CdZnTe单晶表面、界面及位错的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CdZnTe晶体是迄今制造室温X射线及γ射线探测器以及HgCdTe等红外薄膜外延衬底最为理想的半导体材料。尽管对CdZnTe的研究由来已久,但在CdZnTe晶体的表面处理、金属与CdZnTe晶体接触及晶体缺陷行为研究上尚存在诸多难题。
     本文主要研究了CdZnTe晶体表面处理工艺,如机械抛光,化学抛光,钝化,及这些工艺对表面质量的影响。深入分析了CdZnTe晶体表面的基本物理性质,如表面的原子结构、电子结构和功函数。进而,采用MBE在CdZnTe衬底上沉积Au和Ag,研究了Au和Ag与CdZnTe之间的界面反应和肖特基接触势垒。此外,采用化学镀金法制备了Au的欧姆电极,研究了欧姆电极的界面结构以及欧姆接触形成的机理。最后,研究了CdZnTe中位错的一些基本性质。
     采用机械抛光获得的光亮CdZnTe晶体表面存在一定的损伤层,通过X射线摇摆曲线并结合化学腐蚀,测算出该损伤层的厚度约为13μm。采用Br-MeOH溶液腐蚀可以有效地去除损伤层,但Br-MeOH腐蚀后的晶片表面通常会形成的无定形的富Te层,进一步的化学机械抛光可以去除该富Te层。CdZnTe晶体表面损伤层,会造成较大的表面漏电流和一定的红外吸收。表面富Te层是一个高导电区,它会造成较大的表面漏电流,但基本不影响红外透过率。表面钝化处理可以有效地减少表面漏电流,但是钝化层(氧化层)会吸收红外光,导致红外透过率的下降。与常用的钝化液NH_4F+H_2O_2相比,采用Br_2水溶液进行钝化处理可以获得钝化效果更好的TeO_2钝化层,而不是通常得到的CdTeO_3层。
     在超高真空条件下采用Ar离子刻蚀并进行原位退火,获得了清洁有序的CdZnTe单晶表面。采用低能电子衍射(LEED)测量了不同表面的原子结构。在(110)面观察到(110)-(1×1)的原子结构,并通过光电子能谱验证了表面弛豫的存在。在(111)A和(111)B面上分别观察到(111)A-(1×1)和(111)B-(1×1)的完整表面原子结构以及(111)A-(3~(1/2)×3~(1/2))R30°和(111)B-(2×2)的表面重构。(111)A面的重构是由Cd空位引起的,而(111)B面的重构是Te的顶戴原子形成的。
     通过同步辐射角分辨光电子能谱(SRARPES)计算出CdZnTe(110)面的悬挂键密度约为6.9×10~(14)/cm~2,即每一个表面原子含一个悬挂键。发生重构的(111)A-(3~(1/2)×3~(1/2))R30°表面Cd空位增加,Cd空位引入了施主型的表面态,致使能带向下弯曲。发生重构的(111)B-(2×2)表面Te顶戴原子起着受主的作用,导致价带顶向上弯曲。
     采用光电子能谱技术测量CdZnTe不同表面的功函数,结果表明(111)A面的功函数大于(111)B面;吸附气体和Au会增加CdZnTe晶片的功函数;排列整齐有序的表面的功函数要低于存在损伤的表面;(111)A面发生重构后,Cd空位增加,能带向下弯曲,增加了功函数;而(111)B面发生重构时,Te顶戴原子吸附在晶体表面,形成表面偶极层,也会增大表面功函数。
     研究了Au与清洁CdZnTe不同晶面的接触势垒,其中(110)面的接触势垒最大,(111)B面次之,(111)A最小。这是由于(110)面的表面能最低,是一稳定面,难以发生界面反应。(111)A面的Te原子不稳定,容易与Au发生化学反应。通过紫外光电子能谱也证实了Au/CdZnTe(111)A的界面确实发生了界面反应。Ag与清洁CdZnTe存在比较明显的界面反应,导致接触势垒很低,约为0.2eV。而Ag与经化学腐蚀的CdZnTe晶片的接触势垒约为0.67eV,这是由于氧化层和富Te层阻挡了Ag与CdZnTe的反应,从而导致了较高的接触势垒。
     CdZnTe(111)A面发生重构后表面Cd空位增加,在沉积Au的过程中,Au会填补这些空位,作为Cd的替换原子与周围的三个Te原子结合。这样将有利于Au的扩散和界面反应的发生,因而会降低接触势垒。另外表面Cd空位引入的缺陷能级也会降低肖特基接触势垒。
     Au/CdZnTe(111)B-(2×2)的肖特基势垒低于Au/CdZnTe(111)B-(1×1)面。分析认为这是由于CdZnTe(111)B-(2×2)最外两层原子均是Te原子,Te与Au之间容易发生电子云重叠,形成化学键,即形成合金化的界面层,使富Te面容易形成低的肖特基势垒。对Au/CdZnTe在350℃下退火1小时,可以改善Au膜的有序性,并降低接触势垒约0.15eV。
     采用AuCl_3水溶液在CdZnTe表面分解制备了Au的欧姆电极,并采用XPS研究了化学镀金法制备的Au/CdZnTe的界面成分分布,确定了CdTeO_3界面层的存在。分析了Au层与CdZnTe形成欧姆接触的机理,提出了CdTeO_3界面层导致欧姆接触的新模型,该模型可以解释目前所有的实验结果。
     通过塑性变形在CdZnTe晶体分别引入了Cd(g)位错和Te(g)位错。由于位错内的悬键电子会吸收红外光,导致晶片红外透过率下降。变形后的晶片的漏电流显著增大,运用普尔-弗兰克效应解释了实验结果。采用I-V、PL谱和Hall等测量方法研究了位错的电学特性,结果表明,Cd(g)位错在CdZnTe晶体中起受主作用,而Te(g)位错在晶体中起施主作用。Cd(g)位错会会加大对空穴的散射,而导致空穴的迁移率下降,而Te(g)位错会加速空穴的漂移,使空穴的迁移率增加。
CdZnTe is the most promising material for room temperature X-ray andgamma-ray detectors, as well as epitaxial substrate for HgCdTe and other infraredmaterials. Although the researches on CdZnTe lasted for over 20 years, there are stillmany unknows about the surface treatment, metal-CdZnTe contact properties anddislocations behaviors of CdZnTe crystal, which are investigated in this work.
