MIMO雷达参数估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(multiple-input multiple-output,MIMO)雷达,是一种新体制雷达,它可以采用多个发射天线和多个接收天线,各天线根据系统要求可以进行灵活布置并且各发射天线可以同时发射完全正交或部分相关的信号。自从其概念被提出以来,受到了众多科研工作者的关注。本文将对MIMO雷达的波形优化与信号处理方法等方面的问题进行研究。主要工作包括以下几个方面:
     一、双基地MIMO雷达系统性能分析及互藕校正。
     首先,考虑双基地MIMO雷达系统中目标散射特性和系统几何构型对参数估计性能的影响。根据给出的系统模型,对系统最多可分辨和定位目标的数目进行分析,并给出了理论证明。分析表明,利用目标反射系数的非相关特性,双基地MIMO雷达最多可有效分辨和定位收发阵元数的乘积减一个目标。其次,建立了兼具传统相控阵雷达和MIMO雷达特点的混合双基地雷达系统结构,综合考虑传统相控阵的相干处理增益和MIMO雷达的空间分集增益对目标方位估计性能的影响。给出角度估计的CRB,通过对不同结构下系统CRB的分析来判断估计性能的优劣。最后,针对阵元间互耦的存在会严重影响雷达目标定位算法性能,利用MIMO雷达的特性,基于均匀线阵互耦矩阵模型的对称带状Toeplitz性,在互耦信息未知的情况下,提出一种双基地MIMO雷达发射阵列和接收阵列互耦同时校正的算法。利用Capon谱估计,并结合相关文献中对均匀线阵互耦矩阵的计算和建模,将求解互耦系数转化为线性约束二次最小化问题,采用迭代的方式进行校正。此算法不需要校正源,也不需要进行特征值分解。
     二、波形设计。
     针对已有波形设计方法其旁瓣峰值经常出现在主瓣附近,提出利用已有的零相关正交二相码实现匹配滤波输出的零相关区域的方法;针对扩展零相关区域长度会降低零相关区域效率的问题,给出基于张量扩张的零相关区域扩展方法,并给出实现流程。
     三、参数估计算法。
     利用双基地MIMO雷达进行定位时,需要对发射角和接收角进行估计,而已有算法或者采用二维搜索,或者采用两个一维算法估计角度然后进行搜索配对,本文提出一种MUSIC和APES组合的两步参数估计方法。所提方法是将各参数进行联合估计,并实现自动配对。
     针对双基地MIMO雷达二维角度估计问题,提出一种基于二维实值ESPRIT的DOD和DOA联合估计算法,该算法能够给出DOD和DOA的闭式解,而且所有参数估计值自动配对,同时降低运算复杂度。
     针对双基地共置天线MIMO雷达存在的相干源波达方向估计问题,提出一种基于数据矩阵重构的适用于任何信号类型的角度参数估计方法。为了降低非平稳噪声对估计性能的影响和在小快拍具有更好的检测门限值,采用数据重构对数据进行扩展。同时对非平稳噪声情况下的确定Cramer-Rao界(CRB)进行推导分析。
As a new type of radar, multiple-input multiple-output (MIMO) radar consists of multiple transmitting antennas and multiple receiving antennas. Transmit antennas and receive antennas can be flexibly configured according to system requirements and each transmit antenna can freely choose signal waveform to obtain more degrees of freedom. MIMO radar has received much attention from researchers since it was proposed.
     This dissertation studies orthogonal waveform design and array signal processing for MIMO radar. The main contributions of this dissertation are as follows:
     (1) Performance analysis and couple calibration of bistatic MIMO radar system
     With the orthogonal waveforms are transmited by the transmitter of MIMO radar, the problem of parameter identifiability is investigated in the first part. Based on the bistatic MIMO radar system model, an analysis on the parameter identifiability of MIMO radar was given. By exploiting the uncorrelation of reflection coefficient of the targets, the maximum numbers of targets that could be uniquely identified by the MIMO radar is the product of the number of receive and transmit elements minus one. In the following part, the effect of the hybrid bistatic radar configuration on the direction finding performance is considered. A hybrid bistatic radar configuration which constitutes the conventional phased array radar and MIMO radar configuration was proposed. The new configuration could take advantage of both the coherent processing gain provided by the conventional phased array radar and the spatial gain received from MIMO radar. The average Cramer-Rao bound(ACRB) of the estimation was evaluated to assess the estimation performance for both angle of departure and angle of arrival. By measuring the average CRB, the direction finding performances of different configurations were investigated. At last, according to the structural speciality of MIMO radar and the mutual coupling matrix of uniform linear array is a banded symmetric Toeplitz matrix, a calibration algorithm for both transmitting array and receiving array of a bistatic MIMO radar system was proposed. The calibration can be performed without any calibration source and any mutual information. The coupling coefficients vector is computed by finding the solution of a linear constrained quadratic problem, so eigenvalue decomposition is not requisite.
     (2) Waveform design
     Practical radar requirements such as unit peak-to-average power ratio and range compression dictate that we use MIMO radar waveforms that have constant modulus and good auto-and cross-correlation properties. We present in this part new computationally efficient zero correlation zone (ZCZ) implementation method. According to the binary ZCZ code in communication and a spread-spectrum radar polyphase code, a new polyphase code with larger ZCZ is synthesized. The main feature of the new code is the absence of sidelobe in ZCZ in the compressed pulse. The configuration of the radar transmitter and receiver for application is presented.
     (3) Parameters estimation
     We present a multiple targets localization and parameter estimation algorithm for a bistatic MIMO radar system. MUSIC estimator is directly employed to estimate the DOAs, the amplitude and phase estimator (APES) is used to derive closed-form solution of the DODs, then RCS can be obtained from solutions of DODs and DOAs via least squares method. The DODs and RCS of targets can be solved in close form, and all the parameters are paired automatically.
