Pb-Al层状复合节能阳极制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前湿法冶金工业中,铅合金阳极因其制备工艺简便、成本相对低廉仍被广泛应用于电积Zn、Cu、Ni等有色金属的生产中,但铅合金阳极析氧过电位高、无功损耗大以及其材料基体本身存在的内阻大、抗蠕变性差、易发生非均匀腐蚀、污染电解液及阴极产品等的诸多弊病一直制约着该领域的技术进步及经济效益。基于以上诸多问题,虽然目前已有涂层钛阳极可有效改善某些性能,但其昂贵的材料成本与制备工艺复杂性成为取代铅基合金阳极的瓶颈问题。
     本研究率先提出Pb-Al层状复合节能阳极的新材料构想,先后获得国家自然科学基金及国家"863"计划项目的资助,利用较为简便的工艺制备出了一种集轻质、高强、优良导电性、长寿命、低电耗、高电流效率及高阴极产品品位等优势于一体的节能阳极。论文通过引入第三组元过渡金属Sn,借助热压扩散复合工艺将Pb、Al两种非混溶材料过渡连接起来,所形成的薄层界面起到了固溶强化、良好的电传导性作用,通过实验验证了其物理化学性能的稳定可靠性,集Pb、Al各自的优势于一体得以同时发挥。系统研究了制备工艺对界面组织、力学协同变形能力、电阻率的影响关系,在此基础上,深入研究了Pb-Al层状复合阳极材料的电化学性能,以电积锌为例开展了模拟电解试验,并分析了Pb-Al层状复合阳极的节能机理。主要研究成果如下:
     (1)基于Pb-Al层状复合阳极材料制备工艺思想,分别对Pb-Al二元液固界面能及Pb-Sn-Al三元系热力学混合特性做了对比计算分析,在研究温度范围内,当温度上限达到753.15K,Al、Sn、Pb组分点含量(at.%)为:0.42%,73.55%,26.03%时,对应的最小混合吉布斯自由能约为-5.33×104J/mol,极大地改善了系统热力学难混溶性,为进一步制备Pb-Al层状复合材料提供了理论基础。
     (2)采用机械振动法制备出了界面结合良好的Al-Sn层状复合材料。Al和Sn两相中,(200)A1与(211)Sn成27.6°角形成界面时存在约25%的错配度,通过错配度计算,约每4个(211)Sn晶面间距与三个(200)Al晶面间距对应,即每4个(211)Sn就有一个点阵重合位置,这样的点阵匹配度是一种相对较低的界面能状态,形成了稳定的Al-Sn界面。Al-Sn层状复合材料时效150天的XRD分析结果显示,表层主要以β-Sn形式存在,仅有微量的SnO2生成。
     (3)在研究了Al、Sn可复合性的基础上,采用热压扩散焊接法制备了Pb-Al层状复合材料。通过EDS、SEM等分析了其界面形貌及相组织。研究发现,随着扩散温度和保温时间的增加,界面上最终形成了(α(主)+β(次))共晶体/(p(主)+a(次))共晶体/β(Sn-Pb)+Al多层连续过渡结构,且界面扩散宽度也在逐渐变大,由最初的2.5μm初相宽化到18.4μm。利用热动力学原理对界面扩散的原子迁移和相迁移规律进行分析,发现主相Pb-Sn共晶组织的生长采取分枝、搭桥的方式,α相通过分枝在β相上长大,β相分枝又在α相上长大,最终达到了两相交替的层状排列式组合,室温下保持了球团状相遇共晶组织,以使系统的能量处于最低状态,使界面具备了较好的热力学稳定性。
     (4)对不同工艺条件下制得的Pb-Al层状复合材料进行了力学性能及导电性能的测试与分析。Pb-Al层状复合材料与传统Pb-1%Ag合金相比较,同形状体积下其重量平均减轻32%,平均抗弯强度提高70.1%,界面平均维氏硬度提高205%。随着界面的合金化程度变大和界面宽化,在界面结合强度不断改善的同时也牺牲了一定的导电性,但由于界面层的厚度仅在单位微米数量级,其带来的界面电阻值仅在1.435×10-8-6.605×10-7Ω范围,从对材料的整体导电性的要求来讲,并不会给其应用为阳极材料带来明显的负面影响,能够将Al芯材的优良导电性能集中体现在层状基体结构中,使得阳极基体的内阻与同体积的铅合金阳极基体相比大幅降低。
     (5)极化曲线测试结果表明,Pb-Al层状复合阳极较Pb-1%Ag阳极极化电位平均降低18.2%,降低了自腐蚀溶解的可能性。表观电流密度为500A/m2电解时,无论Mn2+存在与否,Pb-Al层状复合阳极析氧电位均明显低于Pb-1%Ag合金板阳极的析氧电位,均缩短了且其达到相对稳定所需的时间。采用有效工作面积均为170mm×110mm×6mm的Pb-Al层状复合阳极与Pb-1%Ag合金阳极经过24天的现场模拟电解生产试验,各Pb-Al层状复合阳极在不同程度上均达到了降低槽电压、析氧电位及阳极实际电流密度的目的,Pb-Al层状复合阳极对应的电流效率均在92%左右,而Pb-1%Ag合金阳极对应的电流效率为89.74%。从能耗的角度计算,Pb-A1层状复合阳极对应的每吨锌产量的电耗平均较Pb-1%Ag合金阳极节省116kWh,节能效果意义明显。阳极腐蚀速率降低80%,阳极泥生成量减少90%左右,且阳极泥中的含铅总量仅为Pb-1%Ag合金阳极对应阳极泥的1/15;极大地改善了传统Pb-Ag合金阳极对应阴极锌产品易发生边缘枝晶的状况,说明Pb-Al层状复合阳极的结构设计及A1芯材的优良导电性起到了均化电极表面电流分布的作用:Pb-Al层状复合阳极的工程化模拟电解试验取得了良好的效果,达到了节能降耗、延长阳极使用寿命的效果。
