锂离子电池Sn基薄膜负极的多相多尺度结构与循环性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发新型的高容量、高安全性、长寿命和价格低廉的负极材料是发展大型化和微型化锂离子电池的重点之一。具有高容量和适中嵌锂电位的Sn基合金被广泛研究作为锂离子电池的负极材料。但是,电极的容量和循环稳定性的矛盾还需要进一步解决。我们认为,多相多尺度复合结构的Sn基合金薄膜负极可以兼顾容量和循环两方面的性能。本文以发展薄膜锂离子电池负极为目的,主要制备出多种具有多相多尺度复合结构的Sn基合金薄膜负极,重点研究电极结构对循环性能改善的作用及机理。
     首先,以电子束蒸发沉积的Sn-Cu合金薄膜为研究对象,探讨多相多尺度结构对电极容量和循环性能的影响。未退火Sn/Cu薄膜负极虽具有较高的首次放电容量和库仑效率,但由于界面结合不好,循环稳定性差。200℃真空退火后,Sn/Cu薄膜形成Cu_3Sn/Cu_6Sn_5两相复合结构,循环稳定性明显改善。然而,退火处理导致薄膜的表面粗糙度增大,使得首次不可逆容量损失较大,Cu_3Sn/Cu_6Sn_5复合薄膜负极的可逆容量较小。在Cu集流体上直接沉积的Sn/Cu_6Sn_5薄膜负极具有多尺度多相复合结构,单晶Sn微颗粒分散在纳米Cu_6Sn_5相基体中。Sn/Cu_6Sn_5复合薄膜具有较高的Li~+扩散系数和放电容量,以及优良的循环稳定性。这主要得益于两方面的作用:其一,纳米Cu_6Sn_5相基体及Sn微粒形成的复合结构有效地减缓电极的体积变化和应力释放;其二,在特定电位下,Sn和Cu_6Sn_5相不同时反应,因此两相起到相互保护和抑制体积过度膨胀的作用。
     其次,为了克服Sn基金属间化合物负极材料的不足,我们率先开展了互不溶Al-Sn合金的负极性能研究。电子束蒸发沉积的Al-Sn合金薄膜仍保持互不溶组织特性,并具有纳米Sn颗粒分散于Al基体中的两相复合结构。研究发现,在Al基体中均匀分散有适量的Sn相可以有效改善Li~+在其中的扩散动力学。因此,Al-Sn薄膜具有优于纯Al和纯Sn薄膜负极的循环稳定性。不同成分的Al-Sn薄膜有不同的电化学性能,中Sn成分的Al-x wt%Sn(40≤x≤60)合金负极能同时兼顾容量、结构稳定性和嵌锂/脱锂反应动力学等方面的性能,因此它们具有良好的负极性能。Al-40%Sn薄膜负极中的Sn相有两种不同的形貌特征,形成特殊的多尺度纳米相复合结构,它的稳定可逆放电容量为600mAh/g。
     再次,我们研究了另一种互不溶体Sn-C复合薄膜负极的微观结构与电化学性能。以TiNi合金作为石墨的熔融媒介,可较容易实现非晶碳在薄膜中的电子束蒸发沉积,获得Sn-C-Ni复合薄膜负极。Sn-C-Ni复合薄膜中的活性物质颗粒具有多尺度与核/壳结构,其内核为单晶Sn微粒,外壳为纳米Sn和Ni粒子分散于sp~2非晶碳中形成的复合物。它的首次不可逆容量较低,1/10C和12C的放电容量分别为1872和472 mAh/g;在1C倍率下40次循环后的放电容量仍超过600 mAh/g。多尺度核/壳结构有效提高了复合薄膜负极的结构稳定性和Li~+扩散动力学;非晶碳基体及其中的Ni纳米粒子有效抑制了纳米Sn相的团聚,从而提高复合薄膜负极的循环稳定性。
     最后,我们首次将TiNi形状记忆合金与Sn基电极材料相结合,设计出多种结构的Sn-TiNi复合薄膜,尝试利用NiTi合金相的应力诱发相变与超弹性来实现Sn负极循环性能的改善。通过一步共溅射法,可制备出非晶TiNi与Sn相复合的薄膜,其微观结构为多尺度Sn颗粒均匀分散于非晶TiNi合金基体中。该结构薄膜负极具有优良的循环稳定性和突出的高倍率放电性能。1C倍率的稳定容量为520mAh/g,经过40次循环后15C的可逆容量仍高达372mAh/g。这是三方面综合作用的结果:其一,非晶TiNi相作为活性物质Sn及Li_xSn相的良好连接导体,且有效阻止纳米Sn颗粒的团聚。其二,复合薄膜中Sn相的纳米尺度有效缩短了Li~+在其中嵌入和脱出的扩散路径。其三,Sn相的多孔结构有利于电解液在电极中的快速浸润和提高Li~+的扩散动力学。
     采用分步溅射的方法,我们成功制备出三明治结构的B2-NiTi/Sn/a-TiNi(简称B2/Sn/a)薄膜负极,并用它验证了B2-NiTi相的超弹性对Sn电极循环性能的改善作用。电极放电时B2-NiTi层能发生应力诱发马氏体相变而产生超弹性。得益于B2-NiTi层的超弹性对Sn层体积膨胀效应的限制和容让作用,B2/Sn/a薄膜负极具有优良的循环稳定性和高倍率性能。0.7C和2.7C倍率充放电时,100次循环后电极的可逆容量分别为630和500mAh/g。B2-NiTi合金相改善Sn负极循环性能的作用机理可述如下:当电极放电时,Sn→Li_xSn转变产生的体积膨胀应力诱发NiTi发生马氏体相变和超弹性应变。因此,Sn和Li_xSn的应变能部分转化为NiTi合金的相变能和应变能,同时,容让Sn的部分体积膨胀,电极膜层的破坏程度小。当电极充电时,Li_xSn→Sn转变导致Li_xSn和NiTi相中的应力释放,马氏体相逆转变为母相,NiTi相的弹性应变回复对Sn相产生压缩的作用,使裂开的Sn闭合,抑制粉化。上述Sn和NiTi相变的协同作用克服了Sn负极的体积膨胀效应。基于相同的作用机理,NiTi形状记忆合金的应力诱发马氏体相变和超弹性也将可以用于改善Al、Si、Sb等金属基负极材料的循环性能。
Developing new advanced anode materials with higher energy density, long life and improved safety is of great importance for both the large-scale and miniaturized lithium ion batteries (LIB). Sn-based alloys have been widely studied as alternative anode materials for LIB due to their high theoretical capacity and moderate operation potential. However, their capacity and cycle performance should be further improved to meet the requirements for practical applications. Multiphase and multiscale structures have been demonstrated to be benefit to both of the capacity and cycleability of Sn-based anodes. This dissertation addresses the preparation and characterizations of various Sn-based thin films with multiscaled multiphase structures, emphasizing the influences of microstructure on the cycle performance and their mechanisms. The focus on film electrode is also aiming at development of all-solid-state thin film battery.
