厚云系统的时空分布,选取最适合研究气溶胶激活效应的热带地区,研究气溶胶对于不同类型云的影响,特别着眼于以往研究中较少涉及到的对云辐射强迫的影响。主要结论如下:
     1)表征云垂直结构的特征量一抗相关厚度具有明显的时空变化。简单地将其设定值为2km对次网格气柱总云量进行模拟时,会产生平均约为15%左右的误差,这些误差会对气候模式中云辐射计算和辐射收支平衡产生很大影响。因此,对于抗相关厚度的精确参数化是未来气候模式发展中的重要方向之一。
     2)伞球不同纬度带上的深厚云系统及其宏观物理特性具有非常不同的分布特点。随着纬度的升高,深厚云系统的垂直发展强度逐渐减弱,而水平覆盖面积逐渐加强。两者不同的伞球分布体现出不同纬度带上深厚云系统形成的主导机制不同:低纬度地区的深厚云系统多为深对流云,因而具有最强的垂直发展和最弱的水平发展。中纬度地区的深厚云系统多为锋面成云,垂直发展强度小于低纬地区,受季风影响的北半球中纬度地区,垂直发展强度在北半球夏季有明显增大;而高纬地区的深厚云系统主要由来自极地的冷气团和副热带的暖气团交汇形成的大范围锋面而产生,其垂直对流弱,因此其水平发展强度最大,垂直发展强度最小。
     3)对热带地区气溶胶对云宏观和微观特性影响的分析表明:随着气溶胶浓度的增加,水云的宏观相态无明显改变,而混合相态云的云顶高度和云层厚度显著增加,同时,混合相态云中的冰过程显著增强,而三种不同类型云的云滴的有效半径都呈减小的趋势,这些结果与理论上气溶胶激活效应对云宏观和微观特性的改变均相符,证实了热带地区气溶胶激活效应的存在;对气溶胶对云辐射强迫(CRF)的分析表明:随着气溶胶浓度的增加,水云的长波CRF并无显著的改变,与其宏观特性的改变相一致,气溶胶第一间接效应和半直接效应共同作用导致短波CRF呈先增长后减弱的趋势;混合相态云的短波CRF和长波CRF均显著增加,这是由于气溶胶激活效应导致云层变厚,云顶变高,从而反射更多的太阳短波辐射回太空,同时捕获更多的地表长波辐射。此外,本文采用简单的基于样本个数权重的计算方法初步估算出气溶胶对热带地区云辐射强迫的净影响为-4.18W/m2;对多个气象要素和气溶胶浓度相关性的分析表明:气溶胶增加导致的云微物理特性和辐射特性的显著改变并不能由大尺度动力条件所解释。
The radiation impact of clouds and the interaction between clouds and aeorosols play a key role in the radiation processing in climate system. But they are still one of the biggest uncertainties in the climate prediction due to many reasons. Therefore, by the combination of active and passive remote sensing and the stochastic cloud generator, we first analyzed the spatial and temporal distribution of an important parameter in cloud overlapping parameterizations-decorrelation depth which can be used as reference for the development of new parameterization in the future. On the other hand, we performed a statistical analysis of global deep cloud systems, and studied the aerosol invigoration effect on tropical clouds with special focus on the impact of invigoration effect on cloud radiative forcing (CRF). The mainly findings are:
     1) The decorrelation depth which represents the cloud vertical structure has significant temperol and spatial variations. Simply fix it to2km will result about15%differences between simulated and observed column cloud amount. The differences would have significant impact on the cloud radiation calculation and radiation budget in climate model. Therefore precisely parameterization of decorrelation depth is one of the major direction for climate model development infuture.
     2) The macro-physical properties of global deep cloud systems (DCS) have very different characteristics in different latitudes. The vertical (horizontal) development of DCS increase (decrease) towards higher latitudes, which indicate the different mechanism of DCSs' generation. Most of the DCS in low latitudes are deep convective cloud which highly developed in vertical direction but cover relative small horizontal extent, therefore have the strongest vertical development but weekest horizontal development. DCS in middle latitudes are mainly caused in front system thus have weaker vertical development than those in low latitudes. Influenced by the mooson, the vertical developments of DCS increase sharply in summer of north hemisphere. The DCS in high latitudes are formed in the large scale front system formed by the convergence of warm air mass from sub-tropical region and cold air mass from polar region. Therefore they have the weekest vertical development but strongest horizontal development.
     3) The analyzing of the aerosol impact on the macro and micro physical properties of tropical clouds indicate that: with the increase of aeorosol loading, no obviously change shows for liquid cloud, but the cloud top height and cloud thickness of mixed-phase clouds increase significantly and their ice processing are stronger as well while the effective radius of all types of clouds are decrease. The agreements of all above clouds'properties change with aerosol are consist with aerosol invigoration effect hypothesis, which give the provement of the exsiting of aerosol invigoration effect on tropical clouds. The analyzing of the relationship between aerosol and CRF demonstrate that: with the increase of aerosols, no obviously change of longwave CRF for liquid clouds which is consist with no change of its geomoety. But due to the combination of first indirect effect and sem-direct effect, the shortwave CRF of liquid clouds increase first and decrease after. Both shortwave CRF and longwave CRF of mixed-phase clouds increase significant with the increase of aeorosols. That is because invigorated cloud will have higher cloud top and thicker cloud thickness, therefore would reflect more solar radiation back to space and capture more longwave radiation from surface. Using a simple sample number weighted calculation method, the aerosol net effect of all the clouds in tropical regions are estimated to be-4.18W/m2. Further tests on the dependence of multiple meteorological parameters shows that, the targeted relationship between cloud physical and radiative properties can not be explained by dynamical impact.