Because of the benefits of low cost and simple process, the lead-based alloy anodes have been widely used in the electro-deposition of nonferrous metals, such as Zn. Cu, Ni, etc. But the high anodic over potential for oxygen evolution, high reactive power loss as well as inherent problems like high internal resistance, low creep resistance, non-uniform corrosion and the contamination of the electrolyte and cathode products, has restricted the technological creativity and economic progress for the corresponding hydrometallurgical processes. To solve the problems above, although noble oxide coated Titanium anodes can efficiently improve certain properties, the complex process and high cost make it too hard to become a substitute for lead-base alloy anodes.
     In this paper, the concept of the Pb-Al laminated composite material as a new energy-saving anode is proposed for the first time. The present research, supported by the National High Technology Research and Development Program of China (national 863 plans projects) and the National Natural Science Foundation of China (NSFC), aims to obtain an energy-saving anode with light weight, high strength, good conductivity, long working period, low power consumption, high current efficiency and high quality cathodic product by a simplified process. By introducing the third element Sn, the immiscible materials Pb and Al are transitionally combined by the hot pressing diffusion technique, forming thin solid solution enhanced interfaces with good electrical conductivity so that the advantages of Pb and Al can be used simultaneously. Stability of physical chemistry of the interfaces is experimentally confirmed. Influence of preparation technology on the interfacial microstructure, the cooperative deformability and electrical resistivity are systematically studied. On this basis, further investigations are carried out on the electrochemical properties of Pb-Al laminated composite anode materials, simulated production of zinc electrowinning is performed, and the energy-saving mechanism of Pb-Al laminated composite anode materials are analyzed. The research results are as follows:
     (1) Based on the preparation principle of Pb-Al laminated composite anode materials, thermodynamic calculation is carried out to analyze the Pb-Al binary liquid-solid interfacial energy and characteristics of Pb-Sn-Al ternary system. When reaching the upper limit of temperature 753.15K, the minimum interfacial binding energy value is -5.33×104J/mol, with composition of the material is 0.42 at.%,73.55 at.% and 26.03 at.% for Al, Sn and Pb, respectively, and it provides theoretical basis for the preparation of Pb-Al laminated composite anode materials.