     It is shown how bistatic MIMO radar with uniform linear may be used with the data extension technique and2-D unitary ESPRIT algorithm to estimate the joint DOA and DOD. A closed-form solution of DOA and DOD of targets is obtained. Then, the RCS of targets are estimated by exploiting the solution of DOA and DOD. All the parameters are paired automatically. The algorithm has low computation complexity.
     The last part of this dissertation shows how estimation of signal parameters via combining the data matrix reconstruction and least squares (LS) ESPRIT be used to estimate both the DOA and DOD in a bistatic MIMO radar system. The proposed algorithm can be effective for any type of signals such as coherent or noncoherent signals. The proposed algorithm can provide improvement precise parameters estimation over ESPRIT for noncoherent signals, especially in the presence of nonuniform noise.
引文
[1]F. Daum. Radar Handbook,3rd Edition (M.I. Skolnik, Ed; 2008) [Book Review][J]. Aerospace and Electronic Systems Magazine, IEEE.2008,23(5):pp. 41-41.
    [2]W. Siebert. A radar detection philosophy[J]. Information Theory, IRE Transactions on.1956,2(3):pp.204-221.
    [3]D. K. Barton. Low-angle radar tracking[J]. Proceedings of the IEEE.1974,62(6): pp.687-704.
    [4]W. D. White. Low-Angle Radar Tracking in the Presence of Multipath[J]. Aerospace and Electronic Systems, IEEE Transactions on.1974, AES-10(6):pp. 835-852.
    [5]D. Giuli and R. Tiberio. A Modified Monopulse Technique for Radar Tracking with Low-Angle Multipath[J]. Aerospace and Electronic Systems, IEEE Transactions on.1975, AES-11(5):pp.741-748.
    [6]A. V. Mrstik and P. G. Smith. Multipath Limitations on Low-Angle Radar Tracking[J]. Aerospace and Electronic Systems, IEEE Transactions on.1978, AES-14(1):pp.85-102.
    [7]J. Reilly, et al. New angle-of-arrival estimator:comparative evaluation applied to the low-angle tracking radar problem[J]. Communications, Radar and Signal Processing, IEE Proceedings F.1988,135(5):pp.408-420.
    [8]C. K. Sword, et al. Multiple target angle tracking using sensor array outputs[J]. Aerospace and Electronic Systems, IEEE Transactions on.1990,26(2):pp. 367-373.
    [9]J. A. Bruder and J. A. Saffold. Multipath effects on low-angle tracking at millimetre-wave frequencies[J]. Radar and Signal Processing, IEE Proceedings F.1991,138(2):pp.172-184.
    [10]M. D. Zoltowski and T. S. Lee. Maximum likelihood based sensor array signal processing in the beamspace domain for low angle radar tracking[J]. Signal Processing, IEEE Transactions on.1991,39(3):pp.656-671.
    [11]D. Rahamim, et al. Source localization using vector sensor array in a multipath environment[J]. Signal Processing, IEEE Transactions on.2004,52(11):pp. 3096-3103.
    [12]M. Hurtado and A. Nehorai. Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors[J]. Aerospace and Electronic Systems, IEEE Transactions on.2007,43(2):pp.780-789.
    [13]陈伯孝.SIAR四维跟踪及其长相干积累等技术研究[D].博士,西安电子科技大学,西安,1997.
    [14]J. Dorey, et al., "RIAS,radar a impulsion et antenne synthetique," presented at the Colloque International sur le Radar, Paris,1989.
    [15]B. Chen, et al. Long-time coherent integration based on sparse-array synthetic impulse and aperture radar[C]. in Radar,2001 CIE International Conference on, Proceedings,2001:pp.1062-1066.
    [16]B. Chen, et al. Analysis and experimental results on sparse-array synthetic impulse and aperture radar[C]. in Radar,2001 CIE International Conference on, Proceedings,2001:pp.76-80.
    [17]陈伯孝and张守宏.稀布阵综合脉冲孔径雷达低距离旁瓣与距离高分辨技术[J].电子学报.1998,26(9):pp.29-33.
    [18]吴剑旗,et al稀布阵综合脉冲孔径雷达的研究与实验[J].现代电子.1998,64(3):pp.1-5.
    [19]陈伯孝and张守宏.稀布阵综合脉冲孔径雷达的四维模糊函数及其分辨率[J].信号处理.1998,14(pp.33-37.
    [20]杨明磊.微波稀布阵SIAR相关技术研究[D].博士,西安电子科技大学,西安,2009.
    [21]H. A. Khan, et al. Ultra wideband multiple-input multiple-output radar[C]. in Radar Conference,2005 IEEE International,2005:pp.900-904.
    [22]E. Fishler, et al. Spatial diversity in radars-models and detection performance[J]. Signal Processing, IEEE Transactions on.2006,54(3):pp.823-838.
    [23]K. W. Forsythe and D. W. Bliss. MIMO Radar: Concepts, Performance Enhancements, and Applications[M]. Lexington, Massachusetts:John Wiley&Sons, Inc.,2009.
    [24]D. W. Bliss and K. W. Forsythe. Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution[C]. in Signals, Systems and Computers,2003. Conference Record of the Thirty-Seventh Asilomar Conference on,2003:pp.54-59 Vol.1.
    [25]S. D. Howard, et al. A Simple Signal Processing Architecture for Instantaneous Radar Polarimetry[J]. Information Theory, IEEE Transactions on.2007,53(4):pp. 1282-1289.
    [26]A. M. Haimovich, et al. MIMO Radar with Widely Separated Antennas[J]. Signal Processing Magazine, IEEE.2008.25(1):pp.116-129.
    [27]L. Jian and P. Stoica. MIMO Radar with Colocated Antennas[J]. Signal Processing Magazine, IEEE.2007,24(5):pp.106-114.
    [28]C. W. Sherwin, et al. Some Early Developments in Synthetic Aperture Radar Systems[J]. Military Electronics, IRE Transactions on.1962, MIL-6(2):pp. 111-115.