引文
荆现文,张华,郭品文.气候模式中云的次网格结构对全球辐射影响的研究.气象学报,2009,67:1058-1068.
    彭杰,张华,沈新勇.2013.东亚地区云垂直结构的CloudSat卫星观测研究.大气科学,37(1):91-100,doi:10.3878/j.issn.1006-9895.2012.11188. Peng Jie, Zhang Hua, Shen Xinyong.2013. Analysis of vertical structure of clouds in East Asia with CloudSat data. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1):91-100.
    石广玉.大气辐射学.北京:科学出版社,2007,302-318.Shi G Y. Atmospheric Radiation (in Chinese). Beijing:Science Press,2007.302-318.
    汪宏七,赵高祥.云和辐射(Ⅰ)云气候学和云的辐射作用.大气科学,1994,18(增刊):910-932.
    张华,荆现文.气候模式中云的垂直重叠假定对模拟的地-气辐射的影响研究.大气科学,2010,3:520-532.
    张华,彭杰,荆现文等.2013.东亚地区云的垂直重叠特性及其对云辐射强迫的影响,中国科学:地球科学,2013,43:523-535
    Ackerman A.S., et al., Reduction of tropical cloudiness by soot. Science,2000,288:1042-1047.
    Albrecht B. A., Randall D. A., and Nicholls S., Observations of marine stratocumulus clouds during FIRE. Bulletin of the Atmospheric Meteorological Society,1988,69:618-626.
    Albrecht, B. A., Aerosols, cloud microphysics, and fractional cloudiness. Science,1989,245:1227-1230.
    Andreae, M. O. et al., Smoking Rain Clouds over the Amazon. Science,2004,303:1337-1341.
    Arakawa A. and Schubert W. H., The interaction of a cumulus cloud ensemble with the large-scale enviroment, Part I. Journal of the Atmospheric Sciences,1974,31:674-701.
    Arakawa A., Modeling clouds and cloud processes for use in climate models. The Physical Basis of Climate and Climate Modelling. GARP Publications Series,1975,16:ICSU/WMO,181-197.
    Arakawa A., The Cumulus Parameterization Problem:Past, Present, and Future. Journal of Climate, 2004,17:2493-2525.
    Barker H. W., A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part I:Methodology and Homogeneous Biases. Journal of the Atmospheric Sciences,1996,53(16):2289-2303.
    Barker H. W., B. A. Wiellicki and L. Parker, A Parameterization for Computing Grid-Averaged Solar Fluxes for Inhomogeneous Marine Boundary Layer Clouds. Part II:Validation Using Satellite Data. Journal of the Atmospheric Sciences,1996,53(16):2304-2316.
    Barker, H. W., G. L. Stephens, and Q. Fu., The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quarterly Journal of the Royal Meteorological Society,1999,125: 2127-2152.
    Barker H W, Stephens G L, Partain P T, et al. Assessing ID atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J Clim,2003,16:2676-2699.
    Barker H. W. and P. Raisanen, Radiative sensitivities for cloud structural properties that are unresolved by conventional GCMs. Quarterly Journal of the Royal Meteorological Society,2005,131:3103-3122.
    Barker H. W., Overlap of fractional cloud for radiation calculations in GCMs:A global analysis using CloudSat and CALIOSO data. Journal of Geophysical Research,2008,113:DOOA01, doi: 10.1029/2007JD009677
    Bell T. L., Rosenfeld D., Kim K.M., Weekly cycle of lighting:Evidence of storm invigoration by pollution. Geophys. Res. Lett.,2009,36:L23805.
    Bergman J. W. and P. J. Rasch, Parameterizing Vertically Coherent Cloud Distributions. Journal of the Atmospheric Sciences,2002,59(14):2165-2182.
    Brenguier J.L. et al., Radiative properties of boundary layer clouds:droplet effective radius versus number concentration. Journal of the Atmospheric Sciences,2000a,57:803-821.
    Brenguier J.L. et al., An overview of the ACE-2 CLOUDYCOLUMN closure experiment, Tellus, 2000b,52B:815-827.
    Brenguier J.L., H. Pawlowska, and L. Schuller, Cloud microphysical and radiative properties for parametrization and satellite monitoring of the indirect effect of aerosol on climate. Journal of Geophysical Research,2003,108(D15):8632, doi:10.1029/2002JD002682.
    Bollasina M., and S. Nigam, Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations. Climate Dynamics,2008, doi:10.1007/s00382-008-0477-4478.
