电能计量在线监测与远程校准系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着厂网分离等电力企业体制改革的逐步推进,发电厂、电力用户密切关注电能计量装置,电力企业对经济效益的考核也越来越重视,其核心就是保障贸易结算过程中电能计量的准确和可靠,因此电能计量装置的技术管理就愈发重要。
     另一方面,电能计量技术管理却面临着新的形势,凸显了一些新的技术难题,如:电网规模正在不断扩大,交易电量和电能计量装置越来越多,要求在有限的人力条件下实现规范化的技术管理;多费率分时段电价政策的贯彻执行,要求电能表的时钟具有更高的准确度;电力电子相关技术的大量推广运用,非线性负荷与日俱增,电网的谐波污染日益加重,谐波对电能计量的影响及其应对措施有待进一步分析研究;目前普遍采用的传统人工现场校验模式的工作效率低,不能对装置进行实时监测和故障及时预警、报告,难以有效控制计量故障的发生和减少差错电量。
     针对以上情况,本文主要进行了以下几个方面的分析研究工作:利用GPS技术、谐波测量理论、注入式谐波的异频测试方法、低校高等效电路法等测量相关技术,结合电力线载波技术、GPRS/PSTN通信技术,完成了基于GPS技术的电能表时钟校准和电压互感器二次压降测量、基于加窗插值FFT的谐波电能测量、基于标准表比较法的电能表误差在线监测与远程校准、基于电压互感器二次负荷基准值的二次负荷测试、基于注入式高频谐波的电流互感器二次导纳的异频法测试、基于等效阻抗测量的电压/电流互感器低校高校验方法并在此基础上提出了电压/电流互感器(TV/TA)的现场实时校准方法;对上述各种测量方法进行了误差分析和不确定度评定。
     本文系统地研究了可应用于国内电网的电能计量装置在线监测与远程校准技术,其主要贡献有:
     (1)基于GPS技术,根据多费率、多功能电能表时钟的校准要求,开发了基于GPS同步时钟的电能计量时钟基频测试与校准装置,该装置可采用无线非接触方式现场测试电能表的时钟误差;应用GPS的精确授时,在TV的二次回路两端分别利用GPS同步测量电压的幅值,采用两者之差与二次电压之比计算出TV的比差;在TV的二次回路两端,分别于电压信号的过零时刻获取GPS实时时标,获取两者之差计算角差,根据电压互感器TV的二次回路电压向量图,计算电压互感器二次回路压降。
     (2)根据湖南省电力公司和电力试验研究院的谐波测试工作,从理论角度分析了谐波源用户的谐波原理,提出了基于Blackman窗的插值FFT谐波电能测量算法,采用复序列FFT蝶式迭代算式,计算供电系统电网参数;提出了综合负荷中是否含有谐波源的识别方法,并依据国家标准和电力行业规程,可按谐波特性和潮流方向分别累计谐波电能的计量模式。研制了一种具有适应谐波源负荷特点,功能多、体积小和界面友好的谐波电能计量与在线监测装置。
     (3)依据DL/T448-2000《电能计装置技术管理规程》对电能表、电压互感器二次压降、电压/电流互感器等提出的校验要求,分析了传统的现场校验方式的缺点,通过多年现场工作经验的总结,依据关口电能表的应用实际,提出“标准表比较法”现场校验电能表的误差,研制了电能计量远程监测与校验现场装置,并采用网络数据库技术开发了主站管理信息系统。
     (4)根据互感器二次负荷/导纳的测试原理,介绍了在电能计量装置远程校准与监测系统中实现对电压/电流互感器的二次回路负荷/导纳在线测量的方法;分析了影响二次回路阻抗(导纳)大小的主要因素,指出了引起互感器二次回路阻抗/导纳变化的几种状况,通过观测一段时间内数值及相角的变化情况来实现定性判断故障来源。在此基础上,本文还提出了注入谐波分量的异频测试法,并推导了在异频测试法下,二次负荷阻抗、导纳的在线测试方法。
     (5)分析了传统互感器现场误差校验及其测试模型,指出了互感器现场校准的缺陷与不足;分析了电流互感器和电压互感器“低校高”的技术原理,提出了在计量装置远程校准与监测系统中实现对互感器误差的现场实时校准方法。
     (6)阐述了计量装置远程校准与监测系统的硬件实现方式,包括系统构成、通信网络、下位机显示与监测等;分析了系统主站软件的需求,完成了数据库的系统设计
     (7)以国家计量技术规范JJF1059-1999《测量不确定度评定与表示》为依据,对电能计量装置在线监测与远程校准系统中各种测量的不确定度进行了分析评定,从现场测试数据和理论分析表明,本系统可以作为Ⅰ、Ⅱ、Ⅲ类电能计量装置的现场检测标准。
     本文的研究具有较高的理论意义,并为电能计量管理技术的现代化提供了一种实用、高效、可靠的工具和手段。并根据计量相关领域的技术进步,提出了有关管理规程的修改建议,以使其更加科学、合理、适用。
With the reform of electrical enterprise that power plant separates from power grid step by step, power plants and electricity customers pay close attention to energy metering devices. Power enterprises attach more and more importance to the assessment of economic benefit. The core is to ensure the accuracy and reliability of energy measurement in trade settlement process, as a result, the technical management of energy metering device becomes more and more important.