    [29]M.Skolnik. Introduction to Radar Systems,2nd ed[M]:McGraw-Hill,1980.
    [30]N. H. Lehmann, et al. High Resolution Capabilities of MIMO Radar[C]. in Signals, Systems and Computers,2006. ACSSC '06. Fortieth Asilomar Conference on,2006:pp.25-30.
    [31]E. Fishler, et al. MIMO radar: an idea whose time has come[C]. in Radar Conference,2004. Proceedings of the IEEE,2004:pp.71-78.
    [32]E. Fishler, et al. Performance of MIMO radar systems:advantages of angular diversity[C]. in Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004:pp.305-309 Vol.1.
    [33]J. Tabrikian. Barankin Bounds for Target Localization by MIMO Radars[C]. in Sensor Array and Multichannel Processing,2006. Fourth IEEE Workshop on, 2006:pp.278-281.
    [34]T. Jun, et al. On Detection Performance of MIMO Radar: A Relative Entropy-Based Study [J]. Signal Processing Letters, IEEE.2009,16(3):pp. 184-187.
    [35]H. Godrich, et al. Target Localization Accuracy Gain in MIMO Radar-Based Systems[J]. Information Theory, IEEE Transactions on.2010,56(6):pp. 2783-2803.
    [36]D. Xi-Zeng, et al. A new method of improving the weak target detection performance based on the MIMO radar[C]. in Radar,2006. CIE '06. International Conference on,2006:pp.1-4.
    [37]J. Y. Qu, et al. Detection Performance of MIMO Radar for Coherent Pulses[C]. in Image and Signal Processing,2008. CISP'08. Congress on,2008:pp.49-53.
    [38]Y. Petillot, et al. Predicted Detection Performance of MIMO Radar [J]. Signal Processing Letters, IEEE.2008,15(pp.83-86.
    [39]A. Sheikhi and A. Zamani. Coherent Detection for MIMO Radars[C]. in Radar Conference,2007 IEEE,2007:pp.302-307.
    [40]A. De Maio and M. Lops. Design Principles of MIMO Radar Detectors[J]. Aerospace and Electronic Systems, IEEE Transactions on.2007,43(3):pp. 886-898.
    [41]A. Sheikhi, et al. Model-based Adaptive Target Detection in Clutter Using MIMO Radar[C]. in Radar,2006. CIE '06. International Conference on,2006: pp.1-4.
    [42]A. Sheikhi and A. Zamani. Adaptive Target Detection in Clutter Using MIMO Radar[C]. in Radar Symposium,2006. IRS 2006. International,2006:pp.1-4.
    [43]曾建奎and何子述.慢起伏目标的多输入多输出雷达检测性能分析[J].电波科学.2008,1(pp.155-161.
    [44]戴喜增,et al. MIMO雷达检测性能[J].清华大学学报(自然科学版).2007,1(pp.88-91.
    [45]A. Sheikhi and A. Zamani. Temporal coherent adaptive target detection for multi-input multi-output radars in clutter[J]. Radar, Sonar & Navigation, IET.2008,2(2):pp.86-96.
    [46]B. D. and G. N. A., "SINR improvements in multi-sensor space-time adaptive processing," presented at the Proceedings of the 2nd IASTED International Conference on Antennas, Radar, and Wave Propagation,2005.
    [47]D. Bruyere and N. A. Goodman. Performance of multistatic space-time adaptive processing[C]. in Radar,2006 IEEE Conference on,2006:p.6 pp.
    [48]N. A. Goodman and D. Bruyere. Optimum and decentralized detection for multistatic airborne radar[J]. Aerospace and Electronic Systems, IEEE Transactions on.2007,43(2):pp.806-813.
    [49]Q. He, et al. MIMO Radar Moving Target Detection in Homogeneous Clutter[J]. Aerospace and Electronic Systems, IEEE Transactions on.2010,46(3):pp. 1290-1301.
    [50]L. N., et al. MIMO radar application to moving target detection in homogenous clutter[M]. Waltham, MA:Proceedings of IEEE Workshop on Adaptive Sensor Array Processing,2006.
    [51]P. F. Sammartino, et al. Target Model Effects on MIMO Radar Performance[C]. in Acoustics, Speech and Signal Processing,2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on,2006:pp. V-V.
    [52]S. P. E., et al. MIMO radar performance in clutter environment[C]. in Proceedings of IEEE Radar Conference,2006:pp.16-19.
    [53]P. F. Sammartino, et al. Adaptive MIMO radar system in clutter[C]. in Radar Conference,2007 IEEE,2007:pp.276-281.
    [54]H. Qian and R. S. Blum. Diversity Gain for MIMO Neyman & #x2013;Pearson Signal Detection[J]. Signal Processing, IEEE Transactions on.2011.59(3):pp. 869-881.
    [55]B. D. and G. N. A. SINR improvements in multi-sensor space-time adaptive processing[C]. in Proceedings of the 2nd IASTED International Conference on Antennas, Radar, and Wave Propagation,2005:pp.167-172.
    [56]L. N., et al., "MIMO radar application to moving target detection in homogenous clutter," presented at the Proceedings of IEEE Workshop on Adaptive Sensor Array Processing, Waltham, MA,2006.
    [57]P. F. Sammartino, et al. MIMO radar performance in clutter environment[C]. in Radar,2006. CIE '06. International Conference on,2006:pp.1-4.
    [58]X. L. Z., et al Radar imaging via adaptive MIMO techniques[C]. in Proceedings of the 14th European Signal Processing Conference, Florence, Italy,2006.
    [59]J. Capon. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE.1969,57(8):pp.1408-1418.
    [60]K. S. M. Fundamentals of Statistical Signal Processing[M]. Engle-wood Cliffs: NJ:Prentice-Hall,1993.