     The surface treatments of CdZnTe crystals, such as mechanical polishing, chemicalpolishing and passivation, were first studied. The characters of CdZnTe surfaces withdifferent treatments, such as the surface atomic structure, electronic structure and workfunction were analyzed with variant advanced technologies. The interface behaviorbetween CdZnTe and metal contacts, including the interface chemical reaction, Schottkybarrier heights, and electroless ohmic contact were studied in detail. At last, thebehaviors and the effects of dislocations in CdZnTe single crystals were investigated.
     Mechanical polishing produces damaged layer on CdZnTe surface. By comparingthe weight lose and FWHM of X-ray rocking curves after different etching time, thethickness of the surface damaged layer is determined to be about 13μm. The damagedlayer results in high surface leakage current and IR absorption. Etching with Br-MeOHis an effective method to remove the surface damaged layer, and in return produces Teenriched surface. Te enriched layer results in high surface leakage current, but has littleeffect on IR transmittance. Te enriched layer could be deprived by chemo-mechanicalpolishing. Surface passivation can decrease the surface leakage current, but has greatnegative effect on IR transmittance.
     A new passivation solution, i.e. Br_2 aqueous solution was adopted to replace theconventional NH_4F+H_2O_2 solution, and produced the better passivation efficiency,because TeO_2 passivation layer formed in'stead of TeCdO_3.
     The atomic structure of the clean CdZnTe surface obtained by Ar~+ etching andannealing in-situ in ultrahigh vacuum is observed by Low energy electron diffraction.The CdZnTe (110) surface was determined to be unreconstructed, and the surfacerelaxation was identified by X-ray photoemission spectroscopy. Both theunreconstructed (111)A-(1×1) surface and reconstructed (111)A-(3~(1/2)×3~(1/2))R30°structure were found on the CdZnTe (111)A surface. On CdZnTe (111)B surface, theunreconstructed (111)B-(1×1) surface and (111)B-(2×2) reconstructed structure werefound. The reconstruction mechanisms are different for different surface.(111)A-(3~(1/2)×3~(1/2))R30°reconstruction was induced by Cd vacancy, while (111)B-(2×2)was induced by Te adatoms on top of the ideal truncation.
     Angle resolved photoemission spectroscopy was used to characterize the surfacestate of the clean CdZnTe surface, by which the density of dangling-bonds on theCdZnTe (110) surface is determined to be 6.9×10~(14)/cm~2, approximately one electron persurface atom. The valance band of (111)A-(3~(1/2)×3~(1/2))R30°bends down compared to(111)A unreconstructed surface due to the donor surface state caused by the higher Cdvacancy at reconstruction surface. The valance band of (111)B-(2×2) bends up, ascribedto the acceptor of Te adatoms.
     The work function of CdZnTe surfaces was determined by ultravioletphotoelectron spectroscopy. The results suggested that the work function of CdZnTe(111)A surface is higher than that of (111)B. Gas and gold adsorption increases the workfunction of CdZnTe, while clean and ordered surface presents lower work function. Thework function of (111)A-(3~(1/2)×3~(1/2))R30°reconstructed surface is higher than that ofunreconstructed one due to Cd vacancy on the reconstructed surface. The work functionof (111)B-(2×2) reconstructed surface is higher than that of (111)B-(1×1), ascribed tothe surface dipole layer caused by Te adatoms.
     Schottky barrier height of Au/CdZnTe interface on CdZnTe (110) surface is thehighest, on (111)B surface is lower, and that on CdZnTe (111)A is the lowest. Theresults can be explained as follows. The (110) surface is a stabilized one with the lowestsurface energy, so it is not easy for chemical reaction between Au and CdZnTe to takeplace, and preserved the high Schottky barrier. (111)A surface is a polarized one, wherethe Te atoms are easy to react with gold to reduce the barrier. The reaction wasconfirmed by ultraviolet photoelectron spectroscopy. The interface reaction between Agand clean CdZnTe is more obvious, which results in a low Schottky barrier height ofabout 0.2 eV. While the Schottky barrier height between Ag and etched CdZnTe surfaceis as high as 0.67 eV, ascribed to the interception of the oxide and Te enriched layer,which stoped the chemical reaction between Ag and CdZnTe.