     On the other hand, energy metering technology management faces a new situation, and highlights several new technical problems, such as:network size is growing; trading power and energy measurement devices are increasing; which requires standardized technology management under the conditions of limited manpower; implementation of multi-rate sub-period tariff policy requires clock of the electric energy meter owns a higher accuracy; numerously promotion of power electronics related technology, the increasing of nonlinear loads as harmonic pollution, the impact of harmonics on power measurement and analysis of response measures needs further study; now widely used traditional manual field calibration mode efficiency is low, which can not carry out real-time monitoring and fault warning. It is difficult to effectively control measures fault and reduce errors power.
     For the above, this article has mainly carried on the following several aspect analytical study work:Using the GPS technology, Harmonic measure theory, Different frequency harmonic injection test method, low high school equivalent circuit method and other measurement related technologies, with power line carrier technology, GPRS/PSTN communication technology. GPS technology is completed based on the clock power meter calibration and measurement of the voltage transformer secondary voltage drop. Based on add window interpolation FFT harmonic electricity measurement, standard table comparison test electrical energy table error online monitor, long-distance calibration, the second load voltage transformer secondary stress test, the current injection transformer secondary high-frequency harmonics of different frequency admittance method test. As while based on the proposed the voltage/current transformer, the equivalent impedance survey's voltage/current transformer low school high verification method (TV/TA) on the spot the real-time calibration method. This paper has carried on the error analysis and the uncertainty evaluation to the above each measuring technique.
     This article researched power metering device on line monitoring and remote calibration techniques can be applied to the domestic electricity grid systematically. The main contributions are as follows:
     (1) Based on GPS technology and according to multi-rate, multi-function power meter calibration requirements for the clock, this paper developed energy metering clock fundamental frequency testing and calibration devices. The device can use wireless and non-contact method to test energy meter clock error in the field. With the GPS precision timing, using GPS synchronized measure the amplitude of the voltages on both ends of the secondary circuit in the TV. And using the ratio of the difference between the two voltages and secondary voltage calculate the ratio worse of TV. To gain GPS real-time time scale on both ends of the secondary circuit in the TV respectively when the voltage signal pass zero and gain the difference between them to calculate angle difference. According to TV voltage transformer secondary circuit voltage vector, calculate the voltage transformer secondary circuit voltage drop.
     (2) Under the Hunan Electric Power Corporation and Electric Power Test Research Institute's works of harmonic test, from the theoretical point analyzed the principle of harmonics from harmonic source users. Proposed interpolation FFT harmonic power measurement algorithm based on Blackman window, using FFT butterfly sequence iteration formula compute power supply system grid parameters. Proposed identification method about the presence of harmonic source in the consolidated loads, and the measurement model that can add up harmonic energy based on harmonic characteristics and load flow direction, respectively, according to the national standards and the power industry regulations. Developed a kind of Multi-function, small size, friendly interface of harmonic energy measurement and online monitoring devices with harmonic source load adaptive features.
     (3) According to the requirement of calibration about the electric energy meter^ the second side pressure drop of potential transformer, the potential transformer and current transformer, and etc in the technical administrative code of electric energy metering DL/T448-2000, analysis the weakness of the traditional field calibration way. Through analysis the experience summary of years field work and according to the practical application of the electric energy meter, "master meter comparation" is proposed to calibrate the error of the electric energy meter in field. Developing the field devices which the electric energy measurement realize remote monitoring and calibrating. Meanwhile the master station about management information system is developed by using network database technology.
     (4) According to the test code of transformer second side load and admittance, the method that achieve measuring the secondary circuit load and admittance of the potential transformer and current transformer online which using the remote monitoring and calibrating system in the electric energy metering device is introduced. Analysis the main factor that which influences the impedance and admittance of the secondary circuit, pointing out several statuses that causes the changes of the impedance and admittance of the transformer. Through observing numerical value and phase angle change in a period of time to judge the failure source. On this basis, the method of measure in different frequency about inject harmonic components is proposed in this paper, based on which the online test method of the impedance and admittance of the secondary load is deduced in the paper.
