真实体系中原子和分子光电离散射截面的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从原子之间相互作用的角度出发建立了精确研究真实体系原子分子光电离截面的新表达形式。把原子或分子的微观性质和由这些原子或分子组成的宏观物质的性质及其所处的环境结合起来,进而来获得并解释不同实验条件下所观察到的物理量,是本课题的指导思想和意义所在。创建高密度体系中原子或分子精确的光电离截面表达式以及表征体系宏观介电性质和粒子之间的相互作用对原子或分子光电离截面影响程度的介电影响函数是本课题研究的主要目的和创新点。
     第一、二章简要介绍了本文研究的主要目的以及创建真实体系光电离截面表达式所依据的基本原理,并回顾了光电离研究的主要理论方法和实验技术。第三章总结了孤立原子光电离截面的不同表达形式,并推导了光电离截面与极化率的关系。第四章建立了原子和分子光电离散射截面的精确表达形式。以光与物质相互作用的经典电动理论和物质对电磁辐射的吸收性质为出发点,考虑到介质的介电常数和折射率在电场作用下表现为复数性质的特性,推导了原子分子光电离电解散射截面的精确普遍表达式。第五章推导了光分别与理想气体、稀薄气体、高密度气体、液体甚至立方晶体中的原子分子相互作用时的介电影响函数的具体表达形式,并给出了极化率和介电常数之间关系的一般表达式。第六章提出了一种新的合理求解极化率实部的思路。第七章是新截面公式和介电影响函数的具体应用。研究表明,理论的固体光电离截面很好地符合于实验截面,并且我们建议的介电影响函数能够正确地描述凝聚态体系中宏观介电性质和粒子间相互作用对该体系中原子光电离截面的影响。最后,第八章是本文的总结部分,并对今后的工作提出了合理的构想。
A dielectric influence function (DIF) and new expression for photoionization cross-sections are suggested to study the photoionization cross-sections of atoms and molecules in real system. The basic picture is that the photoionization cross-sections of atoms in a real system can be described as the coupling between quantum quantity (QQ) and classical quantity (CQ) parts. The QQ part represents the photoionization cross-sections of an isolated atom, while the CQ part (the DIF) may represent most of the important influence of the macroscopic effects, e.g., the interactions among the photoionized atom and all surrounding particles, and the dielectric property of the system, on the photoionization cross-sections.In Chapter 1 we give the main goals of this dissertation and the basic experimental principles of photoionization process. Chapter 2 reviews some important developments of theoretical and experimental photoionization studies. Chapter 3 describes the photoionization cross-sections of isolated atoms. In Chapters 4 and 5 we suggest a dielectric influence function and new expressions of photoionization cross-sections for high-density photoionization system using the experimental Beer-Lambert's law and Maxwell's equations. Chapter 6 presents some quantitative methods used to obtain the real part of polarizability, which is necessary to calculate the DIF and the photoionization cross-sections. Chapter 7 shows some photoionization cross-sections of solid Xe, Ba, Au and Ag using our new method, and shows good agreement between present results and experimental cross-sections. Conclusions and suggestions are given in Chapter 8.
引文
1 Wannberg B., Veenhuizen H., Norell K. E., et al., J. Phys. B19, 2267(1986)
    2 Rubio Angel, Alonso J. A., Blase X., et al. , Phys. Rev., L77, 247(1996)
    3 Jansen T. C. , Swart M., Jensen L. , et al., J. Chem. Phys., 116, 3277(2002)
    4 Yenen O., Phys. Rev. Lett., 86, 979(2001)
    5 Lagendijk Ad, Bernard N., Bart A. and Pedro de V., Phys. Rev. Lett., 79, 657(1997)
    6 Kanik I., Beegle L. and Noren C., Chem. Phys. Lett. 279, 297(1997)
    7 Zangwill A. and Soven P., Phys. Rev. A21, 1561(1980)
    8 Fano U. and Cooper J. W., Rev. Mod. Phys., 40, 441(1968)
    9 Cheng Y. S., Liu J. C. and Sun W. G., Acta Phys. Sin., 7, 161(1998)
    10 Lu P. F., Liu J. C., Yang X. D. and Ma X. G., Chin. Phys., 21, 159(2003)
    11 Sun W. G., Pitzer P. M. and McCurdy C. W., Phys. Rev. A40, 1669(1989)
    12 Liu C. N. and Starace A. F., Phys. Rev. A59, R1731(1999)
    13 Kelly H. P. and Ron A., Phys. Rev. A, 5(1), 168(1972)
    14 Chang T. N., J. Phys. B, 13, L55K1980)
    15 McCurdy C. W. and Rescigno T. N. , Phys. Rev. A, 21, 1499(1980)
    16 Puska M. J., Nieminen R. M. and Manninen M., Phys. Rev. B31 3486(1985)
    17 Chaboy J. and Quartieri S., Phys. Rev. B52, 6349(1995)
    18 Wong K. , Tikhonov G. and Kresin V. V., Phys. Rev. B66, 125401(2002)
    19 Schulman J. M. , and Kaufman D. N. , J. Chem. Phys., 57, 2328(1972)
    20 Schulman J. M. , and Kaufman D. N., J. Chem. Phys., 53, 477(1970)
    21 Dutta C. M., Dutta N. C., and Das T. P., Phys. Rev. Lett., 25, 1695(1970)
    22 Sheldon D., Drake G. W. F., Gallagher T. F., Kleinpoppen H. and Putlitz G. Zu., Rev. Mod. Phys., 71, S223(1999)
    23 Chang T. N., Luo Y. X., Fung H. S. and Yih T. S., J. Chin. Chem. Soc., 48, 347(2001)
    24 Duijnen P. T., Vries A. H., Swart M. and Grozema F., J. Chem. Phys., 117,
     8442 (2002)
    25
    
    25 Ruus R., Kikas A., Maiste A., Nommiste E., Saar A., and Elango M., Phys. Rev. B 49, 14836(1994)
    26 Wood W. M., Siders C. W. and Downer M. C., Phys. Rev. Lett., 67, 3523(1991)
    27 Akola J., Rytkonen A., Hakkinen H., and Manninen M., Eur. Phys. J. D8, 93(2000)
    28 Akola J., Hakkinen H., and Manninen M., Phys. Rev. B, 58, 3601(1998)
    29 黄克宁、张稚卿,物理双月刊(二十三卷第五期),第527页,(2001)
    30 Mitsuke K., Hikosaka Y., and Iwasaki K., J. Phys. B: At. Mol. Phys., 33, 391(1999)
    31 Field D., Knight D. W., Mrotzek G., Randell J., Lunt S. L., Ozenne J. B., and Ziesel J. P., Meas. Sci. Technol., 2, 757(1991)
    32 胡先志,邹林森,刘有信等,《光缆及工程应用》,中国通信学会主编,人民邮电出版社,(1998)
    33 Kay A., Arenholz E., Mun S., Garcia de Abajo F. J., Fadley C. S., Denecke R., Hussain Z., and Van Hove M. A., Science, 281, 679(1998)
    34 Girardeau T., Mimault J., Jaouen M. and Chertier P., Phys. Rev. B46, 7144(1992)
    35 Henke B. L., Gullikson E. M. and Davis J. C., Atomic Data and Nuclear Data Tables, 54, 181(1993)
    36 Kanik I., Beegle L. and Noren C., Chem. Phys. Lett., 279, 297(1997)
    37 Jansen T. C., Swart M. and Jensen L., J. Chem. Phys., 116, 3277(2002)
    38 Zhang Y., Fluegel B. and Mascurenhas A., Phys. Rev. Lett. 91, 157404(2003)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700