     On the reconstructed CdZnTe (111)A-(3~(1/2)×3~(1/2))R30°surface, the Au atoms fill-upCd vacancies and bond with around Te atoms, which promotes the interface reactionand diffusion of the gold into the crystal. So the Schottky barrier height on Au/CdZnTe(111)A-(3~(1/2)×3~(1/2))R30°surface is lower than that of unreconstructed one. The Schottkybarrier height on Au/CdZnTe (111) B-(2×2) surface is lower than that of Au/CdZnTe-(111)B-(1×1), which is determined by the top two layer Te atoms on (111)B-(2×2)surface, where Te is easy to react with gold to form the alloyed interface layer anddecreases Schottky barrier height. Annealing at 350℃for one hour in vacuum couldimprove the ordering of gold film and decrease the barrier height to about 0.15 eV.
     Au ohmic electrode was also prepared by the reaction of gold chloride solution onCdZnTe surface. The component of the interface was studied with X-ray photoelectronspectroscopy, and CdTeO_3 interface layer was found. A new model was proposed to explain the ohmic contact mechanism, and explain experiment results of otherresearchers.
     Cd(g) and Te(g) dislocations were introduced into CdZnTe by the means ofbending deformation at an elevated temperature. The average IR transmittance ofCdZnTe was decreased apparently after deformation, ascribed to the polarizationabsorption of danling-bond electrons in the dislocations. The leakage current of CdZnTeafter deformation increased largely, and Poole-Frenkel effect should be responsible forthe increase. The effect of dislocations on the carriers density, was analyzed by I-Vcharacters, photoluminescence spectra and Hall effect. It was found that, Cd(g)dislocations act as acceptors, scatter hole and decrease the mobility of hole, while Te(g)dislocations act as donors, promote dispersion of hole and increase the mobility of hole.
引文
[1] Tadayuki Takahashi, Shin Watanabe, Recent progress in CdTe and CdZnTe detectors, IEEE Trans. Nucl. Sci., 2001, 48(4): 950-959
    [2] F.P. Doty, J.F. Butler, K.A. Bowers, et al., properties of CdZnTe crystals grown by a high pressure Bridgrnan Method, J. Vac.Sci. Technol. 1992, B10:1418-1422
    [3] M. Yoshikawa, K. Maruyama, T. Saito, T. Maekawa, H. Takigawa, Dislocations in HgCdTe/CdTe and HgCdTe/CdZnTe heterojunctions, J. Vac. Sci. Technol. A, 1987, 5(5): 3052-3054
    [4] 刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,北京,1994,7
    [5] K. Mochizuki, K. Masumoto, K. Miyazaki, et al., Melt growth of CdTe single crystals with controlled deviation from stoichiometry, Mater. Lett., 1988, 6:119-122
    [6] Y.-C. Lu, J.-J. Shiau and R.S. Feigelson, Effect of vibrational stirring on the quality of Bridgrnan-grown CdTe, J. Cryst. Growth, 1990, 102:807-813
    [7] C.P. Khatak, F. Schmid, Improved quality of bulk Ⅱ-Ⅵ substrates for HgCdTe and HgZnTe epitaxy, Proc. SPIE, 1989, 47:1106-1112
    [8] Fritz V. Wald and Richard O. Bell, Natural and forced convection during solution growth of CdTe by the Traveling Heater Method (THM), J. Cryst. Growth, 1975, 30:29-36
    [9] R. Schoenholz, R. Dian and R. Nitsche, Growth of cadmium telluride crystals by an improved travelling heater method, J. Cryst. Growth, 1985, 72:72-79
    [10] L.G. Casagrande, D.J. Larson Jr., D.D. Marzio et al, Growth and comparison of large-diameter vertical Bridgman CdZnTe and CdTe, J. Cryst. Growth, 1994, 137:195-200
    [11] T.S. Lee, S.B. Lee, J.M. Kim et al, Vertical Bridgrnan techniques to homogenize zinc composition of CdZnTe substrates, J. Electron. Mater.,1995, 24(9):1057-1061
    [12] M. Pfeiffer, M. Muhlberg, Interface shape observation and calculation in crystal growth of CdTe by the vertical Bridgman method, J. Cryst. Growth, 1992, 118:269-276
    [13] S. Kuppurao, J. J. Derby, Designing thermal environments to promote convex interface shaps during the vertical Bridgman growth of cadmium zinc telluride, J. Cryst. Growth, 1997, 172:350-360