     (5) The document analyzed the traditional transformer model of error on-site checking and testing, It is pointed out the transformer on-site calibration of the defects and shortcomings; The document also analyzed the technical principles of "low-proofing to high" of the current transformer and voltage transformer, It is proposed a method of real-time and on-site calibration on transformer error in the measurement device in a remote calibration and monitoring system.
     (6) The document described hardware implementations of remote test and monitoring system of measurement equipment, including system structure, communication networks, lower computer display and monitoring and so on. It analyzed needs of the main master station software of the system and complete the system design of the database
     (7) Take national measurement specifications JJF1059-1999 "Evaluation and Expression of Uncertainty in Measurement" as the basis, It is analyzed and evaluated uncertainty of online monitoring of energy measurement devices and remote calibration system of measuring, The system can be used as the field testing standards onⅠ、Ⅱ、Ⅲclass of energy metering device from the field test data and theoretical analysis.
     This study has a high theoretical significance and it provides a practical, efficient and reliable tools and methods for him modernization of electric energy metering management technology. It is pointed out the change proposes about administrative procedures to make it more scientific, reasonable and applicable according to the technological progress of fields on measurement.
引文
[1]Djokic B, Bosnjakovic P, Begovic M. New method for reactive power and energy measurement. IEEE Transactions on Instrumentation and Measurement. 1992,41(2):280-285.
    [2]Blagojevic M, De Venuto D, Kayal M. SOI Hall sensor based solid state meter for power and energy measurements. IEEE CNF on Sensors,2004,2(10): 1040-1043.
    [3]Sarkar A, Sengupta S. A Low-Cost Fault-Tolerant Real, Reactive, and Apparent Power Measurement Technique Using Microprocessor. IEEE Transactions on Instrumentation and Measurement,2007,56(6):2672-2680.
    [4]Djokic B, Bosnjakovic P, Begovic M. New method for reactive power and energy measurement. IEEE Conf. on Instrumentation and Measurement Technology,1991,5:175-179.
    [5]Spasojevic, B. The Time Domain Method for Power Line Reactive Energy Measurement. IEEE Transactions on Instrumentation and Measurement,2007, 56(5):2033-2042.
    [6]Milicevic Dragoljub, Stojanovic Borislav M. A New Electronic Method for Electric Energy Measurement. IEEE Trans.on Instrumentation and Measurement,1975,24(4):356-361.
    [7]Djokic BV, Bosnjakovic P. Two methods for improved measurements of reactive power and reactive energy insensitive to frequency variations. IEEE Trans. on Instrumentation and Measurement,1998,47(1):215-218.
    [8]Hamid EY, Mardiana R, Kawasaki ZI. Method for RMS and power measurements based on the wavelet packet transform. IET on Science, Measurement and Technology,2002,149(2):60-66.
    [9]Toral SL, Ouero JM, Franquelo LG. Reactive power and energy measurement in the frequency domain using random pulse arithmetic. IET on Science, Measurement and Technology,2001,148(2):63-67.
    [10]Calegari F. Electric power/energy measurements for residential single-phase networks. IEEE Conf. on Industrial Electronics,2005,3(6):1087-1092.
    [11]Milosavljevic DM, Milenkovic VV, Radenkovic VD. Precise power and energy measurement. IEEE Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Services,1999,2(10):637-640.
    [12]张晓冰,崔家瑞,梁原华.电网信号数学描述及电能计量方法分析.哈尔滨工业大学学报,2006,38(8):1285-1287.
    [13]赵伟,庞海波,刘灿涛.电能表技术的发展历程.电测与仪表,1999,36(6):4-7.
    [14]赵伟,吕鸿莉,郭蕴蛟.电子式电能表及其在现代用电管理中的应用.北京:中国电力出版社,1999:1-67.
    [15]赵伟.以国际化视角制定电磁测量技术及仪器研发战略.电测与仪表,2003,40(1):5-10,18.
    [16]卢树峰.关口电能计量装置的现状分析与思考.电测与仪表,2005,42(8):21-23,8.
    [17]高毅,王思彤,沈燕生,等.关口电能计量装置运行工况跟踪与分析系统.中国电力,2008,41(6):85-88.
    [18]徐英辉,王猛.500kV线路关口电能计量装置设计选型的考虑.电测与仪表,2005,42(4):30-33.
    [19]杨国庆,卢有龙.加强关口电能计量管理,为区域电网电力市场提供技术支撑.华东电力,2008,36(5):564-565.
    [20]赵伟,庞海波,孟浩文.有关电子式电能表与电能管理的若干问题.电测与仪表,1999,36(7):4-7.
    [21]孙方汉.电能计量装置及其正误接线.北京:中国水利水电出版社,2004:5-8.