    [61]L. Jian and P. Stoica. An adaptive filtering approach to spectral estimation and SAR imaging[J]. Signal Processing, IEEE Transactions on.1996,44(6):pp. 1469-1484.
    [62]J. A. and S. P. Combining Capon and APES for estimation of spectral lines[J]. Circuits, Systems, and Signal Processing.2000,19(2):pp.159-169.
    [63]夏威and何子述APES算法在MIMO雷达参数估计中的稳健性研究[J].电子学报.2008,36(9):pp.1804-1809.
    [64]X. Luzhou, et al. Target detection and parameter estimation for MIMO radar systems[J]. Aerospace and Electronic Systems, IEEE Transactions on.2008, 44(3):pp.927-939.
    [65]X. Luzhou, et al. Adaptive Techniques for MIMO Radar[C]. in Sensor Array and Multichannel Processing,2006. Fourth IEEE Workshop on,2006:pp.258-262.
    [66]H. Yan, et al. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIPJ. Adv. Signal Process.2008.
    [67]L. Ji, et al. Joint Estimation of Channel Parameters for MIMO Communication Systems[C]. in Wireless Communication Systems,2005.2nd International Symposium on,2005:pp.22-26.
    [68]D. Chen, et al. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters.2008,44(12):pp.770-771.
    [69]J. Chen, et al. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters.2008,44(24):pp.1422-1423.
    [70]陈金立,et al.一种双基地mimo雷达快速多目标定位方法[J].电子与信息学报.2009 07(pp.1664-1668.
    [71]M. Jin, et al. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing.2009,89(2):pp.244-251.
    [72]N. H. Lehmann, et al. Evaluation of Transmit Diversity in MIMO-Radar Direction Finding[J]. IEEE Transactions on Signal Processing.2007,55(5):pp. 2215-2225.
    [73]J. Tabrikian and I. Bekkerman. Transmission diversity smoothing for multi-target localization [radar/sonar systems][C]. in Acoustics, Speech, and Signal Processing,2005. Proceedings. (ICASSP '05). IEEE International Conference on,2005:pp. iv/1041-iv/1044 Vol.4.
    [74]W. Xia, et al. Subspace-Based Method for Multiple-Target Localization Using MIMO Radars[C]. in Signal Processing and Information Technology,2007 IEEE International Symposium on,2007:pp.715-720.
    [75]W. Xia and Z. He. Multiple-target localization and estimation of MIMO radars with unknown transmitted signals[C]. in Circuits and Systems,2008. ISCAS 2008. IEEE International Symposium on,2008:pp.3009-3012.
    [76]Q. He, et al. Target Velocity Estimation and Antenna Placement for MIMO Radar With Widely Separated Antennas[J]. Selected Topics in Signal Processing, IEEE Journal of.2010,4(1):pp.79-100.
    [77]H. Qian, et al. Non-coherent MIMO radar for target estimation:More antennas means better performance[C]. in Information Sciences and Systems,2009. CISS 2009.43rd Annual Conference on,2009:pp.108-113.
    [78]L. A. Experimental results on SIAR digital beamforming radar[C]. in Proceedings of IEEE International Radar Conference, London, UK,1992:pp. 505-510.
    [79]E. Brookner. Phased array radars-past, present and future[C]. in RADAR 2002, 2002:pp.104-113.
    [80]E. Fishler, et al. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing.2006,54(3):pp.823-838.
    [81]F. A. S and R. F. C. Performance bounds for adaptive coherence of sparse radar [C]. in The 11th Conf. Adaptive Sensors Array Processing, Lexington, MA, 2003.
    [82]D. Rabideau and P. Parker. Ubiquitous MIMO multifunction digital array radar [C]. in Proceedings of the 37th Asilomar Conf. Signals, Systems and Computers, 2003:pp.1057-1064.
    [83]E. K. A. Ampoma, et al. Capacity & #x00026; performance issues in a MIMO based MB-OFDM ultrawide band communication system[C]. in Adaptive Science & Technology,2009. ICAST 2009.2nd International Conference on, 2009:pp.432-439.
    [84]K. W. Forsythe and D. W. Bliss. Waveform Correlation and Optimization Issues for MIMO Radar[C]. in Signals, Systems and Computers,2005. Conference Record of the Thirty-Ninth Asilomar Conference on,2005:pp.1306-1310.
    [85]D. J. Rabideau. Multiple-input multiple-output radar aperture optimisation[J]. Radar, Sonar & Navigation, IET.2011,5(2):pp.155-162.
    [86]K. W. Forsythe, et al. Multiple-input multiple-output (MIMO) radar: performance issues[C]. in Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004:pp.310-315 Vol.1.
    [87]F. C. Robey, et al. MIMO radar theory and experimental results[C]. in Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004:pp.300-304 Vol.1.
    [88]Y. Petillot, et al. Predicted Detection Performance of MIMO Radar[J]. Signal Processing Letters, IEEE.2008,15(pp.83-86.
    [89]J. Tang, et al. On Detection Performance of MIMO Radar: A Relative Entropy-Based Study [J]. Signal Processing Letters, IEEE.2009,16(3):pp. 184-187.
    [90]X.-Z. Dai, et al. A new method of improving the weak target detection performance based on the MIMO radar[C]. in Radar,2006. CIE '06. International Conference on,2006:pp.1-4.
    [91]H. Godrich, et al. Cramer Rao bound on target localization estimation in MIMO radar systems[C]. in Information Sciences and Systems,2008. CISS 2008.42nd Annual Conference on,2008:pp.134-139.
    [92]Q. He, et al. Cramer-Rao bound for target velocity estimation in MIMO radar with widely separated antennas[C]. in Information Sciences and Systems,2008. CISS 2008.42nd Annual Conference on,2008:pp.123-127.
    [93]W. Yong, et al. Analysis on Rank of Channel Matrix for Monostatic MIMO Radar System[C]. in Radar,2006. CIE'06. International Conference on,2006: pp.1-4.