     (2) Al-Sn laminated composite with good bonding interface is obtained by hot dipping Sn on the surface of Al through the mechanical vibration method. when the (200)Al and (211)Sn crystal plane makes an angle of 27.6°between Al phase and Sn phase, there would be a mismatch of 25%. The results of mismatch calculation show that every four interplanar spacings of (211)Sn correspond with three interplanar spacings of (200)Al. That is, every four (211)Sn interplanar spacings have a coincidence lattice position, which makes a relatively low interfacial energy, leading to the stable Al-Sn interface. After the aging treatment of the Al-Sn layered composite material for 150 days, XRD analysis shows that besides small amounts of SnO2, the surface mainly in the form ofβ-Sn.
     (3) Pb-Al laminated composites are prepared by means of hot pressing diffusion, on the basis of the study of the Al-Sn solder ability. EDS and SEM are carried out to analyze the interface topography and phase structure under varied preparing conditions. The results show that with increasing diffusion temperature and holding time, an alternately distributing continuous multilayered transition structure with a principal phase ofα(Sn-Pb)+β(Sn-Pb) solid solution is ultimately generated on the interface. The fraction of new generated phase increase with temperature and holding time, and the diffusion breadth also changes from a 2.5μm wide primary phase to a 18.4μm multiphase continuous transition diffusion layer. Thermodynamic principles are used to analyze the atom/phase transformation of interfacial diffusion. The results indicate that the Pb-Sn eutectic structure of the principal phase grows through branching and bridging. The a phase grows on theβphase through branching, and simultaneously theβphase grows on the a phase, leading to an ultimate staggered layered structure. Cores of the two phases grow radically since formed, and a final spherical meeting eutectic structure is formed, so that the total system energy remains minimum, and the interfaces possess good thermodynamic stability.
     (4) Interfacial microhardness analysis, conductivity and integral bending property test are carried out on Pb-Al laminated composite materials obtained under different preparing conditions. The results show that compared with Pb-1% Ag alloy material, the weight of the Pb-Al laminated composite materials is reduced by 32% on average with the same shape and volume, the average bending strength is increased by 70.1%, the average interfacial Vickers hardness is enhanced by 205%. With the alloying extent and interface broadening, the interfacial bond strength is increased but it decreases the conductivity on the other hand. However, thanks to the unit microns level thickness of the interfacial layer, the interface resistance value is from 1.435×10-8Ωto 6.605×10-7Ω. However, it will not have a significant negative impact when the Pb-Al laminated composite materials used as anode to meet the overall conductivity requirements, and it makes Al as the core material can present an excellent electric conductivity for the layered structure anode material matrix. Thus, the internal resistance of the Pb-Al laminated materials is lower than that of the lead alloy anode substrates in the same volume.
     (5) The results of polarization curves show that compared with the Pb-1% Ag anodes, the anodic polarization potential of the Pb-Al laminated anodes is decreased by 18.2%, it reduces the possibility of self-corrosion. When the apparent current density is 500A/m2, regardless of the existence of Mn2+, the anodic oxygen evolution potential of Pb-Al laminated anodes is lower than Pb-1% Ag alloy anodes, so as to speed up the electrode polarizing process. The Pb-Al laminated composite anodes with dimension of 170mm×110mm×6mm are tested in pilot scale experiment for 24 days and the anodes are found to perform well in industrial electrolysis conditions. The corresponding average current efficiency of Pb-Al laminated composite anodes is about 92%, while the corresponding average current efficiency of Pb-1% Ag alloy anodes is only about 89.74%. The calculating results of energy consumption (per tonne of zinc produced) show that, compared with Pb-1% Ag alloy anodes, Pb-Al laminated composite anodes have reduced energy consumption by 116kWh, energy-saving effects are very obvious, and at the same time, the quantity of anode mud and the anodic corrosion rate is reduced by 90%,80%, respectively. The edge dendrite phenomenon of cathode zinc products has been greatly improved due to the fact that the optimized layered structure design of the composite anodes, and the good conductivity of Al core material. Finally, the aim of saving energy and lowering anodic corrosion has been obtained according to the production practice of Zinc electrolysis.