    [14] K.Y. Lay, D. Nichols, S. McDevitt, et al., High quality, single crystal CdTe grown by a modified horizontal Bridgrnan technique, J. Cryst. Growth, 1988, 86:118-126
    [15] A. Tanaka, Y. Masa, S. Seto, et al., Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe, J. Cryst. Growth, 1989, 94:166-170
    [16] T. Asahi, O. Oda, Y. Taniguchi, et al., Growth and characterization of 100 mm diameter CdZnTe single crystals by the vertical gradient freezing method, J. Cryst. Growth, 1996, 161:20-27
    [17] M. Chu, S. Terterian, D. Ting, Role of zinc in CdZnTe radiation detectors, IEEE Trans. Nucl. Sci.,2004, 51 (5):2405-2411
    [18] M. Chu, S. Terterian, D. Ting et al, Effects of excess tellurium on the properties of CdZnTe radiation detectors, J. Electron. Mater., 2003, 32(7): 778-782
    [19] 李强,碲锌镉晶体表面处理、金属电极接触特性及其In掺杂行为,西北工业大学博士学位论文,2006
    [20] 朱履冰著,表面与界面物理,天津大学出版社,天津,1992
    [21] Gangqiang Zha, Jie Wanqi, Zeng Dongmei, et al., The Schottky barrier of Au contact on the CdZnTe, Surface Science, 2006, 600:2629-2632
    [22] 汪晓芹,CdZnTe晶片表面化学处理及欧姆接触特性的研究,西北工业大学博士学位论文,2006
    [23] 马礼敦,杨福家主编,同步辐射概论,复旦大学出版社,上海,2000
    [24] 黄惠忠 等著,论表面分析及其在材料研究中的应用,科学技术文献出版社,北京,2002
    [25] Xunmin Ding, Xinju Yang, Xun Wang, Surface physics and surface analysis,复旦大学出版社,上海,2004
    [26] 李言荣,恽正中,电子材料导论,清华大学出版社,北京,2001
    [27] C.B. Duke, Atomic and electronic structure of tetrahedrally coordinated compound semiconductor interfaces, J. Vac. Sci. Technol. A, 1988, 6:1957-1962
    [28] C.B. Duke, Y.R. Wang, Mechanism and consequences of surface reconstruction on the cleavage faces ofwurtzite-structure compound semiconductors, J. Vac. Scio Technol. A 1988,6:692-695
    [29] C.B. Duke, Y.R. Wang, Surface atomic geometry and electronic structure of Ⅱ-Ⅵ cleavage faces J. Vac. Sci. Technol. A, 1989,7:2035-2038
    [30] W.K. Ford, T. Guo, K.J. Wan, et al., Growth and atomic geometry of bismuth and antimony on InP(110) studied using low-energy electron diffraction, Phys. Rev B 1992,45:11896-11910
    [31] R.M. Feenstra, J.A. Stroscio, J. Tersoff, et al., Atom-selective imaging of the GaAs(110) surface, Phys. Rev Lett. 1987, 58:1192-1195
    [32] R.W. Chan, P. Haasen, E.J. KramerMaterials Science and Technology: A Comprehensive Treatment, vol. 1, VHC, Weinheim, 1993, 502.
    [33] Y.S. Wu, C.R. Becker, A. Waag, et al., Correlation of the Cd-to-Te ration on CdTe surfaces with the surface structure, Physical Review B 1990, 44:8904
    [34] M.B. Beron, M. Sauvage-Simkin, V.H. Etgens, et al., Atomic structure of the CdTe(001) c(2×2) reconstructed surface: A grazing incidence x-ray diffractrion study, Appl. Phys. Lett. 1995, 67(28): 3957
    [35] R. Duszak, S. Tatarenko, J. Cibert, et al., (-1-1-1)CdTe surface structure: A study by reflection high energy electron diffraction, x-ray photoelectron spectroscopy, and x-ray photoelectron diffraction, J. Vac.Sci. Technol. A 1991, 9(6): 3025
    [36] J.M. Arias, S.H. Shin, and E.R. Gertner, MBE p-type Hg_(1-x)Cd_xTe grown on the (110) orientation, J. Cryst. Growth,1988, 86:362-366
    [37] U. Solzbach and H.J. Richter, Sputter cleaning and dry oxidation of CdTe, HgTe, and Hg_(0.8)Cd_(0.2)Te surfaces, Surface Science,1980, 97:191-205
    [38] M. Seelmann-Eggebert and H.J. Richter, Structural characterization of the (111) surfaces of CdZnTe and HgCdTe epilayers by x-ray photoelectron diffraction, J. Vac. Sci. Technol. B, 1991, 9: 1861
    [39] 贾瑜,金属、半导体高密勒指数表面特性:表面能和电子结构,郑州大学博士论文,2003
    [40] I. Tamm, Possible type of electron-binding on crystal surfaces. Z. Phys. 1932, 76:849-850
    [41] W. Shockley, On the surface states associated with a periodic potential, Phys. Rev. 1939, 56: 317-323
    [42] T. Grandke, Lothar Ley and M. Cardona, Valence Band Structure of PbS from Angle-Resolved Photoemission Phys. Rev Lett. 1977, 38:1033-1036
    [43] J. Hzl and F. K. Schulte, Solid Surface Physics, Springer Tracts in Modern Physics,Vol. 85, Springer, Berlin, 1979
    [44] K. Wandelt, in Thin Metal Film and Gas Chemisorption,edited by P. Wissmann, Elsevier, Amsterdam, 1987, 280.