    Cahalan R. F., W. Ridgway, W. J. Wiscombe, S. Gollmer and Harshvardhan, Independent Pixel and Monte Carlo Estimates of Stratocumulus Albedo. Journal of the Atmospheric Sciences,1994,51:3776-3790.
    Charney, J. G, Carbon Dioxide and Climate:A Scientific Assessment. National Academy Press,1979,33 pp.
    Chand D., Wood R., Anderson T., Satheesh S. K., Charlson R. J., Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geosciences,2009,2:181-184.
    Charlson R. J., Lovelock J. E., Amdreae M. O., and Wareen S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature,1987,326:655-661.
    Chen T., Rossow W. B., Zhang Y.C., Radiative Effects of Cloud Type Variations. Journal of Climate, 2000,13:264-286.
    Chou M.-D., M. J. Suarez, C.-H. Ho, M. M. H. Yan and K.-T. Lee, Parameterizations for Cloud Overlapping and Shortwave Single-Scattering Properties for Use in General Circulation and Cloud Ensemble Models. Journal of Climate,1998,11(2):202-214.
    Chu D. A. et al., Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia, J. Geophys. Res.,2005,110:D07308, doi:10.1029/2004JD005208.
    Colman R., A comparison of climate feedbacks in GCMs, Climate Dynamics,2003,20:865-873.
    Ding S. G, Zhao C. S., Shi G Y. et al., Analysis of global total cloud amount variation over the past 20 years. Journal of Applied Meteorology,2005,16:670-677.
    Fan J., R. Zhang G. Li, W.-K. Tao and X. Li, Simulations of cumulus clouds using a spectral microphysics cloud-resolving model. Journal of Geophysical Research,2007,112:D04201, doi:10.1029/2006JD007688.
    Fan J., Zhang R., Li G. and Tao W-K, Effects of aerosols and relative humidity on cumulus clouds, J. Geophys. Res.2007,112:D14204, doi:10.1029/2006JD008136.
    Fan J., Yuan T., Comstock J. M., Ghan S., Khain A., Leung L. R., Li Z., Martins V. J. and Ovchinnikov M., Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res.2009,114:D22206, doi:10.1029/2009JD012352.
    Fan J., Rosenfeld D., Ding Y., Leung L. R. and Li Z., Potential Aerosol Indirect Effects on Atmospheric Circulation and Radiative Forcing through Deep Convection. GEOPHYSICAL RESEARCH LETTERS, doi:10.1029/2012GL051851 (In press)
    Feingold G, S.M. Kreidenweis, and Y.P. Zhang, Stratocumulus processing of gases and cloud condensation nuclei:Trajectory ensemble model. Journal of Geophysical Research,1998,103(D16), 19527-19542.
    Feingold G, W. L. Eberhard, D. E. Veron, and M. Previdi, First measurements of the Twomey indirect effect using ground-based remote sensors. Geophysical Research Letters,2003,30(6):1287, doi: 10.1029/2002GL016633.
    Feingold G, H. Jiang, and J. Y. Harrington, On smoke suppression of clouds in Amazonia, Geophysical Research Letters,2005,32:L02804, doi:10.1029/2004GL021369.
    Ferek R.J. et al., Measurements of ship-induced tracks in clouds off the Washington coast. Journal of Geophysical Research,1998,103:23199-23206.
    Freud E., Rosenfeld D. and Klkarni J. R., Resolving both entraiment-mixing and number of activated CCN in deep convective clouds. Atmos. Chem. Phys.,2011,11:12887-12900, doi: 10.5194/acp-11-12887-2011.
    Freud E. and Rosenfeld D., Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res.,2012,117:D02207, doi:10.1029/2011JD016457,2012.
    Futyan,J.M., and A. D. Del Genio, Deep convective system evolution over Africa and the tropical Atlantic. J. Climate,2007,20,5041-5060.
    Geleyn J F, Hollingsworth A. An economical method for computation of the interaction between scatting and line absorption of radiation of radiation. Contribution to Atmospheric Physics,1979,52:1-16.
    Gong S. L., and L. A. Barrie, Simulating the impact of sea salt on global nss sulphate aerosols. Journal of Geophysical Research,2003,108(D16),4516, doi:10.1029/2002 JD003181.
    Giorgi F., X. Bi, and Y. Qian, Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia:A regional coupled climate-chemistry/aerosol model study. Journal of Geophysical Research,2002,107(D20):4439, doi:10.1029/2001JD001066.
    Hansen J., M. Sato, and R. Ruedy, Radiative forcing and climateresponse. Journal of Geophysical Research,1997,102:6831-6864.
    Harrison, E.F., P. Minnis, B.R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson., Seasonal-variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res.,1990,95(D11),18687-18703.
    Hartmann D. L., Ramanathan V., Berrior A., and Hunt G. E., Earth radiation Budget data and climate research, Reviews of Geophysics and Space Physics,1986,24:439-468.
    Hartmann, D.L., M. E. Ockertbell, and M.L. Michelsen, The effect of cloud type on earths' energy-balance:Global analysis. J. Climate,1992,5:1281-1304.