     Firstly, Sn-Cu thin films prepared by electron beam deposition (EBD) are discussed. The as-prepared Sn/Cu thin film anode has high initial discharge capacity and coulombic efficiency but poor cycleability. The Cu_3Sn/Cu_6Sn_5 composite structure, formed in the Sn/Cu thin film after annealing at 200℃in vacuum, exhibits obvious enhancement on the cycle performance. However, due to the large irreversible capacity loss associated with increase of surface roughness of annealed electrode, the Cu_3Sn/Cu_6Sn_5 thin film anode delivers small reversible capacity. Therefore, a Sn/Cu_6Sn_5 composite thin film has been directly prepared on the Cu foil by EBD, which has a structure of polyhedral micro-sized Sn grains uniformly dispersed in the Cu_6Sn_5 matrix. The Sn/Cu_6Sn_5 composite thin film anode has higher Li~+ diffusion rate and discharge capacity, and better cycleability than those of the Cu_3Sn/Cu_6Sn_5 anode, which benefits from the nanostructure of Cu_6Sn_5 matrix and the different lithiation potentials of Sn and Cu_6Sn_5 phases. This demonstrates that the multiphase composite structure can improve electrochemical performance of the Sn-Cu alloy anodes.
     Secondly, in order to overcome the shortages of the Sn-based intermetallic anode materials, the immiscible Al-Sn alloys have been explored as lithium ion anode materials for the first time. Al-Sn thin films prepared by EBD have complex structures of Sn phases homogenously dispersed in the Al matrix, in which the Sn phases act as diffusion channels to enhance the Li~+ diffusion kinetics. Thus, the cycle performance of Al-Sn thin film anodes is much better than those of the pure Sn and pure Al thin film anodes. It has been found that the composition of Al-Sn anodes has obvious influence on their cycle performance. The Al-x wt% Sn (40≤x≤60) thin film electrodes show a good balance among cycling ability, fast Li~+ diffusion and acceptable capacity. In particular, the Al-40wt%Sn thin film anode has a unique multi-scale composite structure with faceted big Sn particles and Sn nanocrystallites, and its stable reversible capacity is about 600mAh/g.
     Furthermore, another immiscible system, Sn-C-Ni composite thin film anode, has been prepared by EBD using TiNi alloy as a reaction medium. The thin film has a multi-scale structure composed of lots of micro-sized core/shell particles, in which the cores are Sn single crystals and the shells are amorphous carbon with nano-size Sn and Ni particles dispersion inside. Both of the Sn and the sp2 amorphous carbonaceous shells react with lithium and give substantial contributions to its total high initial capacities of 1872mAh/g at 1/10C, 472mAh/g at 12C. The stable discharge capacity at 1C was more than 600 mAh/g after 40 cycles. These good performances are attributed to the enhanced Li~+ diffusion kinetics and stability of structure of active materials, resulted from the multi-scale structure of Sn phases and the well coating of nanocomposite carbonaceous shells on the Sn cores as well as the dispersion of nano-size Sn and Ni particles in the amorphous carbon matrix.
     Finally, for the first time, the TiNi shape memory alloy has been combined with Sn to form different kinds of composite negative electrodes for lithium ion battery. The capacity decay of Sn-based anodes can be to overcome by utilizing the superelasticity of NiTi shape memory alloy. The Sn-TiNi composite thin film, which has unique microstructure of multi-scale Sn nanoparticles uniformly dispersed in amorphous TiNi matrix, has been prepared by one-step co-sputtering. It delivers a stable capacity of 520 mAh/g at 1C and 372mAh/g at high rate of 15C after 40 cycles, indicating good cycle performance and high-rate capability of the Sn-TiNi thin film anode, which is attributed to the following three reasons:ⅰ) the amorphous TiNi matrix acts as good conductors for the active Sn and Li_xSn phases, also effectively prevents the aggregation of Sn nanoparticles;ⅱ) the nano-size Sn phases decrease the path length for Li~+ transport;ⅲ) the porous structure of thin film facilitates the electrolyte transportation and Li~+ diffusion.