    [45] Th. Fauster and W. Steinmann, Electromagnetic Waves: Recent Developments in Research, Vol.2: Photonic Probes of Surfaces, Elsevier, Amsterdam, 1995, chapter 8.
    [46] R. Fischer, S. Schuppler, N. Fischer, Th. Fauster and W. Steinmann, Image states and local work function for Ag/Pd(111), Phys. Rev. Lett. 1993, 70: 654-657.
    [47] G. Binnig, H. Rohrer, Scanning tunneling microscopy, Surf. Sci, 1983, 126: 236-244.
    [48] 贾金锋,盖峥,杨威生,用扫描隧道显微镜测量局域功函数,物理学报,1997,46:1552-1554
    [49] 侯柱锋,朱梓忠,黄美纯等,Ag,Au,K吸附在W(001)表面上的功函数随外加电场的变化,物理学报,2002,51(7):1591-1595
    [50] 罗德里克(E.H.Rhoderick)著,金属半导体接触,科学出版社,北京,1984
    [51] M. rogalla, K. Runge, Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance, Nucl. Instr. and Meth. A, 1999, 434:44-56
    [52] David Cahen and Antoine Kahn, Electron energetics at surfaces and interfaces: concepts and experiments, Advanced Materials, 2003,15:271-275
    [53] R.A. McKee, EJ. Walker, M. Buongiomo Nardelli, W.A. Shelton, G.M. Stocks, The interface phase and the Schottky barrier for a crystalline dielectric on silicon. Science, 2003, 300:1726-1730
    [54] Mark C. Lonergan, A Tunable diode based on an inorganic semiconductor |conjugated polymer interface, Science,1997, 278:2103-2105
    [55] Ayelet Vilan, Abraham Shanzer and David Cahen, Molecualr control over Au/GaAs diodes, Nature, 2000, 4040:166-168
    [56] R.T. Tung, Recent advances in Schottky barrier concepts, Materials Science and Engineering Reports, 2001,35:1-138
    [57] D.K. Schroder, Semiconductor Materials and Device Characterization, Wiley, New York,1990
    [58] Kenji Shiojima, Large Schottky barriers for Ni/p-GaN contacts, Appl. Phys. Lett. 1999, 74: 1936-1938
    [59] S. Aydogan, M. Saglam, A. Tutor, Current-Voltage and capacitance-Voltage characteristics of polypyrrole/p-InP structure, Vacuum, 2005, 77:269-274
    [60] C. Coskun, S. Aydogan and H. Efeoglu, Temperature dependence of reverse bias capacitance-voltage characteristics of Sn/p-GaTe Schottky diodes, Semicond. Sci. Technol., 2004, 19:242-246
    [61] E.H. Rhoderick, Metal-seminconductor contacts, 2 nd edition, Oxford University Press, Clerendon; 1988:121
    [62] 刘恩科,朱秉升,罗晋升,半导体物理学,电子工业出版社,北京,2003
    [63] F.A. Kroeger and D. DeNobel, J. Electron.1955, 1:190
    [64] F.V. Wald and R.O. Bell, contract AT(11-1) 3545,USAEC 1974
    [65] Y.O. Bilevych, A.V. Sukach, V.V. Tetyorkin, Schottky barrier and ageing effect studies in Au(Cu)/p-CdTe contacts. Phys. Stat. sol. (c) 2004, 1:317-320
    [66] V.A. Gnatyuk, T. Aoki, Y. Hatanaka and O.I. Vlasenko, Metal-semiconductor interfaces in CdTe crystals and modification of their properties by laser pulses, Appl. Surface Science, 2005, 244: 528-532
    [67] Jyongsil Gu, Toshiyuki Kitahara, Kouichi Kawakami, et al., Ohmic contact and impurity conduction in P-doped CdTe, J. Appl. Phys. 1975, 46:1184-1185
    [68] H. Tews and C. An, Low-resistivity ohmic contacts on p-type CdTe by pulsed laser heating, J. Appl. Phys. 1982, 53:5339-5341
    [69] R.W. Miles, B. Ghosh, S. Duke, et al., Formation of low resistance contacts to p-CdTe by annealing autocatalytically deposited Ni---P alloy coatings, Journal Crystal Growth, 1996, 161: 148-152
    [70] 裴慧元,方家熊,碲锌镉半导体材料的欧姆电极,中国专利申请号:00249702,2001
    [71] G Asa, Y. Nemirovsky, Properties of metal-organic chemical-vapor-deposition mercury telluride contacts on p-type cadmium telluride, J. Appl. Phys. 1995, 77(9): 4417
    [72] 孙元平,立方相GaN的晶片键合技术以及金属接触性质的研究,中国科学院半导体研究所博士学位论文,2002
    [73] W. Shockley, Report No. A1-TOR-64-207, Air Force Atomic Laboratory Wright-patterson Air Force Base, Ohi.,1964 (unpublished)
    [74] H. H. Berger, Contact resistance and contact resistivity, J. Electrochem. Soc. 1972, 119: 507-514