    Hartmann, D.L., L.A. Moy, and Q. Fu, Tropical convection and the energy balance at the top of the atmosphere. J. Climate,2001,14:4495-4511.
    Held I.M., et al., Simulation of Sahel drought in the 20th and 21st centuries. Proceedings of National Academy of Sciences. U.S.A.,2005,102(50):17891-17896.
    Hogan R. J., Illingworth A. J., Deriving cloud overlap statistics from radar. Quarterly Journal of the Royal Meteorological Society,2000,128:2903-2909.
    Houghton J T, Ding Y, Griggs D J, et al. Climate Change:The Scientific Basis. New York:Cambridge University Press,2001a.1-421.
    Houghton J T, Ding Y, Griggs D J, et al. Climate Change:The Scientific Basis. United Kingdom and New York:Cambridge Univ ersity Press,2001b.148-149.
    Hu, Y., and Coauthors. CALIPSO/CALIOP cloud phase discrimination algorithm. Journal of Atmospheric and Oceanic Technology,2009,26:2293-2309.
    Huang J. et al., Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophysical Research Letters,2007,34:L18805, doi:10.1029/2007GL029938.
    Huang J. et al., Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. Journal of Geophysical Research,2008,113:D23212, doi: 10.1029/2008 JD010620.
    IPCC.2007. Climate Change 2007:Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
    Iwasaki S., T. Shibata, J. Nakamoto, H. Okamoto, H. Ishimoto, and H. Kubota, Characteristics of deep convection measured by using the A-train constellation. J. Geophys. Res.,2010,115, D06207, doi: 10.1029/2009JD013000.
    Jiang H. et al., Aerosol effects on the lifetime of shallow cumulus, Geophysical Research Letters,2006, 33:doi:10.1029/2006GL026024.
    Kandel R. and M. Viollier, Observation of the Earth's radiation budget from space. Comptes Rendus Geoscience,2010,342:286-300.
    Kato S., F. G. Rose, D. A. Rutan, and T. P. Charlock, Cloud effects on the meridional atmospheric energy budget estimated from Cloud and the Earth's Radiant Energy System (CERES) data, Journal of Climate., 2008,21:4223-4241.
    Kaufman Y.J., et al., The effect of smoke, dust, and pollution aerosolon shallow cloud development over the Atlantic Ocean. Proceedings of National Academy of Sciences. U.S.A.,2005,102(32): 11207-11212.
    Kaufman Y. J., and I. Koren, Smoke and pollution aerosol effect on cloud cover. Science,2006,313: 655-658, doi:10.1126/science.1126232.
    Khain A. P., Pokrovsky A., Pinsky M., Seifert A. and Phillips V., Effects of atmospheric aerosols on deep convective clouds as seen from simulations using a spectral microphysics mixed-phase cumulus cloud model Part 1:Model description. J. Atmos. Sci 2004,61:2963-2982.
    Khain A. P. and Pokrovsky A., Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model, Part II:Sensitivity study. J. Atmos. Sci.2004,61:2983-3001.
    Khain A., D. Rosenfeld, and A. Pokrovsky, Aerosol impact on the dynamics and microphysics of deep convective clouds. Quarterly Journal of the Royal Meteorological Society,2005,131:1-25.
    Khain A. P., BenMoshe N., Pokrovsky A., Factors determining the impact of aerosolson surface precipitation from clouds:An attempt at classification. J. Atmos. Sci.2008,65:1721.
    Kiehl J. T., On the observed near cancellation between longwave and shortwave cloud forcing in tropical regions. J.Climate,1994,7:559-565.
    Kiehl J. T., Sensitivity of a GCM climate simulation to differences in cntinental versus maritime cloud drop size. Journal of Geophysical Research,1994,99(23):107-123.
    Klein S. A. and Hartmann D. L., The seasonal cycle of low stratiform clouds. J. Clim.,1993,6: 1587-1606.
    Koren I., Y. J. Kaufman, L.A. Remer, and J.V. Martins, Measurements of the effect of smoke aerosol on inhibition of cloud formation. Science,2004,303:1342-1345.
    Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, Aerosol invigoration and restructuring of Atlantic convective clouds. J. Geophys. Res. Lett.,2005,32, L14828, doi: 10.1029/2005GL023187.
    Koren J. V. Martins, L. A. Remer, H. Afargan, Smoke invigoration versus inhibition of clouds over the Amazon. Science,2008,321:946-949.
    Koren I., Feingold G. and Remer L. A., The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys.,2010a,10:8855-8872, doi: 10.5194/acp-10-8855-2010.
    Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. David, Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys.,2010b,10:5001-5010.
    Kuhn, W. R., The effects of cloud height, thickness, and overlap on tropospheric terrestrial radiation. Journal of Geophysical Research,1978,83:1337-1346.
    Langenberg H., Triggered lighting. In "news and views", Nature Geoscience,2011,4:140.
    Lau K.-M., and K.-M. Kim, Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters,2006a,33:L21810, doi:10.1029/2006 GL027546.