     A sandwich structured B2-NiTi/Sn/a-TiNi (named as B2/Sn/a) thin film has been prepared on stainless steel substrate by stepwise sputtering. The capacity decay of Sn anode is overcome by utilizing the superelasticity of B2-NiTi shape memory alloy to accommodate the volume expansion and constrain the pulverization due to Li-Sn alloying. Thus, the B2/Sn/a thin film anode has good cycleability and high-rate capability. The reversible capacities after 100 cycles were 630 and 500mAh/g at current rate of 0.7C and 2.7C, respectively. According to the results of electrochemical and microstructure characterization, we emphasize the mechanism, which the cycle performance of Sn electrode enhances by the superelasticity of B2-NiTi layer, as following. During discharge process, the volume of Sn phase expands due to Sn→Li_xSn and generates large stress, and this spontaneously induces martensitic transformation and superelasticity in the B2-NiTi layer. Thus, the stress in Sn phase can be well accommodated while its volume expansion can be constrained. At the subsequent charge process, the stress in B19′-NiTi and Li-Sn alloys releases due to Li_xSn→Sn. And consequently, the B19′phase transforms back to the B2 phase accompanying with closing of crack and contract of the volume of Sn phases by superelastic recovery of the NiTi matrix. The above interaction between Sn and NiTi shape memory alloy prevents cracking and pulverizing of Sn, and overcomes ultimately the capacity decay of Sn anode in lithium ion battery. We believe that shape memory alloys can also combine with other high capacity anodes, such as Si, Sb, Al and etc, and improve their cycle performance.
引文
[1] Tarascon J. M., Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367
    [2] Wakihara M. Recent developments in lithium ion batteries [J]. Materials Science and Engineering R, 2001, 33(4): 109-134
    [3]吴宇平,万春荣,姜长印等编著.锂离子电池二次电池[M].北京:化学工业出版社,2002:1-352
    [4] Scrosati B., Garche J. Lithium batteries: Status, prospects and future [J]. Journal of Power Sources, 2010, 195(9): 2419-2430
    [5] Winter M., Appel W. K., Evers B.,et al. Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries [J]. Monatshefte fur Chemie, 2001, 132(4):473-486.
    [6] Tirado J. L. Inorganic materials for the negative electrode of lithium-ion batteries: state-of the art and future prospects [J]. Materials Science and Engineering R, 2003, 40(3):103-136
    [7]吴宇平,张汉平,吴锋等编著.聚合物锂离子电池[M].北京:化学工业出版社,2006:1-343
    [8]黄克龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007:1-362
    [9] Schalkwijk W. A., Scrosati B. (Editors) Advances in Lithium-Ion Batteries [M]. New York: Kluwer Academic Publishers, 2002:1-51
    [10]郑洪河.锂离子电池电解质[M].北京:化学工业出版社,2006:1-316
    [11] Patil A., Patil V., Shin D. W., et al. Issue and challenges facing rechargeable thin film lithium batteries [J]. Materials Research Bulletin, 2008, 43(8-9): 1913-1942
    [12] Souquet J. L., Duclot M. Thin film lithium batteries [J]. Solid State Ionics, 2002, 148 (3-4): 375-379
    [13] http://www.ulvac.co.jp/eng/information/prm/055pdf/No55E-02.pdf
    [14] Bates J. B., Dudney N. J., Neudecker B., et al. Thin-film lithium and lithium-ion batteries [J]. Solid State Ionics, 2000, 135 (1-4): 33-45
    [15]Dudney N. J. Solid-state thin-film rechargeable batteries [J]. Materials Science andEngineering B, 2005, 116(3):245-24
    [16] http://en.wikipedia.org/wiki/Rechargeable_battery
    [17] http://en.wikipedia.org/wiki/Lithium-ion_battery
    [18] Luo J. Y., Cui W.J., He P., et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte [J]. Nature Chemistry, 2010, 2: 760-765
    [19] Goodenough J. B., Kim Y. Challenges for Rechargeable Li Batteries [J]. Chemistry Materials, 2010, 22(3): 587-603
    [20] Winter M., Besenhard J. O., Spahr M. E., et al. Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Advanced Materials, 1998, 10(10): 725-763
    [21] Ellis B. L., Lee K. T., Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-Batteries [J]. Chemistry Materials, 2010, 22(3): 691-714
    [22] Fergus J. W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources,2010, 195(4): 939-954
    [23] Yuan L. X., Wang Z. H., Zhang W. X., et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries [J]. Energy & Environmental Science, 2011, impress, DOI: 10.1039/c0ee00029a
    [24] Wang Y. G., He P., Zhou H. S. Olivine LiFePO4: development and future [J]. Energy & Environmental Science, 2011, impress, DOI: 10.1039/c0ee00176g
    [25] Whittingham M. S. Lithium batteries and cathode materials [J]. Chemical Review, 2004, 104(10): 4271-4302.
    [26]万传云,锂离子电池正负极材料市场发展趋势[J].电池工业,2005, 10(6):369-371
    [27] Kaskhedikar N. A., Maier J. Lithium Storage in Carbon Nanostructures [J]. Advanced Materials, 2009, 21(25-26): 2664-2680
    [28] Winter M., Besenhard J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochimica Acta, 1999, 45(1-2): 31-50
    [29] Huggins R. A. Lithium alloy negative electrodes [J]. Journal of Power Sources, 1999, 81-82:13-19
    [30] Hamon Y., Brousse T., Jousse F., et al. Aluminum negative electrode in lithium ion batteries [J]. Journal of Power Sources, 2001, 97-98: 185-187.