    [22]Tahboub R, Lazarescu V. Novel Approach for Remote Energy Meter Reading Using Mobile Agents. IEEE Conf. on Information Technology:New Generations,2006,4:84-89.
    [23]J. Newbury, W. Miller. Multiprotocol Routing for Automatic Remote Meter Reading Using Power Line Carrier System. IEEE Transactions on Power Delivery,2001,16(1):1-5
    [24]齐秀波.电能计量集中抄表技术的发展.电测与仪表,2006,43(8):48-50.
    [25]赵兴勇,马小丹,张惠生等.远程自动抄表系统研究.电力学报,2000,15(1):34-36
    [26]Pianegiani F, Macii D, Carbone P. Open distributed control and measurement system based on an abstract client-server architecture. IEEE Conf. on Virtual and Intelligent Measurement Systems,2002,5:63-67.
    [27]张易知,肖啸,等.虚拟仪器的设计与实现.西安电子科技大学出版社,2002:1-126.
    [28]罗志坤,万全,徐植坚.基于虚拟仪器的谐波电能计量与分析系统的研制. 电测与仪表,2006,43(6):24-27
    [29]Chavan SS, Jayaprakash S, Kumar VJ. An Open Standard Protocol for Networking of Energy Meters. IEEE Transactions on Power Delivery,2008, 23(4):1749-1753.
    [30]Nagaraju M, Praveen Kumar T. Networked electronic energy meters with power quality analysis. IEEE Conf. on Power Quality,1998:45-57.
    [31]Koay BS, Cheah SS, Sng YH. Design and implementation of Bluetooth energy meter. IEEE Conf. on Information, Communications and Signal Processing, 2003,3(12):1474-1477.
    [32]Bergman A. Estimation of errors of voltage transformers on-site and the uncertainty of the estimate. IEEE Conf. on Precision Electromagnetic Measurements Digest,2000,5:415-416.
    [33]Kang M, Enjeti PN, Pitel IJ. Analysis and design of electronic transformers for electric power distribution system. IEEE Trans. on Power Electronics,1999, 14(6):1133-1141.
    [34]IEEE recommended practice for testing electronic transformers and inductors. IEEE Standards,1979,5.
    [35]Kang M, Enjeti PN, Pitel IJ. Analysis and design of electronic transformers for electric power distribution system. IEEE Conf. on Industry Applications Conference,1997,2(10):1689-1694.
    [36]Bertolotto P, Faifer M, Ottoboni R. High Voltage Multi-Purpose Current and Voltage Electronic Transformer. IEEE Conf. on Instrumentation and Measurement Technology,2007,5:1-5.
    [37]Suriyakala C, Sankaranarayanan PE. Smart Multiagent Architecture for Congestion Control to Access Remote Energy Meters. IEEE Conf. on Computational Intelligence and Multimedia Applications,2007,4(12):24-28.
    [38]Purnomo MH, Wahyudiati, Shigeta K. The adjuster position prediction in energy meter calibration system using fuzzy learning method. IEEE Conf. on Instrumentation and Measurement Technology,1996,2:1289-1291.
    [39]Georgakopoulos D, Wright PS. Calibration of energy and power meters under non-sinusoidal conditions. IET on Science, Measurement and Technology, 2006,153(6):241-247.
    [40]Mirandola P, Veroni F, Gandelli A. A new approach to the evaluation of energy metering accuracy. IET Conf. on Metering Apparatus and Tariffs for Electricity Supply,1992,11:164-168.
    [41]Feng Huizong, Cen Ming, Zhang Yu. A weak coupled calibration system architecture for electronic control unit. IEEE Conf. on Vehicle Power and Propulsion Conference,2008,9:1-4.
    [42]Stocher W, Biegelbauer G. Automated Simultaneous Calibration of a Multi-View Laser Stripe Profiler. IEEE Conf. on Robotics and Automation, 2005,4:4424-4429.
    [43]罗志坤,万全,欧朝龙,等.电能计量GPS授时与时钟校准系统的研制.湖南电力,2008,28(1):13-16,19.
    [44]陈向群,罗志坤,攸宝成,等.电能计量技能考核培训教材.北京:中国电力出版社,2003:121-143.
    [45]李福彬.PT二次导线压降自动跟踪补偿的研究.电测与仪表,1992,29(5):16-17.
    [46]李慧.电能计量中PT二次导线压降误差的简单分析.计量与测试技术,2005,32(2):21-22.
    [47]吴丽静.二次压降和二次负荷对电能计量准确度的影响.电测与仪表,2007,44(3):38-39,46.
    [48]Tennant DM. Navstar Global Positioning System (GPS) Clock Program:Present and Future. IEEE Conf. on 35th Annual Frequency Control Symposium,1981: 532-536
    [49]Daly P, Kitching ID. Characterization of NAVSTAR GPS and GLONASS on-board clocks. IEEE JNL on Aerospace and Electronic Systems,1990,5(7): 3-9.