    Lau, K. M., M. K. Kim, and K. M. Kim, Asian monsoon anomalies induced by aerosol direct effects. Climate Dynamics,2006b,26:855-864, doi:10.1007/s00382-006-0114-z.
    Lee, S. S., L. Donner, and J. E. Penner, Thunderstorm and stratocumulus:How does their contrasting morphology affect their interactions with aerosols?. Atmos. Chem. Phys.,2010,10,6819-6837, doi: 10.5194/acp-10-6819-2010.
    Lelieveld J. et al., Global air pollution crossroads over the Mediterranean. Science,2002,298: 794-799.
    Levy R. C., Remer L. A., Mattoo S., Vermote E. F., and Kaufman Y. J., Second-generation operational algorithm:Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res.,2007,112:D13211, doi:10.1029/2006JD007811.
    Levy R. C., Remer L. A., Kleidman R. G., Mattoo S., Ichoku C., Kahn R., and Eck T. F., Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys.,2010, 10:10399-10420, doi:10.5194/acp-10-10399-2010.
    Li, J, Accounting for unresolved clouds in a ID infrared radiative transfer model. Part I:Solution for radiative transfer, include cloud scattering, and overlap. J Atmos Sci,2002,59:3302-3320.
    Li J. and H. W. Barker. Accounting for Unresolved Clouds in a ID Infrared Radiative Transfer Model. Part II:Horizontal Variability of Cloud Water Path. Journal of the Atmospheric Sciences,2002,59(23): 3321-3339.
    Li J., S. Dobbie, P. Raisanen and Q. Min. Accounting for unresolved clouds in a 1-D solar radiative-transfer model. Quarterly Journal of the Royal Meteorological Society,2005,131:1607-1629.
    Li Z., Influence of absorbing aerosols on the inference of solar surface radiation budget and cloud absorption. Journal of Climate,1998,11:5-17.
    Li Z. et al., Aerosol optical properties and their radiative effects in northern China. Journal of Geophysical Research,2007,112:D22S01, doi:10.1029/2006JD007382.
    Li Z., K.-H. Lee, J. Xin, Y. Wang, W.-M. Hao, First observation-based estimates of aerosol radiative forcing at the top, bottom and inside of the atmosphere. Journal of Geophysical Research,2010,115: DOOK18,doi:10.1029/2009JD013306.
    Li Z., Niu F., Lee K.-H., Xin J., Hao W.-M., Nordgren B., Wang Y., and Wang P., Validation and understanding of MODIS aerosol products using ground-based measurements from the handheld sunphotometer network in China. J. Geophy. Res.,2007,112:D22S07, doi:10.1029/2007JD008479.
    Li Z., Niu F., Fan J., Liu Y, Rosenfeld D. and Ding Y, Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geoscience,2011, doi:10.1038/ngeo1313.
    Liang X.-Z. and W.-C. Wang, Cloud overlap effects on general circulation model climate simulations. Journal of Geophysical Research,1997,102(D10):11039-11047.
    Lin J. C., T. Matsui, R. A. Pielke Sr., and C. Kummerow, Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin:a satellite-based empirical study. Journal of Geophysical Research,2006,111:D19204, doi:10.1029/2005JD006884.
    Liou K. N., J. L. Lee, S. C. Ou, Q. Fu and Y. Takano, Ice cloud microphysics, radiative transfer and large-scale cloud processes. Meteorology and Atmospheric Physics,1991,46(1):41-50.
    Liou K N., Radiation and Cloud Processes in the Atmosphere. New York:Oxford University press.1992, 172~248.
    Liu Z. and Coauthors, The CALIPSO lidar cloud and aerosol discrimination:Version 2 algorithm and initial assessment of performance. Journal of Atmospheric and Oceanic Technology,2009,26:1198-1213.
    Liu G, H. Shao, J. A. Coakley Jr., J. A. Curry, J. A. Haggerty, and M. A. Tschudi, Retrieval of cloud droplet size from visible and microwave radiometric measurements during INDOEX:Implication to aerosols'indirect radioactive effect. Journal of Geophysical Research,2003,108(D1):4006.
    Lohmann, U., J. Feichter, Global indirect aerosol effects:a review. Atmospheric Chemistry and Physics. 2005,5:715-737.
    Luo Y., D. Lu, X. Zhou, W. Li, and Q. He, Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years, Journal of Geophysical Research,106(D13), 2001,14:501-14,513.
    Luo, Y.L., R. H. Zhang, W. M. Qian, Z. Z. Luo, and Xin H.,2010:Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North American in boreal summer using CloudSat/CALIPSO data. J. Climate,24:2164-2177, doi:10.1175/2009JCLI4032.12164-2177.
    Mace G. G. and S. Benson-Troth, Cloud-Layer Overlap Characteristics Derived from Long-Term Cloud Radar Data. Journal of Climate,2002,15(17):2505-2515.
    Mace G. G., S. Benson and S. Kato, Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility:2. Vertical redistribution of radiant energy by clouds. Journal of Geophysical Research,2006,111(D11):D11S91, doi:10.1029/2005JD005922.