    [31] Zhang W. J. A review of the electrochemical performance of alloy anodes for lithium-ionbatteries [J]. Journal of Power Sources, 2011,196 (1): 13-24
    [32] Massalski T. B. (Editor) Binary Alloy Phase Diagram [M/CD], 2nd ed.; ASM International: Materials Park, OH, 1996.
    [33] Courtney I. A., Tse J. S., Mao O., et al. Ab initio calculation of lithium-tin voltage profile [J]. PHYSICAL REVIEW B, 1998, 58 (23): 15583-15588
    [34] Morimoto H., Tobishima S. I. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries [J]. Journal of power sources, 2005, 146(1-2): 469-472
    [35] Inaba M., Uno T., Tasaka A. Irreversible capacity of electrodeposited Sn thin film anode [J]. Journal of power sources, 2005, 146(1-2):473-477
    [36] Beaulieu L. Y., Hatchard T. D., Bonakdarpour A., et al. The Reaction of Li with Thin Films Studied by Atomic Force Microscopy [J]. Journal of The Electrochemical Society, 2003, 150(11): A1457-A1464
    [37] Hassoun J., Reale P., Panero S. The role of the interface of tin electrodes in lithium cells: An impedance study [J]. Journal of Power Sources, 2007, 174 (1):321-327
    [38] Chiu K. F., Lin H. C., Lin K. M., et al. The Significant Role of Solid Oxide Interphase in Enhancement of Cycling Performance of Sn Thin-Film Anodes [J]. Journal of The Electrochemical Society, 2006, 153(6): A1038-A1042
    [39] Ui K., Kikuchi S., Kadoma Y., N. Kumagai, et al. Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries [J]. Journal of Power Sources, 2009, 189(1):224-229
    [40] Lee S. J., Lee H. Y., Jeong S. H., et al. Performance of tin-containing thin-film anodes for rechargeable thin-film batteries [J]. Journal of Power Sources, 2002,111 (2): 345-349.
    [41]任建国,王科,何向明,等.锂离子电池合金负极材料的研究进展[J].化学进展, 2005,17(4): 597-603
    [42] Xia Y. Y., Sakai T., Fujiedu T., et al. Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries [J]. Journal of The Electrochemical Society, 2001,148 (5): A471-A481.
    [43] Thackeray M. M., Vaughey J. T., Kahaian A. J., et al. Intermetallic insertion electrodes derived from NiAs-, Ni2In-, and Li2CuSn-type structure for lithium-ion batteries [J].Electrochemistry Communications, 1999,1(3-4):111-115
    [44] Kepler K. D., Vaughey J. T., Thackeray M. M. LixCu_6Sn_5 (0    [45] Kepler K. D., Vaughey J. T., Thackeray M. M. Copper-tin anodes for rechargeable lithium batteries: An example of the matrix effect in an intermetallic system [J]. Journal of Power Sources, 1999, 81-82:383-387.
    [46] Larcher D., Beaulieu L. Y., MacNeil D. D., et al. In situ X-ray study of the electrochemical reaction of Li withη′-Cu_6Sn_5 [J]. Journal of The Electrochemical Society, 2000, 147(5):1658-1662.
    [47] Choi W., Lee J. Y., Lim H. S. Electrochemical lithiation reactions of Cu_6Sn_5 and their reaction products [J]. Electrochemistry Communications, 2004, 6 (8):816-820
    [48] Beattie S. D., Dahn J. R. Single Bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium ion batteries [J]. Journal of The Electrochemical Society, 2003, 150(7): A 894-A 898
    [49] L.B. Wang, Kiamura S., Obata K., et al. Multilayered Sn–Zn–Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries [J]. Journal of power sources, 2005, 141(2): 286-292
    [50] Pu W. H., He X. M., Ren J. G., et al. Electrodeposition of Sn–Cu alloy anodes for lithium batteries [J]. Electrochimica Acta, 2005, 50(20): 4140-4145
    [51] Tamura N., Ohshita R., Fujimota M., et al. Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes [J]. Journal of power sources, 2002, 107 (1): 48-55.
    [52] Tamura N., Ohshita R., Fujimota M., et al. Advanced Structures in Electrodeposited Tin Base Negative Electrodes for Lithium Secondary Batteries [J]. Journal of The Electrochemical Society, 2003, 150 (6): A679-A683.