    [50]Eskelinen P. Problems in estimating some timing uncertainties of commercial frequency and time standards. IEEE Trans. on Instrumentation and Measurement,1999,48(1):62-65.
    [51]Wright JR. GPS Composite Clock Analysis. IEEE Conf. on Frequency Control Symposium,2007,5:523-528.
    [52]Berns HC, Wilkes RJ. GPS time synchronization system for K2K. IEEE Trans. on Nuclear Science,2000,47(2):340-343.
    [53]Weiss MA, Masarie A, Beard R. Peak Deviation from Prediction in Atomic Clocks. IEEE Conf. on Frequency Control Symposium,2007,5:1002-1007.
    [54]Li Zewen, Zeng Xiangjun, Pang Fangliang. High Accurate Clock in Synchronism with GPS for Power System Simultaneous Measurement; Ma Hongjiang. IEEE Conf. on Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005:1-4.
    [55]Hua QD, Williams MS, Evans J. Use of the NAVSTAR Global Positioning System (GPS) in the Defense Communications System (DCS). IEEE Conf. on Frequency Control Symposium,1993,6:40-44.
    [56]Chia-Shu Liao, Hsin-Min Peng, Huang-Tien Lin. Design of GPS Remote Calibration System. IEEE Conf. on Frequency Control Symposium,2007,5: 914-917.
    [57]梁文海,麦文,张健,等.一种高精度频率测量的研究与实现.四川师范大学学报,2008(3):376-378.
    [58]曹云玖.温度和吸收程对稳频精度的影响.上海工程技术大学学报,2007(2): 154-156.
    [59]覃超,刘向东,靳永强.基于星敏感器和GPS伪距差分的相对状态确定.宇航学报技,2008(3):868-872.
    [60]李泽文,曾祥君,黄智伟.基于高精度晶振的GPS秒时钟误差在线修正方法.电力系统自动化,2006(13):55-58.
    [61]白政民,蔡子亮.基于单片机和GPS的时钟信息显示系统.微计算机信息,2007,7(2):90-91,147.
    [62]周长林,朱忠义,常青美,等.计算机电磁泄漏信息的接收与重现.电光与控制,2005(4):71-73.
    [63]胡郁乐,刘国华,王元汉.一种无线接收系统的信号预处理与抗干扰设计.工程地球物理学报,2004(4):116-119.
    [64]Laquai B, Richter H, Hoefflinger B. A test structure for the measurement of fast internal signals in CMOS VLSI circuits. IEEE Conf. on Microelectronic Test Structures,1995,3:45-50.
    [65]Smith RK. Tests show ability of vacuum circuit breaker to interrupt fast transient recovery voltage rates of rise of transformer secondary faults. IEEE Transactions on Power Delivery,1995,10(1):266-273.
    [66]Borup U, Nielsen BV, Blaabjerg F. Compensation of cable voltage drops and automatic identification of cable parameters in 400 Hz ground power units. IEEE Trans. on Industry Applications,2004,40(5):1281-1286.
    [67]Brandolini A, Gandelli A, Veroni F. Energy meter testing based on Walsh transform algorithms. IEEE Conf. on Instrumentation and Measurement Technology,1994,3(5):1317-1320.
    [68]Marinkovic M, Anctelkovic B, Petkovic P. Compact MAC Architecture of FIR Filters in Solid-State Energy Meter. IEEE Conf. on Computer as a Tool,2005, 1(11):547-550.
    [69]Paranhos I, Libano F, Melchiors J. Power energy meter in a low cost hardware/ software. IEEE Conf. on Power Electronics and Applications,2007,9:1-9.
    [70]Lawrance WB, Michalik G, Mielczarski W. Reduction of harmonic pollution in distribution networks. IEEE Conf. on Energy Management and Power Delivery, 1995,1(11):198-202.
    [71]Luo ZK, Xu ZJ, Zheng YC. DFT and DSP-based electric energy measurement algorithm of harmonic source load. IEEE Conf. on Power System Technology, 2002,4(10):2487-2490.
    [72]Mohammed OA, Abed NY, Liu S. Investigation of the harmonic behavior of three phase transformer under nonsinusoidal operation using finite element and wavelet packets. IEEE Transactions on Magnetics,2006,42(4):967-970.
    [73]Zhou LX, Yin ZD, Xiao XN. Electric energy measurement based on the effective absorbed power under non-sinusoidal conditions.3rd International Conf. on Electric Utility Deregulation and Restructuring and Power Technologies,2008,4:2081-2085.
    [74]Siqueira L, Carneiro AM, De Oliveira M. Assessment of harmonic distortions on power and energy measurements.9th International Conf. on Harmonics and Quality of Power,2000,1 (10):105-109.