    Mace G.G. et al., CloudSat Project:Level 2 Radar-Lidar GEOPROF Product VERSION 1.0 Process Description and Interface Control Document.2007,9pp.
    Mace G.G. et al., A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. Journal of Geophysical Research,2009,114:DOOA26, doi:10.1029/2007JD009755.
    Manabe S. and R. F. Strickler, Thermal Equilibrium of the Atmosphere with a Convective Adjustment. Journal of the Atmospheric Sciences,1964,21(4):361-385.
    Marshak A., G. Wen J. A. Coakley Jr., L. A. Remer N. G. Loeb, and R. F. Cahalan, A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res.,2008:113, D14S17,doi:10.1029/2007JD009196.
    Menon S., J. Hansen L. Nazarenko, and Y. Luo, Climate effects of black carbon aerosols in China and India. Science,2002,297:2250-2253.
    Mi W., Li Z., Xia X., Holben B., Levy R., Zhao F., Chen H., and Cribb M.:Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China, J. Geophys. Res.,2007,112:D22S08, doi:10.1029/2007JD008474.
    Miller R. L., I. Tegen, and J. Perlwitz, Surface radiative forcingby soil dust aerosols and the hydrologic cycle. Journal of Geophysical Research,2004,109:D04203, doi:10.1029/2003JD004085.
    Molinie J. and C. Pontikis, A climatological study of tropical thunderstorm clouds and lighting frequencies on the French Guyana coast. Geophys. Res. Lett.,1995, pp.1085-1088.
    Morcrette J J, Fouquart Y. The overlapping of cloud layers in shortwave radiation parameterizations, J Atmos Sci.1986,43:321-328.
    Morcrette J J, Barker H W, Cole J N S, et al., M. J. Impact of a New Radiation Package, McRad, in the ECMWF Integrated Forecasting System. Mon Weather Rev,2008,136:4773-4798.
    Nakajima T., A. Higurashi, K. Kawamoto, and J. Penner, A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophysical Research Letters,2001,28: 1171-1174.
    Niu F., and Z. Li, Cloud invigoration and suppression by aerosols over the tropical region based on satellite observations. Atmospheric Chemisty and Physics Discuss.,2011,11:5003-5017.
    Niu F., Li Z., Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics. Atmos. Chem. Phys.,2012,12:8491-8498., doi:10.5194/acp-12-84910-2012.
    Omar, A. H. and Coauthors, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. Journal of Atmospheric and Oceanic Technology,2009,26:1994-201.
    Oreopoulos L. and M. Khairoutdinov, Overlap properties of clouds generated by a cloud-resolving model. Journal of Geophysical Research,2003,108(D15):4479. doi:10.1029/2002JD003329.
    Paeth, H., and J. Feichter, Greenhouse-gas versus aerosol forcingand African climate response. Climate Dynamics,2006,26(1):35-54.
    Parol F., Buriez J.C., Brogniez G., and Fouquart Y., Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles. Journal of Applied Meteorology,1991,30: 973-984.
    Penner J.E., X. Dong, and Y. Chen, Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature,2004,427:231-234.
    Pincus, R Hemler, and Klein S A. Using stochastically generated subcolumns to represent cloud structure in a large scale model. Mon Wea Rev,2006,134:3644-3656.
    Potter G. L., and R. D. Cess, Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models, Journal of Geophysical. Research,2004,109:D02106, doi: 10.1029/2003JD004018.
    Qian, Y., L. R. Leung, S. J. Ghan, and F. Giorgi, Regional Climate Effects of Aerosols Over China: Modeling and Observation, Tellus Series B, Chemical and Physical Meteorology,2003,55(4):914-934.
    Radke, L.F., J.A. Coakley Jr., and M.D. King, Direct and remote sensing observations of the effects of ship tracks on clouds. Science,1989,246:1146-1149.
    Raisanen P., H. W. Barker, M. F. Khairoutdinov, J. Li and D. A. Randall.2004. Stochastic generation of subgrid-scale cloudy columns for large-scale models. Quarterly Journal of the Royal Meteorological Society,130(601):2047-2067.
    Raisann, P, Barker, H W, Cole, J N S. The Monte Carlo Independent Column Approximation's conditional random noise:Impact on simulated climate. J Clim,2005,18:4715-4730.
    Raisanen, P, Jarenoja, S, Jarvinen, H, et al., Tests of Monte Carlo Independent Column Approximation in the ECHAM5 Atmospheric GCM. J Clim,2007,20:4995-5011.
    Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate:Results from the earth radiation budget experiment. Science,1989,243:57-63.
    Ramanathan, V., P. Crutzen, J. Kiehl, and D. Rosenfeld,2001:Aerosols, climate, and the hydrological cycle. Science,294:2119-2124.
    Ramaswamy V., Boucher O., Haigh J., Hauglustaine D., Haywood J., Myhre G., Nakajima T., Shi G. Y. and Solomon S.:Radiative Forcing of Climate Change, in:Climate Change 2001:The Scientific Basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, pp. 349-416, Cambridge Univ. Press, New York,2001.