    [94]V. F. Mecca, et al. MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation[C]. in Sensor Array and Multichannel Processing,2006. Fourth IEEE Workshop on,2006:pp.249-253.
    [95]G. Wang and Y. Lu. Clutter Rank of STAP in MIMO Radar With Waveform Diversity[J]. Signal Processing, IEEE Transactions on.2010,58(2):pp.938-943.
    [96]G. Wang and Y. Lu. Clutter rank Of MIMO radar with a speical class of waveforms[C]. in Waveform Diversity and Design Conference,2009 International,2009:pp.108-112.
    [97]C.-Y. Chen and P. P. Vaidyanathan. Beamforming issues in modern MIMO Radars with Doppler[C]. in Signals, Systems and Computers,2006. ACSSC '06. Fortieth Asilomar Conference on,2006:pp.41-45.
    [98]C.-Y. Chen and P. P. Vaidyanathan. A Subspace Method for MIMO Radar Space-Time Adaptive Processing[C]. in Acoustics, Speech and Signal Processing,2007. ICASSP 2007. IEEE International Conference on,2007:pp. II-925-II-928.
    [99]C.-Y. Chen and P. P. Vaidyanathan. MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions[J]. IEEE Transactions on Signal Processing.2008,56(2):pp.623-635.
    [100]V. F. Mecca, et al. MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation[C]. in Sensor Array and Multichannel Signal Processing, 2006. IEEE Workshop,2006:pp.249-253.
    [101]V. F. Mecca and J. L. Krolik. Slow-Time MIMO STAP with Improved Power Efficiency[C]. in Signals, Systems and Computers,2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on,2007:pp. 202-206.
    [102]S. Beau and S. Marcos. Range-recursive space-time adaptive processing (STAP) with a circular airborne radar antenna[C]. in Radar Conference,2008. RADAR '08. IEEE,2008:pp.1-6.
    [103]D. J. Rabideau and P. Parker. Ubiquitous MIMO multifunction digital array radar[C]. in Signals, Systems and Computers,2003. Conference Record of the Thirty-Seventh Asilomar Conference on,2003:pp.1057-1064 Vol.1.
    [104]H. Deng. Polyphase code design for Orthogonal Netted Radar systems[J]. Signal Processing, IEEE Transactions on.2004,52(11):pp.3126-3135.
    [105]D. Hai. Discrete frequency-coding waveform design for netted radar systems[J]. Signal Processing Letters, IEEE.2004,11(2):pp.179-182.
    [106]刘波.MIMO雷达正交波形设计及信号处理研究[D].博士,电子科技大学, 成都,2008.
    [107]B. Liu, et al Polyphase Orthogonal Code Design for MIMO Radar Systems[C]. in Radar,2006. CIE '06. International Conference on,2006:pp.1-4.
    [108]L. Bo, et al. Optimization of Orthogonal Discrete Frequency-Coding Waveform Based on Modified Genetic Algorithm for MIMO Radar[C]. in Communications, Circuits and Systems,2007. ICCCAS 2007. International Conference on,2007: pp.966-970.
    [109]Y. Zhang and J. Wang. Improved design of DFCW for MIMO radar[J]. Electronics Letters.2009,45(5):pp.285-286.
    [110]H. A. Khan and D. J. Edwards. Doppler problems in orthogonal MIMO radars[C]. in Radar,2006 IEEE Conference on,2006:p.4 pp.
    [111]K. J. Gartz. Generation of uniform amplitude complex code sets with low correlation sidelobes[J]. Signal Processing, IEEE Transactions on.1992,40(2): pp.343-351.
    [112]H. He, et al. Unimodular sequence sets with good correlations for MIMO radar[C]. in Radar Conference,2009 IEEE,2009:pp.1-6.
    [113]P. Stoica, et al. New Algorithms for Designing Unimodular Sequences With Good Correlation Properties [J]. Signal Processing, IEEE Transactions on.2009, 57(4):pp.1415-1425.
    [114]D. R. Fuhrmann and G. San Antonio. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. in Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004: pp.295-299 Vol.1.
    [115]D. R. Fuhrmann and G. San Antonio. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. Aerospace and Electronic Systems, IEEE Transactions on.2008,44(1):pp.171-186.
    [116]T. Aittomaki and V. Koivunen. Low-Complexity Method for Transmit Beamforming in MIMO Radars[C]. in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on,2007:pp. Ⅱ-305-Ⅱ-308.
    [117]P. Stoica, et al. On Probing Signal Design For MIMO Radar[J]. IEEE Transactions on Signal Processing.2007,55(8):pp.4151-4161.
    [118]H. A. Khan and D. J. Edwards. Doppler problems in orthogonal MIMO radars[C]. in Radar,2006 IEEE Conference on,2006:p.4.
    [119]A. Luca. Experimental results on SIAR digital beamforming radar[C]. in Proceedings of the IEEE International Radar Conference. Brighton, UK,1992: pp.505-510.
    [120]X. Dai, et al. A new method of improving the weak target detection performance based on the MIMO radar[C]. in Radar,2006. CIE '06. International Conference on,2006:pp.1-4.
    [121]M. T. Frankford, et al. Including Spatial Correlations in the Statistical MIMO Radar Target Model[J]. Signal Processing Letters, IEEE.2010,17(6):pp. 575-578.
    [122]Y. Jin, et al. Time Reversal Transmission in MIMO Radar[C]. in Signals, Systems and Computers,2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on,2007:pp.2204-2208.
    [123]F. C. Robey, et al. MIMO radar theory and experimental results[C]. in Signals, Systems and Computers,2004. Conference Record of the Thirty-Eighth Asilomar Conference on,2004:pp.300-304.
    [124]I. Bekkerman and J. Tabrikian. Target Detection and Localization Using MIMO Radars and Sonars[J]. Signal Processing, IEEE Transactions on.2006,54(10):pp. 3873-3883.