    [53] Shin H. C., Liu M. L. Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries [J]. Advanced Functional Materials, 2005, 15(4) 582-686
    [54] Jiang T., Zhang S. C., Qiu X. P., et al. Preparation and characterization of tin-based three-dimensional cellular anode for lithium ion battery [J]. Journal of Power Sources, 2007 166 (2): 503-508
    [55] Du Z. J., Zhang S. C., Jiang T., et al. Preparation and characterization of three-dimensional tin thin-film anode with good cycle performance [J]. Electrochimica Acta, 2010, 55 (10): 3537-3541
    [56] Zhao H., Jiang C., He X., et al. Advanced Structures in Electrodeposited Tin Base anodes for Lithium Ion Batteries [J]. Electrochimica Acta, 2007, 52(28):7820-7826
    [57] Ke F. S., Huang L., Cai J. S., et al. Electroplating Synthesis and Electrochemical Properties of Macroporous Sn-Cu Alloy Electrode for Lithium Ion Batteries [J]. Electrochimica Acta, 2007, 52(24):6741-6747
    [58] Lee H. Y., Jang S. W., Lee S. M. Lithium storage properties of nanocrystalline Ni_3Sn_4 alloys prepared by mechanical alloying [J]. Journal of power sources, 2002, 112(1): 8-12
    [59] Kim Y. L., Lee H.Y., Jang S. W., et al. Nanostructured Ni_3Sn_2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003,160 (3-4): 235-240
    [60] Mukaibo H., Sumi T., Yokoshima T., et al. Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries [J]. Electrochemical and Solid-State Letters, 2003, 6(10): A218-A220
    [61] Mukaibo H., Momma T., Osaka T. Changes of electro-deposited Sn–Ni alloy thin film for lithium ion battery anodes during charge discharge cycling [J]. Journal of Power Sources, 2005,146 (1-2): 457-463
    [62] Crosnier O., Brousse T., Dcvaux X., et al. New anode systems for lithium ion cells [J]. Journal of power sources, 2001, 94(2): 169-174.
    [63] Zhang D. W., Yang C. G., Dai J., et al. Fabrication of Sn-Ni alloy film anode for Li-ion batteries by electrochemical deposition [J]. Transactions of Nonferrous Metals Society of China, 2009, 19(6): 1489-1493.
    [64] Hassoun J., Panero S., Scrosati B. Electrodeposited Ni–Sn intermetallic electrodes for advanced lithium ion batteries [J]. Journal of Power Sources, 2006, 160 (2): 1336-1341
    [65] Bonakdrpour A., Hewitt K. C., Hatchard T. D., et al. Combinatorial synthesis and rapid characterization of Mo1-xSnx(0≤x≤1) thin films [J].Thin Solid Films, 2003, 440(1-2):11-18
    [66] Bonakdarpour A., Hewitt K. C., Turner R. L., et al. Electrochemical and In-situ X-ray Diffraction Studies of the Lithium Reaction with Combinatorially Sputtered Mo1-xSnx(0≦x≦0.50) Thin Films [J]. Journal of The Electrochemical Society, 2004, 151(3): A470-A483.
    [67]薛明喆,程孙超,姚佳,傅正文.脉冲激光沉积法制备SnSe薄膜电极及其电化学性质[J].物理化学报, 2006,22(3): 383-387.
    [68] Tamura N., Fujimoto M., Kamino M., et al. Mechanical stability of Sn–Co alloy anodes for lithium secondary batteries [J]. Electrochimica Acta, 2004, 49 (12): 1949-1956
    [69] Tamura N., Kato Y., Mikami A., et al. Study on Sn-Co alloy anodes for lithium secondary batteries I. Amorphous system [J]. Journal of the Electrochemical Society, 2006, 153(8): A1626-A1632.
    [70] Tamura N., Kato Y., Mikami A., et al. Study on Sn-Co alloy electrodes for lithium secondary batteries II. Nanocomposite system [J], Journal of The Electrochemical Society, 2006, 153 (12): A2227-A2231.
    [71] Ke F. S., Huang L., Wei H. B., et al. Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries [J]. Journal of Power Sources, 2007, 170 (2): 450-455.
    [72] Fan X. Y., Ke F. S., Wei G. Z., et al. Sn-Co alloy anode using porous Cu as current collector for lithium ion battery [J]. Journal of Alloys and Compounds, 2009, 476 (1-2): 70-73.
    [73]薛连杰,黄令,柯福生,等.三维多孔Sn-Co合金负极制备及其电化学性能研究[J].电化学, 2010, 16(2): 161-167
    [74] Beaulieu L. Y., Hewitt K. C., Turner R. L., et al. The electrochemical reaction of Li with amorphous Si-Sn alloys [J]. Journal of The Electrochemical Society, 2003, 150(2): A 149-A156
    [75] Beaulieu L. Y., Hatchard T. D., Bonakdarpour A., et al. The Reaction of Li with Thin Films Studied by Atomic Force Microscopy, Journal of The Electrochemical Society, 2003, 150(11): A 1457-A 1464
    [76] Hatchard T. D. Study of the electrochemical performance of sputtered Si1-xSn film [J]. Journal of The Electrochemical Society, 2004, 151(10):A1628-1635
    [77] Hatchard T. D., Topple J. M., Fleischauer M. D., et al. Study of the Electrochemical Performance of SiAlSn Films Prepared by Combinatorial Sputtering [J]. Electrochemicaland Solid State Letters, 2003, 6 (7):A129-A132.
    [78] Hatchard T. D., Dahn J. R., Trussler S., et al. The amorphous range in sputtered Si-Al-Sn films as determined by Combinatorial Materials Science [J]. Thin Solid Films, 2003, 443(1-2): 144-150.
    [79] Zhao L. Z., Hu S. J., Ru Q., et al. Effects of graphite on electrochemical performance of Sn/C composite thin film anodes [J]. Journal of Power Sources, 2008, 184(2): 481-484
    [80] Marcinek M., Hardwick L. J., Richardson T. J., et al. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries [J]. Journal of Power Sources, 2007, 173 (2): 965-971.
    [81] Bazin L., Mitra S., Taberna P. L., et al. High rate capability pure Sn-based nano- architectured electrode assembly for rechargeable lithium batteries [J]. Journal of Power Sources, 2009, 188 (2): 578-582
    [82] Hassoun J., Panero S., Simon P., et al. High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries [J]. Advanced Materials, 2007, 19(12): 1632-1635
    [83] Idota Y., Kubota T., Matsufuji A. Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material [J]. Science, 1997, 276 (5317): 1395-1397.