引文
[1]王鸿雁.有色金属冶金.北京:化学工业出版社,2010
    [2]稀有金属手册编委会.稀有金属手册.北京:冶金工业出版社,2008
    [3]陈延禧.电解工程.天津:天津科学技术出版社,1993
    [4]陈家镛.湿法冶金手册.北京:冶金工业出版社,2005
    [5]魏昶,王吉坤.湿法炼锌理论与技术.昆明:云南科技出版社,2002
    [6]http://www.dzwww.com/rollnews/finance/201002/t20100212_5648837.htm, 2010.2.12
    [7]孙伟.依靠资源优势发展西部经济.云南冶金,2001,30(5):61-64
    [8]Cachet C, Rerolle C, Wiart R. Kinetics of Pb and Pb-Ag anodes for zincElectrowinning. Electrochemical Acta,1996,41(1):83-90
    [9]王钧扬.锌电积的节电探讨.湖南冶金,2003,31(2):45-48
    [10]王彦军,谢刚,杨大锦,等.降低电积锌直流电耗的现状分析.湿法冶金,2005,24(4):208-211
    [11]中国发展与改革委员会.铅锌行业准入条件.中国有色金属建设,2007,(02):15-18
    [12]吕少祥,戴曦.降低锌电积直流电耗生产实践.有色金属(冶炼部分),2001,(06):13-15
    [13]陈国华,王光信.电化学方法应用.北京:化学工业出版社,2003
    [14]彭根芳.锌电积直流电耗的实证分析与优化探讨.有色冶炼节能,2003.20(2):17-20
    [15]增子昇.最近の亚铅裂錬の進步の展望.东京,日本鋐業会,1981,2,78
    [16]增子昇.最近の亚铅裂錬の進步の展望.东京,日本鋐業会,1981,2,83
    [17]龟谷博.最近の亚铅裂錬の進步の展望.东京,日本鋐業会,1981,2,82
    [18]蒋继穆.我国锌冶炼现状及近年来的技术进展.中国有色冶金,2006,(5):19-23
    [19]蒋良兴,衷水平,赖延清,等.电流密度对锌电积用Pb-Ag平板阳极电化学行为的影响.物理化学学报,2010,26(09):2369-2374
    [20]田昭武.电化学研究方法.北京:科学出版社,1984
    [21]张招贤.钛电极学导论.北京:冶金工业出版.2009
    [22]陈康宁.金属阳极.上海:华尔师范大学出版社,1989
    [23]张招贤,赵国鹏,胡耀红.应用电极学.北京:冶金工业出版社.2005
    [24]Guan, Y.J., Xia, Y. Review on plasma electrolytic deposition. Adv. Mech., 2004,34(2):237-250
    [25]F. Pico, J. Ibanez, T.A. Centeno, et al. RuO2 center dot xH(2)O/NiO composites as electrodes for electrochemical capacitors-Effect of the RuO2 content and the thermal treatment on the specific capacitance. Electrochim. Acta,2006: 4693-4700
    [26]Yu.V. Pleskov, Yu.E. Evstefeeva, A.M. Baranov, et al. Threshold effect of admixtures of platinum on the electrochemical activity of amorphous diamond-like carbon thin films. Diamond and Related Materials.2002,11(8):1518-1522
    [27]Shih-Wei Lee, Frank G. Shi, Sergey D. New copper seed-layer enhancement process metrology for advanced dual-damascene interconnects. J. Electron. Mater. 2003,32(4):272-277
    [28]RR Moskalyk, A Alfantazi, AS tombalakian, et al. Anode effects in electrowinning. Minerals Engineering,1999,12(1):65-73
    [29]E. Mahe', D. Devilliers. Surface modification of titanium substrates for the preparation of noble coated anodes. Electrochim. Acta,2000,46:629-636
    [30]Chu DB, Shen GX, Zhou XF, et al. Electrocatalytic activity of nanocrystalline TiO2 film modified Ti electrode. Chem. J. Chin. Univ.,2002,23:678-681
    [31]Zhu. D B, Wang. E W, Wei. Y J. Elecrocatalytic activities and preparation of nanocrystalline TiO2-Pt modified electrode. Acta Phys,Chim.Sin., 2004,20(02):182-185
    [32]Petr Zuman, James F. Rusling. Polarographic studies of adsorption on mercury electrodes. Encyclopedia of Surface and Colloid Science,2002:4143-4161