    [75] G S. Marlow and M. B. Des, The effects of contact size and non-zero metal resistance on the determination of specific contact resistance, Solid-state Elect. 1982, 25:91
    [76] I. M. Dharmadasa, Recent development and progress on electrical contacts to CdTe,CdS and ZnSe with special reference to barrier contacts to CdTe, Prog. Crystal Growth and Characteristic, 1998, 36(4): 249-290
    [77] 许振嘉编著,近代半导体材料的表面科学基础,北京大学出版社,北京,2002
    [78] Dae-Woo Kim, Hee-Soo Park, Joon Seop Kwak et al, The ohmic contact formation mechanism of Au/Pt/Pd ohmic contact to p-ZnTe, Journal of Electronic Materials, 1999, 28(8): 939-943
    [79] Takeo Ohtsuka, Masashi Yoshimura, Katsuhiko Morita et al, Low resistance ohmic contact for p-type ZnTe using Au electrode, Appl. Phys. Lett., 1995, 67(9): 1277-1279
    [80] M. Ozawa, E Hiei, M. Takasu et al, Low resistance ohmic contacts for p-type ZnTe, Appl. Phys Lett., 1994, 64(9): 1120-1122
    [81] 李宇杰,Cd_(1-x)Zn_xTe晶体的缺陷研究及退火改性,西北工业大学博士学位论文,2001
    [82] V.V. Kveder, E.A. Steinman, S.A. Shevchenko, et al. Dislocation-related electrolum- inescence at room temperature in plastically deformed silicon. Phys Rev B, 1995, 51:10520
    [83] E.O. Sveinbjornsson, J. Weber, Room temperature electroluminescence from dislocation- rich silicon. Appl. Phys. Lett, 1996, 69:2686
    [84] W.L. Ng, M.A. Lourenco, K.P. Homewood, et al. An efficient room-temperature silicon-based light emitting diode, Nature, 2001, 410:192
    [85] R. Jones, Phil. Mag.1977, 35:57-64
    [86] Veth J. Teichler H. Phil. Mag. B 1984,49:231
    [87] J.E. Northrup, M.L. cohen, J.R. Chelikowsky, J.C.H. Spence, A. Olsen, Electronic structure of the unreconstructed 30° partial dislocation in silicon, Phys. Rev. B 1981, 24:4623
    [88] M. Brohl, H. Alexander, Microwave conductivity in plastically deformed silicon, Inst. Phys. Conf. Ser. 1989 104:163
    [89] H. Alexander, Dislocations in Solids: Nabarro F. R. N (Ed.) Amsterdam: North Holland, 1986, 7:113
    [90] 介万奇,新型Ⅱ-Ⅵ族材料的晶体生长与缺陷控制,中国科学基金,2000,2:92-96
    [91] H. Teichler, Groehlich M. Izv. Acad. Nauk USSR 1987, 51:657
    [92] Bollmann,W.,Crystal Defects and crystalline Interfaces. Springer-Verlag, Heidelberg, 1970
    [93] W.L. Bragg, The structure of a cold-worked metal, Proc.Phys.Soc. 1940,52:105-109
    [94] 葛庭燧,固体内耗理论基础—晶界弛豫与晶界结构,科学出版社,北京,2000
    [95] N.Wang, P. Hassen, A TEM and DLTS study of a near Σ 25 CdTe bicrystal, Phys. Stat. Sol.(a) 1991, 128: 37-43.
    [96] H.F. Fischmeister, W. Mader, B. Gibbesch, G. Elssner, Joining of ceramic, glass and metal, Mater.Res.Soc.Symp.Proc.1988, 122:529-540
    [97] 王林军,桑文斌,史伟民,功能材料与器件学报,1999,5:2.
    [98] H. Yoon, J.M. Vanscyoc, M.S. Goorsky, et al.JEletronicMaterials,1997, 26:529
    [99] 刘克岳,王金义,张学仁导体技术,2000,25:2
    [100] 查钢强,介万奇,李强,刘永勤,CdZnTe单晶的机械抛光及其表面损伤的测定,功能材料,2006,37(1):120-122
    [101] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., The atomic and electronic structure of CdZnTe (111) A surface, Chemical Physics Letters, 2006, 427:197-200
    [102] Huang Hui, Wu Gang, He Yongcheng, X-ray Double-crystal Diffraction Studies of CdZnTe Substrates. Shanghai: 8th International Conference on Narrow Gap Semiconductors, 1997.67.
    [103] K. Chattopadhyay, M. Hayes, J. Oliviemdap, J Electronic Materials, 2000, 20:610
    [104] 汪晓芹,CdZnTe晶片表面化学处理及欧姆接触特性的研究,西北工业大学博士学位论文,2006
    [105] C.M. Stahle, Z.Q. Shi, K. Hu, et al., Proc. SPIE 1997, 3115:90
    [106] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., Effects of Surface treatments on the electrical and optical properties of CdZnTe single crystal, Nuclear Instruments and Methods in Physics Research Section A, 2006, 566: 495-499.