    [84] Santos-Pena J., Brousse T., Sanchez L., et al. Antimony Doping Effect on the Electrochemical Behavior of SnO2 Thin Film Electrode [J]. Journal of power sources, 2001, 97-98:232-234
    [85] Brousse T., Retoux R., Herterich U., et al. Thin-film crystalline SnO_2-lithium electrodes [J]. Journal of The Electrochemical Society, 1998, 145 (1):1-4.
    [86] Mohamedi M., Lee S. J., Takahashi D. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries [J]. Electrochimica Acta, 2001, 46(8):1161-1168
    [87] Nam S. C., Yoon Y. S., Yun K. S., et al. Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes [J]. Journal of The Electrochemical Society, 2001, 148 (3): A220-A223
    [88] Nam S. C., Yoon Y. S., Cho W. I., et al. Enhancement of thin film tin oxide negative electrodes for lithium batteries [J]. Electrochemistry Communications, 2001, 3(1):6-10
    [89] Li Y. N., Zhao S. L., Qin Q. Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J]. Journal of power sources, 2003, 114(1):113 -120
    [90] Zhao Y. M., Zhou Q., Liu L., et al. novel and facile route of ink-jet printing to thin film SnO2 anode for rechargeable lithium ion batteries [J]. Electrochim Acta, 2006, 51(13):2639-2645
    [91] Martin C. R., Li N., Scrosati, B. Nanomaterial-Based Li-Ion Battery Electrodes [J]. Journal of power sources, 2001, 97-98: 240-243.
    [92] Kim Y. I., Lee W. H., Moon H.S., et al. Effect of Si addition to thin-film SnO2 micro-battery anodes on cycling performance[J]. Journal of power sources, 2001,101(2):253-258
    [93] Kim Y. I., Yoon C. S., Park J. W. Microstructural Evolution of Electrochemically Cycled Si-Doped SnO2–Lithium Thin-Film Battery [J]. Journal of Solid State Chemistry, 2001, 160(2): 388-393
    [94] Zhang J., Chen L. B., Li C. C., et al. Amorphous SnO2–SiO2 thin films with reticular porous morphology for lithium-ion batteries [J].Applied Physics Letters, 2008, 93: 264102-264104
    [95] Ahn H. J., Kim Y.S., Seong T.Y. Improvement of the electrochemical properties of SnO2 electrodes for lithium rechargeable battery using protective Ta2O5 thin films [J].Solid-state Ionics, 2005, 176(7-8):699-702
    [96] Park J. W., Eom J. Y., Kwon H. S. Charge–discharge characteristics of a layered-structure electroplated Cu/Sn anode for Li-ion batteries [J]. Electrochimica Acta, 2010,55 (5): 1825-1828
    [97] Beattie S. D., Dahn J. R. Single-Bath Electrodeposition of a Combinatorial Library of Binary Cu1-xSnx Alloys [J]. Journal of The Electrochemical Society, 2003,150 (7): C457-C460
    [98] Song S. W., Baek S. W. Electrochemical Thin Film Studies of Sn Metals for Rechargeable Lithium Batteries [J]. ECS Transactions, 2008, 11 (29): 71-78
    [99]田民波编著.薄膜技术与薄膜材料[M].北京:清华大学出版社, 2006:117-887
    [100] Balbuena P. B., Wang Y. X. (Editors) Lithium-ion batteries: solid-electrolyte interphase [M]. Singapore: Imperial College Press, 2004:1-393
    [101] Besenhard J.O., Yang J., Winter M. Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? [J]. Journal of Power Sources, 1997, 68(1): 87-90
    [102] Yang J., Winter M., Besenhard J.O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries [J]. Solid State Ionics, 1996, 90: 281-287
    [103] Wachtler M., Winter M., Besenhard J. O. Anodic materials for rechargeable Li-batteries [J]. Journal of Power Sources, 2002, 105(2): 151-160
    [104]Yang J., Wachtler M., Winter M., et al. Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries [J]. Electrochemical Solid-State Letters, 1999, 2(4): 161-163
    [105] Yang J., Takeda Y., Imanishi N., et al. Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries [J]. Journal of The Electrochemical Society, 1999, 146(11): 4009-4013
    [106] Li H., Zhu G. Y., Huang X. J. et al. Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature [J]. Journal of Materials Chemistry, 2000, 10(3):693-696
    [107] Needham S. A., Wang G. X., Liu H. K., Electrochemical performance of SnSb and Sn/SnSb nanosize powders as anode materials in Li-ion cells [J]. Journal of Alloys and Compounds, 2005, 400(1-2): 234-238
    [108] Guo Y. G., Hu J. S., Wan L. J., Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices [J]. Advanced Materials, 2008, 20(15): 2878-2887
    [109] Jiang C. H., Hosono E., Zhou H. S., Nanomaterials for lithium ion batteries [J]. Nanotoday, 2006, 1(4):28-33.
    [110] Zhang T., Fu L. J. Gao J., et al. Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J]. Journal of Power Sources, 2007, 174(2):770-773.