    Randall D. A., Coakley Jr. J. A., Fairall C. W., Kropfli R. A., and Lenschow D. H., Outlook for research on subtropical marine stratiform clouds. Bulletin of the Atmospheric Meteorological Society,1984,65: 1290-1301.
    Randall D. A. et al., "Climate Models and Their Evaluation" In Climate Change 2007:The Physical Basis of Climate Change. Contribution of Working Group I to the Fourth Assessment Report of the IPCC, edited by Susan Solomon, et al., Cambridge and New York: Cambrige University Press,589-662.
    Redelsperger J.-L., Parsons. D. B., Guichard. F., Recovery Processes and Factors Limiting Cloud-Top Height following the Arrival of a Dry Intrusion Observed during TOGA COARE. J. Atmos. Sci.,2002,59: 2438-2457.
    Rosenfeld D., Suppression of rain and snow by urban and industrial air pollution, Science,2000,287: 1793-1796.
    Rosenfeld D., R. Lahav, A. Khain, and M. Pinsky, The role of sea spray in cleansing air pollution over the ocean via cloud processes. Science,2002,297:1667-1670.
    Rosenfeld D. Fromm M. Trentmann J., Luderer G., Andreae M. O. and Servranckx R., The Chisholm firestorm:observed microstructure, precipitation and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys.,2007,7:645-659.
    Rosenfeld. D., Lohmann U., Rage G B., O'Dowd C. D., Kulmala M., Fuzzi S., Reissell A., and Andreae M. O., Flood or drought: How do aerosols affect precipitation?, Science,2008a,321:1309-1313.
    Rosenfeld D., Woodley W. L., Axisa D., Freud E., Hudson J. G., Givati A., Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res.,2008b, 113: D15203, doi:10.1029/2007JD009544.
    Rosenfeld D. and Bell T. L., Why do tornados and hailstorms rest on weekends?. J.Geophy. Res.,2011, 116:D20211, doi,10.1029/2011JDO16214.
    Rosenfeld D., Woodley W. L., Khain A., Cotton W. R., Carrio G, Ginis I., Golden J. H., Aerosol effects on Microstructure and Intensity of Tropical Cyclones. Bul. Amer. Meteor. Soc., Early online release.
    Rossow W. B., Lacis A. A., Global, seasonal cloud variations from satellite radiance measurements. Part II:Cloud properties and radiative effects, Journal of Climate,1990,3:1204-1253.
    Rotstayn L.D., and U. Lohmann, Tropical rainfall trends and the indirect aerosol effect. Journal of Climate,2002,15:2103-2116.
    Sassen, K., Z. Wang, and D. Liu, Cirrus clouds and deep convection in the tropics:Insights from CALIPSO and CloudSat. J. Geophys. Res.,2009,114, DOOH06, doi:10.1029/2009JD011916.
    Savtchenko, A., Deep convection and upper-tropospheric humidity:A look from the A-Train. Geophys. Res. Lett.,2009,36, L06814, doi:10.1029/2009GL037508.
    Seifert A. and Beheng K.D., A 1 two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2:Maritime vs. continental deep convective storms. Meteorol. Atmos. Phys.2006,92:67-82.
    Shonk J. K. P., R. J. Hogan, J. M. Edwards and G. G. Mace, Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part I:Review and parametrization. Quarterly Journal of the Royal Meteorological Society,2010,136:1191-1204.
    Slingo A., and Slingo J. M., The response of a general circulation model to cloud longwave radiative forcing. Part II: Further studies. Quarterly Journal of the Royal Meteorological Society,1991,117:333-364.
    Stephens G. L. et al., CloudSat mission:performance and early science after the first year of operation. Journal of Geophysical Research,2008,113:DOOA18, doi:10.1029/2008JD009982.
    Stephens G. L., N. B. Wood and P. M. Gabriel. An Assessment of the Parameterization of Subgrid-Scale Cloud Effects on Radiative Transfer. Part I:Vertical Overlap. Journal of the Atmospheric Sciences,2004, 61(6):715-732.
    Stubenrauch C. J., Del Genio A. D., and Rossow W. B. Implementation of subgrid cloud vertical structure inside a GCM and its effect on the radiation budget. Journal of Climate,1997,10:273-287.
    Solomon S. et al., Climate Change 2007:The Physical Science Basis, Cambridge University Press,2007, 996.
    Sun B., Groisman P. Y., Cloudiness variations over the former Soviet Union. International Journal of Climatology,2000,20:1097-1111.
    Takahashi, H., and Z. Luo,2012:Where is the level of neutral buoyancy for deep convection?. Geophys. Res. Lett.,39, L15809, doi:10.1029/2012GL052638.
    Tao W.-K., Li X., Khain A., Matsui T., Lang S., and Simpson J., Role of atmospheric aerosol concentration on deep convective precipitation:Cloud-resolving model simulations. J. Geophys. Res.,2007, 112:D24S 18, doi:10.1029/2007JD008728.
    Tian L, Curry J A, Cloud overlap statistics. J Geophys Res,1989,94:9925-9935.