    [107] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., The surface leakage current of CdZnTe. Applied Surface Science, 2007, 253:3476-3479
    [108] Zha Gangqiang, Jie Wanqi,Zhang Wenhua, et al., Atomic and Electronic structures of Cd_(0.96)Zn_(0.04)Te(110) surface, Chinese Physics Letters,2005, 22 (9): 2357
    [109] 贾瑜,范希庆,马丙现,等.CdTe(110)弛豫表面电子态的计算,物理学报,1997,46(10):1999
    [110] T. Kendelewicz, J. E. Klepeis, J. C. Woicik, et al. Large-angle bond-rotation relaxation for CdTe (110), Physical Review B 1995,51:10774
    [111] 黄昆 韩汝琦,固体物理学,高等教育出版社,北京,1988:148
    [112] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., The atomic and electronic structure of CdZnTe (111) A surface, Chemical Physics Letters, 2006, 427:197-200
    [113] D.J. Chadi, Phys. Rev. Lett, 1984, 52:1911
    [114] S. Rujirawat et al, Appl. Phys. Lett. 1999, 74:2346
    [115] S.Y. Tong et al, J. Vac. Sci. Technol. B 1985, 3:1076
    [116] H. Qu, P. O. Nilsson, J. Kanski, et al. Electronic structure of CdTe(110) as studied by angle-resolved photoemission, Physical Review B 1989,39:5276
    [117] K. O. Magnusson, S. A. Flodstrom. Valence-band and surface electronic structure of CdTe. Physical Review B 38(1988) 5384-5391
    [118] 潘承璜 赵良仲,电子能谱基础,北京:科学出版社,1981:256
    [119] L. F. Wagner, W. E. Spicer. Observation of a Band of Silicon Surface States Containing One Electron Per Surface Atom,Physical Review Letters.1972, 28:1381
    [120] D. E. EasTman, W. D. Grobman. Photomission Densities of Intrinsic Surface States for Si, Ge, And GaAs. Physical Review Letters,1972, 28:1378
    [121] 张海峰 李永平 方容川,CdTe(111)表面电子结构,物理学报,1995,44:280
    [122] RT.Tung, Recent advances in Schottky barrier concepts, Mater Sci Eng Rep, 2001, 35:1
    [123] Rickert K A, Ellis A B. X-ray photoemission determination of the Schottky barrier height of metal contacts to n-GaN and p-GaN, JAppl Phys 2002, 92:6671
    [124] Winfried Monch, Barrier heights of real Schottky contacts explained by metal-induced gap states and lateral in_homogeneities, J. Vac. Sci. Technol. B, 1999, 17:1867
    [125] Zha G Q, Jie W Q, Zeng D M, et al. The study of Schottky contact between Au and clean CdZnTe, Surface Science, 2006, 600:2629
    [126] L.J. Brillson, C.F. Brucker, N.G. Stoffel, et al., Abruptness of Semiconductor-Metal Interfaces, Phys. Rev. Lett. 1981,46:838-841
    [127] R.Ludeke, The effects of microstructure on interface characterization, surface Science, 1986, 168:290
    [128] I.M. Dharmadasa, W.G. Herrenden-Harker, and R.H. Williams, Metals on cadmium telluride: Schottky barriers and interface reactions, Applied Physics Letters, 1986, 46:1802
    [129] R.T. Tung. Schottky-Barrier Formation at Single-Crystal Metal-Semiconductor Interfaces, Phys. Rev. Lett., 1984, 52:461
    [130] Y.O. Bilevych, A.V. Sukach, V.V.Tetyorkin, et al., Schottky barriers at Au/p-CdTe interfaces. Hard X-Ray and Gamma-Ray Detector Physics V. Proceedings of the SPIE, 2004, 5198:289-297
    [131] Y.O. Bilevych, A.V. Sukach, V.V. Tetyorkin, Schottky barrier and ageing effect studies in Au(Cu)/p-CdTe contacts. Phys. Stat. sol. (c) 2004, 1: 317-320
    [132] F.A. Kroeger and D. DeNobel, J. Electron. 1955, 1:190
    [133] F.V. Wald and R.O. Bell, contract AT(11-1) 3545,USAEC 1974
    [134] A. Musa, J.P. Ponpon, J.J. Grob, et al., Properties of electroless gold contacts on p-type cadmium telluride. J. Appl. Phys. 1983, 54:3260
    [135] S. Mergui, M. Hage-Ali, J.M. Koebel, et al, Thermal annealing of gold deposited contacts on high resistivity p-type CdTe nuclear detectors. Nucl. Instr. Methods in Physics Research A.,1998, 36: 249-290
    [136] K. Chattopadhyay, X. Ma, J.-O.Ndap, et al. Thermal Treatments of CdTe and CdZnTe Detecotrs. Proceedings of SPIE,2000, 4141:303-308
    [137] Wenbin Sang, Jin Wei, Zhang Qi, et al. Primary study on the contact degradation mechanism of CdZnTe detectors. Nuclear Instruments and Methods in Physics Research A, 2004,527:487-492
    [138] Wan Xiaoqin, Jie Wanqi, Li Huangyong, et al., Effects of low-temperature annealing on ohmic contact of Au/p-CdZnTe. Nuclear Instruments and Methods in Physics Research A, 2006, 560: 409-412
    [139] 刘恩科,朱秉升,罗晋生等,半导体物理学,电子工业出版社,北京,2003:219-238