    [125]J. Tabrikian. Barankin Bounds for Target Localization by MIMO Radars[C]. in Sensor Array and Multichannel Signal Processing,2006. IEEE Workshop,2006: pp.278-281.
    [126]L. Xu, et al. Adaptive Techniques for MIMO Radar[C]. in Sensor Array and Multichannel Signal Processing,2006. IEEE Workshop,2006:pp.258-262.
    [127]G. San Antonio, et al. MIMO Radar Ambiguity Functions[J]. Selected Topics in Signal Processing, IEEE Journal of.2007,1(1):pp.167-177.
    [128]Y. Yang and R. S. Blum. MIMO radar waveform design based on mutual information and minimum mean-square error estimation [J]. Aerospace and Electronic Systems, IEEE Transactions on.2007,43(1):pp.330-343.
    [129]Y. Yang and R. S. Blum. Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean-Square Error Estimation[C]. in Information Sciences and Systems,2006 40th Annual Conference on,2006:pp.111-116.
    [130]Y Yang and R. S. Blum. Radar Waveform Design using Minimum Mean-Square Error and Mutual Information[C]. in Sensor Array and Multichannel Processing, 2006. Fourth IEEE Workshop on,2006:pp.234-238.
    [131]Y. Yang and R. S. Blum. Minimax Robust Waveform Design for MIMO Radar in the Presence of PSD Uncertainties[C]. in Information Sciences and Systems, 2007. CISS'07.41st Annual Conference on,2007:pp.154-159.
    [132]Y. Yang and R. S. Blum. Minimax Robust MIMO Radar Waveform Design[J]. Selected Topics in Signal Processing, IEEE Journal of.2007,1(1):pp.147-155.
    [133]Y. Yang and R. S. Blum. MIMO Radar waveform Design[C]. in Statistical Signal Processing,2007. SSP '07. IEEE/SP 14th Workshop on,2007:pp. 468-472.
    [134]Y. Yang, et al. Waveform design for MIMO radar using an alternating projection approach[C]. in Signals, Systems and Computers,2009 Conference Record of the Forty-Third Asilomar Conference on,2009:pp.1201-1205.
    [135]Y. Yang, et al. Alternating projection for MIMO radar waveform design[C]. in Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International Workshop on,2009:pp.169-172.
    [136]Y. Yang, et al. MIMO Radar Waveform Design via Alternating Projection[J]. Signal Processing, IEEE Transactions on.2010,58(3):pp.1440-1445.
    [137]Y. Yang, et al. Waveform design for MIMO radar using Kronecker structured matrix estimation[C]. in Communication Systems,2008. ICCS 2008.11th IEEE Singapore International Conference on,2008:pp.431-435.
    [138]E. Fishler, et al. MIMO radar: an idea whose time has come[C]. in Radar Conference, Proceedings of the IEEE, Philadelphia,2004:pp.71-78.
    [139]J. Li, et al. On Parameter Identifiability of MIMO Radar[J]. Signal Processing Letters, IEEE.2007,14(12):pp.968-971.
    [140]J. Li and P. Stoica. MIMO Radar with Colocated Antennas[J]. Signal Processing Magazine, IEEE.2007,24(5):pp.106-114.
    [141]M. Wax and I. Ziskind. On unique localization of multiple sources by passive sensor arrays[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing.1989,37(7):pp.996-1000.
    [142]A. Nehorai, et al. Direction-of-arrival estimation in applications with multipath and few snapshots[J]. Circuits Systems Signal Process.1991,10(3):pp.327-342.
    [143]S.Haykin, et al. Radar Array Processing[M]. New York:Springer-Verlag,1993.
    [144]H. Messer, et al. On the achievable DF accuracy of two kinds of active interferometers[J]. Aerospace and Electronic Systems, IEEE Transactions on.1996,32(3):pp.1158-1164.
    [145]R. O. Nielsen. Performance of combinations of projectors and receivers[J]. Oceanic Engineering, IEEE Journal of.2002,27(3):pp.753-759.
    [146]H. Qian, et al. Target Velocity Estimation and Antenna Placement for MIMO Radar With Widely Separated Antennas[J]. Selected Topics in Signal Processing, IEEE Journal of.2010,4(1):pp.79-100.
    [147]Y. Kalkan and B. Baykal. Target localization and velocity estimation methods for frequency-only MIMO Radars[C]. in Radar Conference (RADAR),2011 IEEE,2011:pp.458-463.
    [148]H. Krim and M. Viberg. Two decades of array signal processing research:the parametric approach[J]. Signal Processing Magazine, IEEE.1996,13(4):pp. 67-94.
    [149]S. M. Kay, "Fundamentals of statistical signal proceesing:Estimation Theory," ed. Upper Saddle River, NJ:Prentice-Hall PTR,1993.
    [150]N. H. Lehmann, et al. Evaluation of Transmit Diversity in MIMO-Radar Direction Finding[J]. Signal Processing, IEEE Transactions on.2007,55(5):pp. 2215-2225.
    [151]P. Stoica and A. Nehorai. MUSIC, maximum likelihood and Cramer-Rao bound: further results and comparisons[C]. in Acoustics, Speech, and Signal Processing, 1989. ICASSP-89.,1989 International Conference on,1989:pp.2605-2608 vol.4.
    [152]X. Wei, et al. Subspace-Based Method for Multiple-Target Localization Using MIMO Radars[C]. in Signal Processing and Information Technology,2007 IEEE International Symposium on,2007:pp.715-720.
    [153]H. Godrich, et al. Target localization techniques and tools for MIMO radar[C]. in Radar Conference,2008. RADAR '08. IEEE,2008:pp.1-6.
    [154]S. C. M. S. Method for Array Calibration in High resolution Sensor Array Processing[J]. Radar, Sonar and Navigation, IEE Proceedings.1995,142(3):pp. 90-96.