    Twohy C.H., et al., Evaluation of the aerosol indirect effect in marine stratocumulus clouds:droplet number, size, liquid water path, and radiative impact. Journal of Geophysical Research,2005,110:D08203, doi:10.1029/2004JD005116.
    Twomey, S. A., The Nuclei of Natural Cloud Formation. Part II:The Supersaturation in Natural Clouds and the Variation of Cloud Droplet Concentrations. Geofisica Pura e Applicata,1959,43:227-242.
    Twomey S.:The Influence of Pollution on the Shortwave Albedo of Clouds. J. Atmos. Sci.,1997,34: 1149-1152.
    Van den Heever SC, Carrio'G. G., Cotton W. R., Demott P. J. and Prenni A. J., Impact of nucleating aerosol on Florida storms, part 1:mesoscale simulations. J. Atmos. Sci.,2006,63:1752.
    Van den Heever, S. C, and W. R. Cotton, Urban aerosol impacts on downwind convective storms. Journal of Applied Meteorology and Climatology,2007,46:828-850.
    Vaughan M. A., and Coauthors, Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. Journal of Atmospheric and Oceanic Technology,2009,26:2034-2050.
    Virts K.S., Wallace J.M., Fu Q., and Ackerman T.P. Tropical Tropopause Transition Layer Cirrus as Represented by CALIPSO Lidar Observations. Journal of the Atmospheric Sciences,2010,67:3113-3129.
    Wang H Q, Zhao G X. Cloud and radiation. Sci Atmos Sin,1994,18(Suppl):910-932.
    Wang, C., A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration:1. Dynamics and microphysics, Journal of Geophysical Research,2005, 110:D21211, doi:10.1029/2004JD005720.
    Wen G., A. Marshak R. F. Cahalan L. A. Remer and R. G. Kleidman,3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 2007,112:D13204, doi:10.1029/2006JD008267.
    Wetherald R T, Manabe S., Cloud feedback processes in a general circulation model. Journal of the Atmospheric Sciences,1988,45:1397-1415.
    Wielicki B. A., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, Mission to Planet Earth Role of clouds and radiation in climate. Bulletin of the Atmospheric Meteorological Society,1995,76:2125-2153.
    Wu X., and X. Liang, Effect of subgrid cloud-radiation interaction on climate simulations. Geophysical Research Letters,2005,32:L24806, doi:10.1029/2005GL024432.
    Xia X., H. Chen, Z. Li, R. Wang, J. Wang, Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China. Journal of Geophysical Research,2007,112:D22S02, doi:10.1029/2006JD007562.
    Xu M., C.-P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang, Steady decline of east Asian monsoon winds,1969-2000: Evidence from direct ground measurements of wind speed. Journal of Geophysical Research,2006,111:D24111, doi:10.1029/2006JD007337.
    Yang Q., Fu Q., and Hu Y.X., Radiative impacts of clouds in the tropical tropopause layer. Journal of Geophysical Research,2010,115:DOOH12, doi:10.1029/2009JD012393.
    Yang W. D., A. Marshak, T. Varnai, Liu Z. Y., Effect of CALIPSO cloud-aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds. Atmo. Res.2012,116:131-141,2012. doi:10.1016/j.atmosres.2012.03.013.
    Young S.A., and Vaughan M.A., The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) lidar data:Algorithm description. Journal of Atmospheric and Oceanic Technology,2009,26:1105-1119.
    Yuan T., Z. Li, R. Zhang, J. Fan, Increase of cloud droplet size with aerosol optical depth: An observation and modeling study. Journal of Geophysical Research,2008,113:D04201, doi: 10.1029/2007JD008632.
    Yuan, J. and R. A. Houze Jr., Global variability of mesoscale convective system anvil structure from A-Train satellite data. J. Climate,2010,23:5864-5888 doi:10.1175/2010JCLI3671.1.
    Yuan, J., R. A. Houze Jr. and A. J.Heymsfield, Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci.,2011,68:1653-1674, doi:10.1175/2011JAS3687.1.
    Yuan, T. L., J. Vanderlei Martins, Z. Li, and L. A. Remer, Estimating glaciation temperature of deep convective clouds with remote sensing data. Geophys. Res. Lett.,2010.37. L08808, doi: 10.1029/2010GL042753.
    Yuan, T. L. and Z. Li, General macro- and microphysical properties of deep convective clouds as observed by MODIS. J. Climate,2010,23:3457-3473, doi:10.1175/2009JCLI3136.1.
    Yuan T., Remer L. A., Pickering K. E. and Yu H., Observational evidence of aerosol enhancement of lightning activity and convective invigoration. Geophys. Res. Lett.,38, L04701, doi: 10.1029/2010GL046052.
    Zhang, X.Y., H.Y. Lu, R. Arimoto, and S.L. Gong, Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate:two 250-kyr loess records. Earth and Planetery Science Letters,2002,202:637-643.
    Zhang, H., J. Peng, X. W. Jing, et al., The feature of cloud overlapping in Eastern Asia and their effect in cloud radiative forcing. Sci. China. Earth. Sci.,2012, doi:10.1007/s11430-012-4489-x.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700