    [33]J.P. Gueneau de Mussy, J. V. Macpherson, J. L. Delplancke. Characterization and Behaviour of Ti/TiOi/Noble Metal Anodes. Electrochim., Acta,2003,48: 1131-1141
    [34]V. de Nora, J.W. Kiihn von Burgsdorff. Der Beitrag der dimensionsstabilen Anoden (DSA) zur Chlor-Technologie. Chem. Ing. Tech.,1975,47 (4):125-128
    [35]Mozota J, Conway.B. E. Modification of apparent electrocatalysis for anodic chlorine evolution on electrochemically conditioned oxide films at iridium anodes. J. Electrochem. Soc.,1981,128(10):2142-2149
    [36]唐电,林黄.火效分析方法在钛阳极中的应用.氯碱工业,1990.6:39-42
    [37]潘君益,郭忠诚.锌电积用惰性阳极材料的研究现状.云南冶金,2004,33(6):31-35
    [38]曹建春,郭忠诚,潘君益,等.新型不锈钢基Pb02/PbO2-CeO2复合电极材料的研制.昆明理工大学学报,2004,29(5):38-41
    [39]潘君益.锌电积用Al基Pb-WC-ZrO2复合电极材料的研究:[硕士学位论文].昆明:昆明理工大学,2005
    [40]苗治广.电沉积法制备SS/PbO2-WC-ZrO2聚苯胺复合惰性阳极材料的研究与应用[硕士学位论文].昆明:昆明理工大学,2006
    [41]叶匀分,王志宏,李承瑞.采用高过电位阳极处理废水中酚的研究.上海化工程设计与研究,1999,24(11):18-21
    [42]Feng J, Johnson D C. Electro catalysis of anodic oxygen-transfer reaction, Alpha-lead dioxide electrodeposited on stainless steel substrates. Journal of Applied Electrochemistry,1990,20(1):116-124
    [43]王桂清,刘敏娜.塑料基体上化学镀二氧化铅.电镀与环保,1995,15(3):20-21
    [44]王桂清,刘敏娜.聚丙烯塑料板基体二氧化铅电极的制备.材料保护,1995.28(3):18-19
    [45]王桂清,刘敏娜.ABS塑料板基体PbO2电极的制备.无机盐工业,1995,(4):31-32
    [46]周海晖.陈范才,赵常就.环氧板二氧化铅电极的制备及其性能测试.表面技术.2000,29(2):15-16
    [47]陈振方,蒋汉瀛.PbO2-ABS塑料电极的研制及其性能.材料保护,1992,25(1):6-7
    [48]朱松然.蓄电池手册.天津:天津大学出版社,1998
    [49]赵金珠.铅蓄电池极栅合金综述.电源技术,2002,26(2):119-121
    [50]苏向东.电积铜用惰性Pb基合金阳极的工业试验.有色金属(冶炼部分),2002(4):43-45
    [51]李鑫.稀土在铅基合金中的应用.有色金属,2003,55(2):15-17
    [52]彭容秋.锌冶金.长沙:中南大学出版社,2005
    [53]唐明成.周华文.铅酸蓄电池用铅合金的研究.湖南有色金属,2005,22(1):27-29
    [54]洪波.锌电积用铅基稀土合金阳极性能研究:[硕士学位论文].长沙:中南大学2010
    [55]袁学韬,吕旭东,华志强,等.电积铜用铅合金阳极的腐蚀行为研究.湿法冶金,2010,29(01):20-23
    [56]衷水平,赖延清,蒋良兴,等.锌电积用Pb-Ag-Ca-Sr四元合金阳极的阳极极化行为.中国有色金属学报,2008,18(7):1342-1346
    [57]刘漫博.铅基阳极在锌电积中的应用试脸研究:[硕士学位论文].西安:西安建筑科技大学,2008
    [58]Stefanov Y, Dobrev T. Potentiodynamic and electronmicroscopy investigations of lead-cobalt alloy coated lead composite anodes for zinc electrowinning. Transactions of the Institute of Metal Finishing,2005,83(6):296-299
    [59]Rashkov S, Doberev T, Noncheva Z, et al. Lead-cobalt anodes for electrowinning of zinc from sulphate electrolytes. Hydrometallurgy,1999, (52):223-230
    [60]Hrussanova A, Mirkova L, Dobrev T, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn, and Pb-Sb anodes for copper electrowinning:Part Ⅰ. Hydrometallurgy,2004,72(3-4): 205-213
    [61]Hrussanova A, Mirkova L, Dobrev T. Influence of additives on the corrosion rate and oxygen overpotential of Pb-Co3O4, Pb-Ca-Sn and Pb-Sb anodes for copper electrowinning:Part Ⅱ. Hydrometallurgy,2004,72(3-4):215-224
    [62]Hrussanova A, Russanova A, Mirkoval L, et al. Electrochemical properties of Pb-Sb, Pb-Ca-Sn and Pb-Co3O4 anodes in copper electrowinning. Journal of Applied Electrochemistry,2002,32(5):505-512