    [75]Zhou LX, Yin ZD, Xiao XN. Power definition and energy measurement based on waveform similarity. IEEE Conf. and Exposition on Transmission and Distribution,2008,4:1-5.
    [76]Langella R, Testa A. A Circular Convolution based Algorithm for Electric Energy Measurement Under Non-Sinusoidal Conditions. IEEE Conf. on Instrumentation and Measurement Technology,2007,5:1-5.
    [77]Gallo D, Landi C, Langella R. On the Accuracy of Electric Energy Revenue Meter Chain Under Non-Sinusoidal Conditions:A Modeling Based Approach. IEEE Conf. on Instrumentation and Measurement Technology,2007,5:1-6.
    [78]Modrijan G, Zajec P, Nastran J. A Three-Phase Power Source with Low THD for Energy Meters Calibration. IEEE Conf. on Power Electronics and Motion Control,2006,8:895-900.
    [79]Kawagoe J, Tsuchiyama T, So E. A Digital System for Calibrating Active/Reactive Power and Energy Meters. IEEE Conf. on Precision Electromagnetic Measurements Digest,2004,6:293-294.
    [80]Gallo D, Landi C, Langella R. On the Accuracy of Electric Energy Revenue Meter Chain Under Non-Sinusoidal Conditions:A Modeling Based Approach. IEEE Conf. on Instrumentation and Measurement Technology,2007,5:1-6.
    [81]罗志坤,徐植坚.基于离散傅立叶算法谐波对电能计量影响.电子测量技术,2002(3):41-42
    [82]孙宏伟,于希娟,王大为,等.谐波对电能计量的影响及其仿真分析.电力电子技术,2006,40(4):123-126.
    [83]赵勇,沈红,等.谐波源的识别及其与非谐波源的分离方法.中国电机工程学报,2002,22(5):84-87
    [84]李洪波.电力系统谐波潮流计算算法综述.重庆电力高等专科学校学报,2004,9(3):1-4
    [85]程佩青.数字信号处理教程.北京:清华大学出版社,2001:334-388.
    [86]祁才君,陈隆道,等.应用插值FFT算法精确估计电网谐波参数.浙江大学学报(工学版),2003,37(1):112-116.
    [87]Dan, A.; Raisz, D. What do and what should digital revenue meters measure on distorted networks. IEEE Conf. on Harmonics and Quality of Power,2004,9: 283-288.
    [88]Gallo D, Landi C, Pasquino N. A New Methodological Approach to Quality Assurance of Energy Meters Under Nonsinusoidal Conditions. IEEE Trans. on Instrumentation and Measurement,2007,56(5):1694-1702.
    [89]Testa A, Gallo D, Langella R. On the processing of harmonics and interharmonics:using Hanning window in standard framework[J]. IEEE Transactions on Power Delivery,2004,19(1):28-34.
    [90]Pang H, Li D X, Zu Y X, et al. An improved algorithm for harmonic analysis of power system using FFT technique. Proc Chin S Electr Eng,2003,23(6): 50-54.
    [91]Zhang Fusheng, Geng Zlaongxing, Yuan Wei. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transaetiom on Power Delivery,2001,16(2):160-164.
    [92]Qian H, Zhao R X, Chen T. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2): 1064-1069.
    [93]Mallat S. A Wavelet Tour of Signal Processing. Second Edition (Wavelet Analysis & Its Applications) [M]. San Diego:Academic Press,1999.
    [94]HU L, RAN L. Direct method for calculation of AC side harmonics and interharmonics in an HVDC system[J]. IEE Proc Gener Transm Distrib,2000, 147(6):329-335.
    [95]Li Chun, Xu Wilsun, Tayjasanant T. Interharmonics:basic concepts and techniques for their detection and measurenent[J]. Electric Power System Research,2003,66(1):39-48.
    [96]Davis E J, Emanuel A E. Harmonic pollution metering:Theoretical consideration[J]. IEEE Transactions on Power Delivery,2000,15(1):19-23.
    [97]Julio Ban, R.I.Diego. A new method for measurement of harmonic groups in power systems using wavelt analysis in the IEC standad framework[J]. Electric Power systems Research,2006,76(4):200-208
    [98]Daubuchies. Ten Lectures on wavelets[M]. Capital City Press,1992
    [99]CHAN S C, PUN K S, YEUNG K S, et al. On the design and imp lementation of FIR and IIR digital filters with variable frequency characteristics[J]. Proceeding of IEEE International Symposium on Circuits System, Phoenix, AZ, 2002(2):185-188.