    [140] D. Brun, B.Daudin, and E. Ligeon, Low resistance ohmic contact on n-CdTe, Appl. Phys. Lett. 1994, 65: 475
    [141] F. Bassani, S.Tatarenko, K. Saminadayar, et al., Indium doping of CdTe and Cd_(1-x)Zn_xTe by molecular-beam epitaxy: Uniformly and planar-doped layers, quantum wells, and superlattices, J. Appl. Phys. 1992, 72:2927
    [142] M.A.George, W.E.Collins, K.T.Chen, et al., Study of electroless Au film deposition on ZnCdTe crystal surfaces, J. Appl. Phys. 1995, 77:3134
    [143] J. Touskova and R. Kuzel, The rectifying contact of gold on etched CdTe single crystals, Phys. Status. Solidi A, 1972, 10:91-97
    [144] M. Ozaki, D.L. Peebles, B.R. Weinberger, et al., Junction formation with pure and doped polyacetylene, Appl. Phys. Lett. 1979, 35:83
    [145] I.M. Dharmadasa, W.G. Herrenden-Harker, and R.H.Williams, Metals on cadmium telluride: Schottky barriers and interface reactions, Appl. Phys. Lett. 1986, 48:1802
    [146] A.B. McLean, I.M. Dharmadasa, and R.H. Williams, Schottky-barrier height determination in the presence of interracial disorder, Semicond. Sci. Technol. 1986, 1:137
    [147] Mark C. Lonergan, A tunable diode based on an inorganic semiconductor conjugated polymer interface, Science, 1997, 278:2103
    [148] L.A. Kosyachenko, O.L. Maslyanchuk, V.V. Motushchuk, et al., Charge transport generation recombination mechanism in Au/n-CdZnTe diodes, Solar Energy Materials & Solar Cells 2004, 82: 65
    [149] L.A. Kosyachenko, X. Mathew, V.V. Motushchuk, et al., Electrical properties of electrodeposited CdTe photovoltaic devices on metallic substrates: study using small area Au-CdTe contacts, Solar Energy 2006, 80:148
    [150] E. Molva, J.L. Pautrat, K. Samindayar, et al., Acceptor states in CdTe and comparison with ZnTe. General trends, Phys. Rev. B 1984, 30:3344-3354
    [151] Morio Inoue, Iwao Teramoto, and Shigetoshi Takayanagi, Etch pits and polarity in CdTe crystals, J. Appl. Phys. 1962, 33:2578
    [152] 曾冬梅,Cd_(0.96)Zn_(0.04)Te晶体的缺陷分析及应力测试,西北工业大学硕士学位论文,2005
    [153] Gangqiang Zha, Wanqi Jie, Qiang Li, et al., The effect of dislocations in Cd_(0.96)Zn_(0.04)Te single crystal on IR transmittance, Materials Science in Semiconductor Processing, 2006, 9:160-163
    [154] 朱基千,褚君浩,张小平等,退火对CdZnTe晶体质量的影响,半导体学报,1997,18:782-785
    [155] 孙以材,半导体测试技术,冶金工业出版社,北京,1984,225-230
    [156] T.S.Moss, Optical Properties of Semiconductors,半导体光学性质,上海科技出版社,上海,1963:17-19
    [157] H.R. Vydyanath, J.A. Ellsworth, R.F. Fisher, Vapor phase equilibria in the CZT alloy system, J. Electron. Mater. 1993, 29:1067-1071
    [158] G.L. Pearson, W.T. Read, F.J. Morin, Dislocations in Plastically Deformed Germanium, Phys. Rev. 1954, 93:666-667
    [159] H. Alexander and H. Teichler, in Materials Science and Technology, edited by R. W. Chan, P. Haasen, and E. J. Kramer, VCH Weinheim, Cambridge, 1993, Vol. 4, p. 291.
    [160] M. Lax, E. Burstein, A reivw on the recent study development of materials physics, Phys. Rev, 1955, 97:39-52
    [161] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., The effects of dislocations in CdZnTe single crystal on IR transmittance and electrical properties, Physica status solidi(a), in press.
    [162] H.Y. Shin, C.Y. Sun, The exciton and edge emissions in CdTe crystals, Mater. Sci. Eng. B 1998,52:78-83
    [163] J.K. Radhakrishnan, G. Salviati, Cathodoluminescence investigations on CdTe and Cd_(0.96)Zn_(0.04)Te crystals, J. Luminesc. 2005, 113:235-242
    [164] F.P. Dory, J.F. Butler, J.F. Schetzina, et al., Properties of CdZnTe crystals grown by a high pressure Bridgman method, J. Vac. Sci. Technol. B, 1992, 10(4): 1418-1422
    
    [165] J. Lee, N.C. Giles, D. Rajavel, et al., Donor-acceptor pair luminescence involving the iodine A center in CdTe, J. Appl. Phys. 1995, 78: 5669-5674
    
    [166] Y.H. Kim, S.Y. An, J.Y. Lee, et al., Photoluminescence study on the effects of the surface of CdTe by surface passivation, J. Appl. Phys. 1999, 85: 7370-7373
    
    [167] Gangqiang Zha, Wanqi Jie, Tingting Tan, et al., The IR absorption and PL of dislocations in CdZnTe. Materials Science and Engineering A, 2006,432: 126-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700