    [155]伍裕江and聂在平.一种新的互耦补偿方法及其在DOA估计中的应用[J].电波科学学报.2007,22(4):pp.541-545.
    [156]苏洪涛,et al.发射阵列互耦及幅相误差校正[J].电子与信息学报.2006,28(5):pp.941-944.
    [157]郭利强,et al.双/多基地综合脉冲孔径地波雷达的互耦校正[J].电波科学学报.2008,23(1):pp.134-140.
    [158]J. Capon. High-resolution frequency-wave number spectrum analysis[J]. Proc. IEEE.1969, August 57(8):pp.1408-1418.
    [159]F. B and W. A. J. Direction Finding in the Presence of Mutual Coupling[J]. IEEE Trans. Antennas and Propagation.1991,39(3):pp.273-284.
    [160]S. T and R. A, "Mutual Coupling Effects on the Capacity of Multielement Antenna Systems," presented at the IEEE Inte. Conf., Acoustics, Speech, and signal processing, Salt Lake City, USA,2001.
    [161]H. Lutkepohl. Handbook of Matrices[M]. West Sussex, England:John Wiley & Sons,1996.
    [162]L. Xu, et al. Target detection and parameter estimation for MIMO radar systems[J]. Aerospace and Electronic Systems, IEEE Transactions on.2008, 44(3):pp.927-939.
    [163]M. I. Skolnik. Radar Handbook,2nd ed[M]. New York: McGraw-Hill,1990.
    [164]J. Li, et al. Signal Synthesis and Receiver Design for MIMO Radar Imaging[J]. Signal Processing, IEEE Transactions on.2008,56(8):pp.3959-3968.
    [165]J. Li, et al. Range Compression and Waveform Optimization for MIMO Radar: A Cramer-Rao Bound Based Study [J]. IEEE Transactions on Signal Processing.2008,56(1):pp.218-232.
    [166]P. Stoica, et al. Waveform Synthesis for Diversity-Based Transmit Beampattern Design[J]. Signal Processing, IEEE Transactions on.2008,56(6):pp.2593-2598.
    [167]B. Friedlander. Waveform Design for MIMO Radars[J]. IEEE Transactions on Aerospace and Electronic Systems.2007,43(3):pp.1227-1238.
    [168]H. A. Khan, et al. Optimizing Polyphase Sequences for Orthogonal Netted Radar[J]. Signal Processing Letters, IEEE.2006,13(10):pp.589-592.
    [169]C.-Y. Chen and P. P. Vaidyanathan. MIMO Radar Ambiguity Properties and Optimization Using Frequency-Hopping Waveforms[J]. Signal Processing, IEEE Transactions on.2008,56(12):pp.5926-5936.
    [170]H. He, et al. Designing Unimodular Sequence Sets With Good Correlations-Including an Application to MIMO Radar[J]. Signal Processing, IEEE Transactions on.2009,57(11):pp.4391-4405.
    [171]金明Mimo雷达波形优化与信号处理方法研究[D].博士,西安电子科技大学,西安,2010.
    [172]N. Levanon and E. Mozeson. Radar Signals[M]. New York:Wiley,2004.
    [173]S.-f. Li, et al. Construction of quadri-phase complete complementary pairs applied in MIMO radar systems[C]. in Signal Processing,2008. ICSP 2008.9th International Conference on,2008:pp.2298-2301.
    [174]金明,et al.基于遗传算法的类零相关多相码设计[J].系统工程与电子技术.2010,01):pp.14-17.
    [175]H. He, et al. Unimodular sequence sets with good correlations for MIMO radar[C]. in Radar Conference,2009 IEEE,2009:pp.1-6.
    [176]N. Suehiro. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. Selected Areas in Communications, IEEE Journal on.1994,12(5):pp.837-841.
    [177]P. Z. Fan, et al. Class of binary sequences with zero correlation zone[J]. Electronics Letters.1999,35(10):pp.777-779.
    [178]D. Chu. Polyphase codes with good periodic correlation properties (Corresp.)[J]. Information Theory, IEEE Transactions on.1972,18(4):pp.531-532.
    [179]M. L. Dukic and Z. S. Dobrosavljevic. A method of a spread-spectrum radar polyphase code design[J]. Selected Areas in Communications, IEEE Journal on.1990,8(5):pp.743-749.
    [180]P. Stoica and R. L. Moses. Spectral Analysis of Signals[M]. Upper Saddle River, NJ:Prentice-Hall,2005.
    [181]O. L. Frost, III. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE.1972,60(8):pp.926-935.
    [182]J. Li and S. P. An adaptive filtering approach to spectral estimation and SAR imaging[J]. IEEE Transactions on Signal Processing.1996,44(6):pp. 1469-1484.
    [183]P. Stoica, et al. A new derivation of the APES filter[J]. Signal Processing Letters, IEEE.1999,6(8):pp.205-206.
    [184]G. Kalognomos and P. Frangos. Combining capon and APES noise covariance estimates for spectral estimation for ISAR applications[C]. in Recent Advances in Space Technologies,2005. RAST 2005. Proceedings of 2nd International Conference on,2005:pp.694-698.
    [185]H. Wang and L. Cai. On adaptive multiband signal detection with the SMI algorithm[J]. Aerospace and Electronic Systems, IEEE Transactions on.1990, 26(5):pp.768-773.
    [186]X. Zhang, et al. Direction of Departure (DOD) and Direction of Arrival (DOA) Estimation in MIMO Radar with Reduced-Dimension MUSIC[J]. Communications Letters, IEEE.2010,14(12):pp.1161-1163.
    [187]X. Zhang and D. Xu. Angle estimation in MIMO radar using reduced-dimension capon[J]. Electronics Letters.2010,46(12):pp.860-861.
    [188]L. Xu, et al. Adaptive Techniques for MIMO Radar[C]. in Sensor Array and Multichannel Processing,2006. Fourth IEEE Workshop on,2006:pp.258-262.