    [111] Bard A. J. Faulkner L. R. (2nd ed) Eelectrochemical Methods: Fundamentals and Applications [M], John Willey, 2000:226
    [112]Mukaibo H., Momma T., Mohamedi M., et al. Structural and Morphological Modifications of a Nanosized 62 Atom Percent Sn-Ni Thin Film Anode during Reaction with Lithium [J]. Journal of The Electrochemical Society, 2005, 152(3): A560-A565
    [113]Besenhard J. O., Wachtler M., Winter, M., et al. Kinetics of Li insertion into poly-crystalline and nanocrystalline‘SnSb’alloys investigated by transient and steady state techniques [J]. Journal of Power Sources, 1999, 81-82:268-272
    [114] Guo Y. G., Hu J. S., Wan L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices [J]. Advanced Materials, 2008, 20(15): 2878-2887
    [115] Kim D. G., Kim H., Sohn H. J., et al. Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries[J]. Journal of Power Sources, 2002, 104(2): 221-225.
    [116] Wolfenstine J., Campos S., Foster D., et al. Nano-scale Cu_6Sn_5 anodes [J]. Journal of Power Sources, 2002,109 (1): 230-233.
    [117] Ionica-Bousquet C. M., Lippens P. E., Aldon L., et al. In situ 119Sn M?ssbauer Effect Study of Li-CoSn2 Electrochemical System [J]. Chemistry of Materials, 2006, 18 (26): 6442-6447.
    [118] Naille S., Ionica-Bousquet C. M., Robert F., et al. Sn-based intermetallic materials: Performances and mechanisms [J]. Journal of Power Sources, 2007,174 (2): 1091-1094.
    [119] Courtney I. A., Dahn J. R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites [J].Journal of The Electrochemical Society, 1997,144(6): 2045-2052.
    [120]Kang S. K., Choi W. K., Yim M. J. , et al. Studies of the mechanical and electrical properties of lead-free solder joints [J]. Journal of electronic materials, 2002, 31(11):1292-1303.
    [121] Fleischauer M. D., Obrovac M. N., McGraw J. D., et al. Al-M (M = Cr, Fe, Mn, Ni) Thin-Film Negative Electrode Materials [J].Journal of The Electrochemical Society, 2006, 153(3): A484-A491.
    [122] Dreyer K. F., Neils W. K., Chromik R. R., et al. Calorimetric study of the energetics and kinetics of interdiffusion in Cu/Cu_6Sn_5 thin-film diffusion couples [J]. Applied Physics Letters, 1995, 67: 2795-2798.
    [123]刘辛.互不溶Al-Sn合金的纳米相结构及其性能:[博士学位论文].广州:华南理工大学,2008.
    [124] Eisenmenger-Sittner C., Bangert H., Bergauer A. Kinetic phase separation in sputter-deposited Aluminium-tin films[J]. Journal of Crystal Growth, 1998,186 (1-2):151-165
    [125] Lee B. Z., Lee D. N. Spontaneous growth mechanism of tin whiskers [J]. Acta Materials, 1998, 46(10):3701-3714
    [126] Wang C. Y., Meng Y. S., Ceder G. Electrochemical Properties of Nanostructured Al1-xCux Alloys as Anode Materials for Rechargeable Lithium-Ion Batteries[J]. Journal of The Electrochemical Society, 2008, 155(9): A615-A622
    [127] Li H., Wang Q., Shi L. H., et al. Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery [J]. Chemistry Materials, 2002, 14(1): 103-108.
    [128] Wang G.X., Ahn J. H., Lindsay M. J., et al. Graphite–Tin composites as anode materials for lithium-ion batteries [J]. Journal of Power Sources, 2001, 97-98: 211-215.
    [129] Li Y., Tu J. P., Huang X. H., et al. Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries[J]. Electrochemistry Communications. 2007, 9(1):49-53.
    [130] Hassoun J., Derrien G., Panero S., et al. A SnSb–C nanocomposite as high performance electrode for lithium ion batteries [J]. Electrochimica Acta, 2009, 54(19): 4441–4444
    [131]Todd A. D. W., Mar R. E., Dahn J. R. Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes [J]. Journal of The Electrochemical Society, 2007, 154(6): A597-A604
    [132] Kawakami S., Asao M., US Patent No. 6949312 (2005).
    [133] http://www.sony.net/SonyInfo/News/Press/200502/05-006E/
    [134]Hassoun J., Mulas G., Panero S., et al. Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling[J]. Electrochemistry Communications, 2007, 9(8): 2075-2081
    [135] Mao O., Dunlap R. A., Dahn J. R. Mechanically Alloyed Sn-Fe(C) Powder as Anode Materials for Li-Ion Batteries I: The Sn2Fe-C System [J]. Journal of The Electrochemical Society, 1999, 146(2): 405-413.
    [136] Mao O., Dahn J. R. Mechanically Alloyed Sn-Fe(C) Powders as Anode Materials for Li-ion Batteries II: the Sn-Fe System [J]. Journal of The Electrochemical Society, 1999, 146(2): 414-422.
    [137] Mao O., Dahn J. R. Mechanically Alloyed Sn-Fe(C) Powders as Anode Materials for Li-ion Batteries III: Sn2Fe:SnFe3C Active/Inactive Nanocomposites[J]. Journal of The Electrochemical Society, 1999, 146(2): 423-427.
    [138] Beaulieu L. Y., Dahn J. R., The reaction of lithium with Sn-Mn-C intermetallics prepared by mechanical alloying [J]. Journal of The Electrochemical Society, 1999, 147(9): 3237-3241.