    [100]H. Wen, Z. Teng, and S. Guo, Triangular Self-Convolution Window With Desirable Sidelobe Behaviors for Harmonic Analysis of Power System[J]. IEEE Transactions on Instrumentation and Measurement,2010,59:543-552.
    [101]Caceres R, Correa R, Ferreyra P. Study of Active Electric Energy Meters Behavior of Induction and Electronic Types. IEEE Conf. on Transmission & Distribution,2006,8:1-6.
    [102]Ovidiu P, Gabriel C. DSP's based energy meter. IEEE Conf. on Electronics Technology:Integrated Management of Electronic Materials Production,2003, 5:235-238.
    [103]Bernieri A, Ferrigno L, Laracca M. A discussion about the effect of the MID directive on the calibration of electrical energy meters. IEEE Conf. on Universities Power Engineering,2008,9:1-5.
    [104]Ferrero A, Faifer M, Salicone S. A testing procedure for the new, electronic revenue energy meters. IEEE Conf. on Instrumentation and Measurement Technology,2008,5:83-88.
    [105]Skundric S, Naumovic-Vukovic D, Nikolic A. Metrological supervision of electrical energy meters in substations up to 35 kV. IEEE Conf. on Electrical Power Quality and Utilisation,2007,10:1-5.
    [106]Driesen J, Van Craenenbroeck T, Van Dommelen D. The registration of harmonic power by analog and digital power meters. IEEE Trans.on Instrumentation and Measurement,1998,47(1):195-198.
    [107]Methawee S, Leelarasmee E. A design of programmable AC voltage and current generators for testing energy meters. IEEE Conf. on Circuits and Systems,2004, 1(12):57-60.
    [108]Naiman S, Kissaka MM, Mvungi NH. Energy meter reading and tampering protection through powerline communication channel. IEEE Conf. on AFRICON,2004,2:821-826.
    [109]Kuntner R. Changes in energy meter testing. IET Conf. on Metering and Tariffs for Energy Supply,1999,5:69-75.
    [110]Muralikrishna Kumar C. Standardizing calibration laboratory practices. IEEE Conf. on Engineering Management,1993,12:178-180.
    [111]鲍卫东,刘冰.电能计量装置现场校验方法探讨.电测与仪表,2006,43(7):27-30.
    [112]康广庸.电能计量装置故障接线分析模拟与检测.北京:中国水利水电出版社,2007:150-196
    [113]彭时雄.电压互感器现场校验测试技术.华北电力技术,1994(5):1-7,17.
    [114]彭时雄.电容式电压互感器误差分析及现场校验技术.华北电力技术,1993,10:5-13.
    [115]彭时雄.电流互感器现场校验测试技术.华北电力技术,1995(3):8-16.
    [116]Dierks A, Braun U. New means for testing energy meters. IET Conf. on Metering and Tariffs for Energy Supply,1996,7:243-247.
    [117]Femine AA D, Gallo DD, Landi CC. Advanced Instrument For Field Calibration of Electrical Energy Meters. IEEE Trans. on Instrumentation and Measurement, 2003:1-1.
    [118]Miljanic PN. Power and energy meters and their calibration. IEEE Conf. on Precision Electromagnetic Measurements,1994,6:235.
    [119]周莉,刘开培.电能计量误差分析与电能计费问题的讨论.电工技术学报,2005,20(2):63-68
    [120]贾斌.电能计量装置的综合误差计算及减少综合误差的方法.电测与仪表,2004,41(9):16-19,3
    [121]吴涛.电能计量综合误差自动补偿方法.电测与仪表,1998,35(6):20-22
    [122]白洋.电能计量装置远程校验监测系统.电测与仪表,2005,42(7):30-32
    [123]罗志坤,滕召胜,万全.高压电能计量装置远程校验与监测系统及其应用.电子测量技术,2007,30(2):172-175
    [124]Yuan-Long Jeang, Liang-Bi Chen, Chia-Pin Huang. Design of FPGA-based adaptive remote calibration control system. IEEE Conf. on Field-Programmable Technology (FPT),2003,12:299-302.
    [125]Carullo A, Parvis M, Vallan A. Security issues for Internet-based calibration activities. IEEE Conf. on Instrumentation and Measurement Technology,2002, 1(5):817-822.
    [126]Albu M, Ferrero A, Mihai F. Remote calibration using mobile, multi-agent technology. IEEE Conf. on Instrumentation and Measurement Technology,2003, 1,(5):802-806.
    [127]欧朝龙,罗志坤,万全.互感器低负荷精度影响及分析.湖南电力,2008,28(2):31-32,37.
    [128]史轮,赵洋,刘仲海.电压互感器二次负荷对误差的影响.河北电力技术,2006,25(6):40-42.
    [129]梁仕斌.电流互感器二次负荷对测量及保护的影响.云南电力技术,2002,30(3):41-43.