    [63]Petrova M, Stefanov Y, Noncheva Z. et al. Electrochemical behaviour of lead alloys as anodes in zinc electrowinning. British Corrosion Journal,1999,34(3): 198-200
    [64]P.a.dykstra, C.H.kelsall. Influence of Crystal Structure and Interparticle Contact on the Electrochemical Properties of PbO2 Electrodes. Joumal of Applied Electrochemistry,1989,19:697-702
    [65]S.Timur, K.Hein. Metallwissensehaft und Teehnik,1995,49:7-8
    [66]MA Petit, V. Plichon. Anodic electrodeposition of iridium oxide films. Journal of Electroanalytical Chemistry,1998.444(2):247-252
    [67]J.K. Walker. J.I. Bishara. Anodes for Electrowinning. ed. Douglas Robinson and Stephen James (Warrendale, PA:The Metallurgical Society of AIME),1994:78-85
    [68]S. Zhong. Characterization of a novel lead-aluminium alloy, Proceedings of the 2nd International Symposium on New Materials for Fuel Cell and Modern Battery Systems, Montreal,Canada,1997:178-184
    [69]Zhu M, et al. Mechanical Alloying of Immiscible Al-Pb Binary System by High Energy Ball Milling. Journal of Materials Science,1999, (33):5873-5881
    [70]Hang-Moule Kim et al. Microstructure and Wear Characterstics of Rapidly Solidified Al-Pb-Cu Alloys. Materials Science and Engineering A,2000, (287): 59-65
    [71]Mohan S, et al. Friction Characteristics of Stir-cast Al-Pb Alloy. Wear,1992, (157): 9-17
    [72]Wang Jun, et al. Trbological Behavior of Hot-Extruded Al-Si-Pb Bearing Alloy. Tribology,2002,22(4):268-273
    [73]K.Ichikawa, S.Ishizuka. Production of Al-Pb alloys by rheocasting. Trans. Jpn. Inst. Met..1987.28(2):145-153
    [74]朱敏.难互溶体系中合金的机械合金化合成.功能材料,1992,23(6):346-349
    [75]方芳.朱敏Al-Pb互不溶体系机械合金化过程中固溶度的计算.中国有色金属学报,2002,12(第1辑):24-29
    [76]周生刚,竺培显,黄子良,等. Pb-Al二元体系液-固界面自由能的热力学理论计算.物理化学学报,2009,25(11):2177-2180
    [77]竺培显,周生刚,孙勇,等.Bi对Pb-Al层状复合电极材料制备与性能的影响,稀有金属材料与工程,2010,39(05):911-914
    [78]竺培显,周生刚,孙勇,等.液固包覆法制备Al-Pb层状复合材料及其界面研究.材料热处理学报,2009,30(04):1-5
    [79]Peixian Zhu, Shenggang Zhou, et al. Application of Artificial Neural Network in Composite Research. Advances in Swarm Intelligence, Lecture Notes in Computer Science,2010,6164:558-563
    [80]Zhou Shenggang, Zhu Peixian, et al. Preparation and characterization of Al/Pb Layered Composite Materials. Advanced Materials Research.ICMSE2010
    [81]Zhou Shenggang, Zhu Peixian, et al. Preparation and Current Distribution Performance of Pb-Al Layered Composite Anode Materials. The Minerals, Metals & Materials Society(TMS2011)
    [82]周生刚,张瑾,竺培显,等Pb-Sn-Al复合电极的制备及其性能初步研究.云南大学学报(自然科学版),2009,31(06):600-603
    [83]竺培显,周生刚,黄子良.增强型Al-Pb层状复合电极材料制备与性能研究.材料工程,2009,(S1):180-187
    [84]周生刚,竺培显,孙勇,等. Pb-Al层状复合电极材料制备与性能初探.热加工工艺,2008,37(24):5-7