    [139] Yoon S., Manthiram A. Nanoengineered Sn–TiC–C composite anode for lithium ion batteries [J]. Journal of Materials Chemistry, 2010, 20(2): 236-239
    [140] Lee J.M., Jung H., Hwa Y., et al. Improvement of electrochemical behavior of Sn2Fe/C nanocomposite anode with Al2O3 addition for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 5044-5048
    [141] Park C. M., Chang W. S., Jung H., et al. Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries[J]. Electrochemistry Communications, 2009, 11 (11): 2165-2168
    [142] Derrien G., Hassoun J., Panero S., et al. Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries[J]. Advanced Materials, 2007, 19(17): 2336-2340.
    [143] Hassoun J., Derrien G., Panero S., et al. A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance [J]. Advanced Materials, 2008, 20(16): 3169-3175.
    [144] Liu Y., Xie J. Y., Takeda Y., et al. Advanced Sn/C composite anodes for lithium ion batteries [J]. Journal of Applied Electrochemistry, 2002, 32(6): 687-692.
    [145] Zhang W. M. , Hu J. S., Guo Y. G., et al. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries [J]. Advanced Materials, 2008, 20(6):1160-1165.
    [146] Lee Kyu T., Jung Yoon S., Oh Seung M. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries [J]. Journal of the American Chemical Society, 2003, 125(19): 5652-5653.
    [147] Noh M. J., Kwon Y. J., Lee H. J., et al. Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery [J]. Chemistry Materials, 2005, 17(8): 1926-1929.
    [148] Kwon Y. J., Kim H. S., Doo S. G., et al. Sn0.9Si0.1/Carbon Core-Shell Nanoparticles for High-Density Lithium Storage Materials [J]. Chemistry Materials 2007, 19(5): 982-986.
    [149] W. J. Cui, F. Li, H. J Liu, C.X. Wang, Y. Y. Xia, Core–shell carbon-coated Cu_6Sn_5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry, 2009, 19(39): 7202-7207.
    [150] Dahn J. R., Mar R. E., Abouzeid A. Combinatorial Study of Sn1-xCox (0    [151] Park J. W., Eom J. Y. , Kwon H. S. Fabrication of Sn–C composite electrodes by electrodeposition and their cycle performance for Li-ion batteries[J]. Electrochemistry Communications, 2009, 11 (3):596-598.
    [152] Su D. S., Schl?gl R. Nanostrucutred carbon and carbon nanocomposites for electrochemical energy storage applications [J]. ChemSusChem, 2010, 3(2): 136-168.
    [153] Matsumura Y., Wang S., Mondori J. Interactions between disordered carbon and lithium in lithium ion rechargeable batteries. Carbon, 1995, 33(10):1457-62.
    [154] Falcao Eduardo H. L., Yeh Y., Dunn B., et al. Electrochemical and physical chemical properties of sp2 carbon microrods [J]. Carbon, 2006, 44(9): 1718-1724
    [155] Howatson A. M., Lund P. G., Todd, J. D. Engineering Tables and Data [M]. Chapman & Hall, 1992.
    [156] Hu Y. H., Zhao X. H., Suo Z. G. Averting cracks caused by insertion reaction in lithium–ion batteries[J]. Journal of Materials Research, 2010, 25(6):1007-1010.
    [157] Christensen J., Newman J. Stress generation and fracture in lithium insertion materials [J]. Journal of Solid State Electrochemistry, 2006, 10(5): 293-319.
    [158] Kamali A. R., Fray D.J. Tin-base materials as advance materials for lithium ion batteries: A review [J]. Review on advanced materials science, 2011, 27(1): 14-24.
    [159]赵连城,蔡伟,郑玉峰著.合金的形状记忆效应与超弹性[M].北京:国防工业出版社,2002:1-388
    [160] Wang G. X., Wang B., Wang X. L., et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries [J].Journal of Materials Chemistry, 2009, 19(44):8378-8384.
    [161] Ehrlich G. M., Durand C., Chen X., et al. Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries [J]. Journal of The Electrochemical Society, 2000, 147(3): 886-891.
    [162] Chen J. Z., Wu S. K. Crystallization behavior of r.f.-sputtered TiNi thin films [J]. Thin Solid Films, 1999, 339 (1-2): 194-199
    [163] Hirai K., Ichitsubo T., Uda T., et al. Effects of volume strain due to Li–Sn compound formation on electrode potential in lithium-ion batteries[J]. Acta Materialia, 2008, 56(7):1539-1545.
    [164] Ichitsubo T., Yukitani S., Hirai K., et al. Mechanical-energy influences to electro- chemical phenomena in lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(8): 2701-2708
    [165] Eshelby, J. D. The determination of the elastic field of inclusion and related problems. Proc. R. Soc. Lond. 1957, A 241:376-396
    [166] Mura T. Micromechanics of defects in solids, 2nd ed., revised. Martinus Nijhoff, The Hague; 1987
    [167] Martienssen W., Warlimont H. (Eds.) Springer Handbook of Condensed Matter and Materials Data [M]. Springer Berlin Heidelberg, 2005
    [168] Howatson A. M., Lund P. G., Todd J. D. Engineering Tables and Data [M]. Chapman & Hall, 1992
    [169] McKlvey A. L., RitchieR. O. On the temperature dependence of the superelastic strength and the prediction of the theoretical uniaxial transformation strain in Nitinol[J]. Philisophical Magazine A, 2000, 80 (8) :1759-1768.
    [170] Liu Y., Xiu Z., Humbeeck J. Van, et al. Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys [J]. Acta Materialia, 1998, 46(12): 4325-4338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700