    [130]李定柏.现场电流互感器实际二次负荷的测量与计算.计量技术,1994(5)9-10.
    [131]杜爱松.对PT,CT二次负荷测试方法探讨.安徽电力技术情报,1991(2)15-16.
    [132]孙国银,王宇.基于DSP的互感器二次负荷在线测试仪的研制.电测与仪表,2002,39(7):12-15.
    [133]王秉时.互感器二次负荷变化范围对计量准确度的影响.仪器与未来,1991,2:13-14.
    [134]孙良伟.互感器二次负荷在线测试在电能计量装置综合误差控制中的应用.新疆电力技术,2007(4):24-25.
    [135]刘磊.带电CT状态监测方法探讨.电测与仪表,2006,43(9):29-32,39.
    [136]Rodriguez JA. Conductance testing by current injection. IEEE Conf. on Industrial and Commercial Power Systems,1988,5:63-65.
    [137]Heron R, McFadden A, Dunn J. Evaluation of conductance and impedance testing on VRLA batteries for the Stenter Operating Companies. IEEE Conf. on Telecommunications Energy,1994,10:270-281.
    [138]白洋,张建,等.在线CT导纳测试及其应用.电测与仪表,2004,41(9):52-55,58
    [139]张胜.电能计量终端的远程实时监视.电力系统自动化,2006,30(22):105-107.
    [140]徐占河,彭时雄.电压互感器及其二次回路压降的现场测试.华北电力技术,1997(2):20-22.
    [141]马玉祥,彭时雄.高电压互感器误差的间接测量推算法.华北电力技术, 1993(3):43-47
    [142]彭时雄.电压互感器实际运行负载下误差的推算方法.华北电力技术,1993(7):13-22
    [143]Delle Femine A, Gallo D, Landi C. Measurement Equipment for On-Site Calibration of Energy Meters. IEEE Conf. on Instrumentation and Measurement Technology,2007,5:1-6.
    [144]Purnomo MH, Purnomo W, Shimizu E. Fuzzy regression-based modeling of single-phase energy meter for calibration purpose. IEEE Conf. on Instrumentation and Measurement Technology,1997,1(5):311-313.
    [145]Sachdeva A, Chand S. EMC evaluation and analysis of electronic energy meter. IEEE Conf. on Electromagnetic Interference and Compatibility,1999,12: 190-192.
    [146]Moore WJM, So Eddy. A Current-Comparator-Based System for Calibrating Active/Reactive Power and Energy Meters. IEEE Trans. on Instrumentation and Measurement,1983,32(1):147-149.
    [147]Pasdar A, Mirzakuchaki S. A Solution to Remote Detecting of Illegal Electricity Usage Based on Smart Metering. IEEE Conf. on Soft Computing Applications, 2007,8:163-167.
    [148]李庆先,滕召胜,罗志坤.测试计量仪器的绿色设计与节能设计.中国仪器仪表,2007(7):32-34
    [149]姜文新,何国瑜等.以太网接口设计.电子测量技术,2005(5):69-70
    [150]曾伟刚,江霞.设备远程测试分析系统.电子测量技术,2005(1):36-37
    [151]李华,孙晓民,李红青等.MCS-51系列单片机实用接口技术.北京:北京航空航天大学出版社,1999:195-199
    [152]滕召胜,罗隆福,童调生.智能检测系统与数据融合.北京:机械工业出版社,2000:150-167
    [153]李名兆.计量仪表的抗干扰设计.计量技术,2001(4):34-35
    [154]徐瑞荣.印制板电路抗干扰设计.舰船电子对抗,2001(4):33-35
    [155]Pusnik I, Drnovsek J, Bojkovski J. Lowest uncertainty contributions in temperature calibrations by comparison. IEEE Conf. on Instrumentation and Measurement Technology,1998,2(5):1257-1259.
    [156]Songxiang Gu, McNamara JE, Ward MO. Calibration Accuracy Evaluation for Stereo Reconstruction. IEEE Conf. on Nuclear Science Symposium,2006,6 (10):3242-3246.
    [157]Drnovsek J, Bojkovski J, Pusnik I. Automation of a calibration laboratory [and application to thermometer calibration]. IEEE Conf. on Precision Electromagnetic Measurements Digest,1998,7:365-366.
    [158]Ukil A, Andenna A. Optimized Algorithm for Industrial Process Instrumentation Calibration based on Nonlinear Function Approximation. IEEE Conf. on Logistics and Industrial Informatics,2007,9:99-103.
    [159]Brosilov BJ, Naor Y, Baharav Y. Multiple reflection effects during the in-situ calibration of an emissivity independent radiation thermometer. IEEE Conf. on Advanced Thermal Processing of Semiconductors,2005,10:7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700