    [85]贾均,赵九洲,郭景杰,等.难混溶合金及其制备技术.哈尔滨:哈尔滨工业大学出版社,2002
    [86]《重金属有色金属冶炼设计手册》编委会.重有色金属冶炼设计手册(铅锌铋卷).北京:冶金出版社,1996
    [87]赵天从.重金属冶金学(下).北京:冶金工业出版社,1981
    [88]梅光贵,王德润,周敬元,等.湿法炼锌学.长沙:中南大学出版社,2001
    [89]曹楚南.腐蚀电化学.北京:化学工业出版社,1995
    [90]蔡炳新.基础物理化学.北京:科学出版社,2001
    [91]韩永刚.锌电解阳极腐蚀电解“烧板”关系探讨.有色金属设计,2003,30(增刊):64-67
    [92]梁镇海.固溶体中间层钛基氧化物阳极研究:[博十学位论文].太原:太原理工大学,2007
    [93]龙毅.材料物理性能.长沙:中南大学出版社,2009
    [94]连法增.材料物理性能.沈阳:东北大学出版社,2005
    [95]陈念贻.键参数函数及其应用.北京:科学出版社,1976
    [96]潘金生,田民波.材料科学基础.北京:清华大学出版社,1998
    [97]http://www.china-led.net/info/201063/201063172327.shtml
    [98]司乃潮,傅明喜.有色金属材料及制备.北京:化学工业出版社,2006
    [99]朱瑶,赵振国.界面化学基础.北京:化学工业出版社,2001
    [100]陶为民.固液界面自由能.材料科学与工程学报,1988,6(4):16-20
    [101]Kevorkijan, V. M., Torkar M, Sustarsic B. Modeling of the reactive immersion of ceramic particles into molten aluminium alloys. Compos. Sci. Technol.,1999, 59(10):1503-1511
    [102]陈佑华,赵国权.朱元凯.座滴法测定渣与金属界面张力.有色金属(冶炼部分),1988,(3):32-36
    [103]Loglio, G. Pandolfini, P. Makievski, A. V. Miller, R. Calibration parameters of the pendant drop tensiometer:assessment of accuracy.J. Coll.Inter. Sci.,2003, 265(1):161-165
    [104]Mainzer, T.; Woermann, D. Surface tension of a binary liquid mixture in the vicinity of its critical point. Berichte der Bunsengesellschaft fur physikalische Chemie,1991,101(7):1014-1018
    [105]Jones, H. An Evaluation of Measurements of Solid/Liquid Interfacial Energies in Metallic Alloy Systems by the Groove Profile Method. Metal. Mater. Trans. A, 2007,38(7):1563-1569
    [106]Miedema, A. R.; Broeder, F. J. Z. On the interfacial energy in solid-liquid and solid-solid metal combination. Metallurgist,1979,70:14-19
    [107]Warren, R. J. Solid-liquid interfacial energies in binary and pseudo-binary systems. Mater. Sci.,1980,15:2489-2496
    [108]翟薇,王楠,魏炳波.偏晶溶液相分离过程的实时观测研究.物理学报,2007.56(4):2353-2358
    [109]张辉,张国英,王瑞丹,等.无序二元合金(NixCu1-x)不同解理面上O吸附对Cu偏析的影响.物理学报,2005.54(11):5356-5361
    [110]房文斌.贺文雄,王尔德,等.机械球磨与包套挤压制备Al-Pb合金.材料科学与工艺.2004.12:172-175
    [111]Zhao, J. Z. Drees, S. Retke, L. Strip casting of Al-Pb alloys a numerical analysis. Mater. Sci. Eng. A,2000,282(1-2):262-269
    [112]ZHU M, GAO Y, CHUNG C Y. Improvement of the wear behavior of Ar Pb alloys by mechanical alloying. Wear,2000,242:47-53
    [113]An J, Liu YB, Sun DR. Mechanism of bonding of Al-Pballoy strip and hot dip aluminised steel sheet by hot rolling. Mater. Sci. Tech. Ser.,2001,17 (4):451-454
    [114]Jackson, K. A. Liquid metals and solidification. Washington DC:ASM Press, 1958:124
    [115]Robertson, W. M. Institute of metals division-grain boundary grooving and scratch decay on copper in liquid Lead. Trans. Metall. Soc. AIME,1965.233: 1232-1236
    [116]Barin, I. Thermo chemical data of pure substances. Weinheim:Wiley&VCH,2003