    [189]Z. D. Zheng and J. Y. Zhang. Fast method for multi-target localisation in bistatic MIMO radar[J]. Electronics Letters.2011.47(2):pp.138-139.
    [190]X. Zhang and D. Xu. Low-complexity ESPRIT-based DOA estimation for colocated MIMO radar using reduced-dimension transformation[J]. Electronics Letters.2011,47(4):pp.283-284.
    [191]M. L. Yang, et al. Conjugate esprit algorithm for bistatic mimo radar[J]. Electronics Letters.2010,46(25):pp.1692-1694.
    [192]X. L. Liu and G. S. Liao. Multi-target localisation in bistatic MIMO radar[J]. Electronics Letters.2010,46(13):pp.945-946.
    [193]R. Schmidt. Multiple emitter location and signal parameter estimation[J]. Antennas and Propagation, IEEE Transactions on.1986,34(3):pp.276-280.
    [194]P. Stoica, et al. A new derivation of the APES filter[J]. IEEE Signal Processing Letters.1999, August 6(8):pp.205-206.
    [195]L. Xu and J. Li. Iterative Generalized-Likelihood Ratio Test for MIMO Radar[J]. Signal Processing, IEEE Transactions on.2007,55(6):pp.2375-2385.
    [196]M. Jin, et al. Target localisation for distributed multiple-input multiple-output radar and its performance analysis[J]. Radar, Sonar & Navigation, IET.2011, 5(1):pp.83-91.
    [197]A.-J. v. d. Veen, et al. Joint angle and delay estimation using shift-invariance techniques[J]. Signal Processing, IEEE Transactions on.1998, February 46(2): pp.405-418.
    [198]M. Haardt and J. A. Nossek. Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden[J]. Signal Processing, IEEE Transactions on.1995,43(5):pp.1232-1242.
    [199]M. D. Zoltowski, et al. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J]. Signal Processing, IEEE Transactions on.1996, February 44(2):pp.316-328.
    [200]A. J. van der Veen, et al. Joint angle and delay estimation using shift-invariance techniques[J]. Signal Processing, IEEE Transactions on.1998,46(2):pp. 405-418.
    [201]M. D. Zoltowski, et al. Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT[J]. Signal Processing, IEEE Transactions on.1996,44(2):pp.316-328.
    [202]K.-C. Huarng and C.-C. Yeh. A unitary transformation method for angle-of-arrival estimation[J]. Signal Processing, IEEE Transactions on.1991, 39(4):pp.975-977.
    [203]D. A. Linebarger, et al. Efficient direction-finding methods employing forward/backward averaging[J]. Signal Processing, IEEE Transactions on.1994, 42(8):pp.2136-2145.
    [204]H. Miao, et al.2-D Unitary ESPRIT Based Joint AOA and AOD Estimation for MIMO System[C]. in Personal, Indoor and Mobile Radio Communications, 2006 IEEE 17th International Symposium on,2006:pp.1-5.
    [205]L. Xu and J. Li. Iterative Generalized-Likelihood Ratio Test for MIMO Radar[J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on].2007,55(6):pp.2375-2385.
    [206]L. Xu, et al. A block-diagonal growth curve model[J]. Digital Signal Processing.2006,16(6):pp.902-912.
    [207]H. L. V. Trees. Optimum Array Processing. Part IV of Detection, Estimation, and Modulation Theory[M]. New York:John Wiley & Sons,2002.
    [208]J. Chen, et al. A new method for joint DOD and DOA estimation in bistatic MIMO radar[J]. Signal Processing.2010,90(2):pp.714-718.
    [209]J. Liu, et al. Low angle estimation in MIMO radar[J]. Electronics Letters.2010, 46(23):pp.1565-1566.
    [210]E. Yang and J. Chun. Frequency offset estimation for multi-static radar system[C]. in Acoustics, Speech and Signal Processing,2008. ICASSP 2008. IEEE International Conference on,2008:pp.1477-1480.
    [211]N. Liu, et al. Direction finding of MIMO radar through ESPRIT and Kalman filter[J]. Electronics Letters.2009,45(17):pp.908-910.
    [212]Y. Cao. Joint estimation of angle and Doppler frequency for bistatic MIMO radar[J]. Electronics Letters.2010,46(2):pp.170-172.
    [213]M. Jin, et al. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing (EURASIP).2009,89(2):pp.244-251.
    [214]X. Zhang, et al. Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar[J]. Radar, Sonar & Navigation, IET.2011,5(6):pp.626-631.
    [215]M. L. Bencheikh and Y. Wang. Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar[J]. Electronics Letters.2010,46(15): pp.1081-1083.
    [216]Y. D. Guo, et al. Beamspace ESPRIT algorithm for bistatic MIMO radar[J]. Electronics Letters.2011,47(15):pp.876-878.
    [217]M. Jiang, et al. Bayesian target location and velocity estimation for multiple-input multiple-output radar[J]. Radar, Sonar & Navigation. IET.2011, 5(6):pp.666-670.
    [218]L. J, et al., "Joint estimation of channel parameters for MIMO communication systems," presented at the Second International Symposium on Wireless Communication Systems, Sep.2005.
    [219]陈金立,et al.一种双基地MIMO雷达快速多目标定位方法[J].电子与信息学报.2009,31(7):pp.1664-1668.
    [220]J.-P. Delmas. Comments on "Conjugate ESPRIT (C-SPRIT)"[J]. Antennas and Propagation, IEEE Transactions on.2007,55(2):pp.511-511.
    [221]M. Kaveh. Sensor Array Processing[M]. Boca Raton, FL:CRC Press,1999.
    [222]T. J. Shan, et al. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on.1985,33(4):pp.806-811.
    [223]M. Pesavento and A. B. Gershman. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise[J]. Signal Processing, IEEE Transactions on.2001,49(7):pp.1310-1324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700