    [117]Scerri, E. R. The periodic table:its story and its significance. New York:Oxford University Press,2006
    [118]M.H. Davies. The liquid immiscibility region in the aluminum-lead-tin system at 650,730 and 800℃. J. Inst. Sntals (London),1953,81:415-416
    [119]Guang-ming XU, Bao-mian LI, Jian-zhong CUI. Interfacial microstructure of Pb-Sn-Al alloy/steel during liquid-solid bonding rolling. Journal of Iron and Steel Research,International,2006,4(13):40-43
    [120]Guang-ming XU, Bao-mian LI, Jian-zhong CUI. Effect of heat treatment on microstructure and property of Al-Sn-Pb bearing material. Journal of iron and steel research,2006,13(2):73-76
    [121]V.Raghavan. Al-Pb-Sn (Aluminum-Lead-Tin). Journal of Phase Equilibria and Diffusion, 2009,30(03):283-284
    [122]O. Redlich, A.T. Kister. Algebraic representation of thermodynamic properties and the classification of solutions.Ind. Eng. Chem.,1948,40:341-345
    [123]A.T.Dinsdale. SGTE data for pure elements. Calphad,1991,15(4):327-328
    [124]A.T.Dinsdale. SGTE data for pure elements. Calphad,1991,15(4):385-387
    [125]A.T.Dinsdale. SGTE data for pure elements. Calphad,1991,15(4):404-407
    [126]J. Miettinen. Thermodynamic description of the Cu-Al-Sn systerm in the Kokuda. Kishida. Thermodynamic study of phase equilibria in the Pb-Sn-Sb system.Journal of phase equilibria,1995,16(55):416-429
    [128]I Ansara, J.P.Bros, M.Gambino.Thermodynamic analysis of the Germanium-based ternary systems. Journal of Phase Equilibria,1979:25-233
    [129]J-Hyeok Shim, yung-Nae Lee. Liquid miscibility gap in the Al-Pb-Sn system. Journal of Alloys and Compounds,2001,327(1-2):270-274
    [130]A.N.Campbell, R.Kartzmark. The systems Aluminum-Tin and Aluminum-Tin-Lead. Canadian Journal of Chemistry,1956,34(10):1428-1439
    [131]寇生中,徐丽珠,马英杰.退火温度对冷轧态3003铝合金组织性能的影响.热加工工艺,2008,37(04):55-60
    [132]贾万存.蓄电池板栅铅合金腐蚀特性的试验.出东冶金.2006.28(4):81-81
    [133]Hrussanova A., Mirkova L., Dobrev T. Anodic behavior of the Pb-Co3O4 composite coating in copper electro winning. Hydrometallurgy,2001,60(3): 199-213
    [134]魏宝明.金属腐蚀理论及应用.北京:化学工业出版社,2004
    [135]刘家斌,曾耀武,孟亮.Cu-71%Ag共晶体中两相的台阶界面及晶体取向.金属学报,2007,43(8):803-806
    [136]H. Christensen. Electrical contact with thermo-compresion bonds. Bell Laboratorises Record,1958,(04):127-130
    [137]朱光明,秦华宇.材料化学.北京:机械工业出版社,2009
    [138]黄继华.金属及合金中的扩散.北京:冶金工业出版社,1996
    [139]唐仁正.物理冶金基础.北京:冶金工业出版社,1997
    [140]Richard Boivin, Sylvie Martel. Effect of instability of the metal surface on the magnetic field inside a cell. Light Metals,1990:385-389
    [141]P.A. Davidson, W.R. Graham, H. L. O'Brien. Instability mechanisms in aluminum reduction cells. Light Metals,1999,63:327-342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700