存在阵列误差条件下波达方向估计算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波达方向(DOA)估计是阵列信号处理中的一个重要研究内容,在雷达、声纳、通信系统、智能家电以及智能会议系统中有着广泛的应用。现有的绝大多数DOA估计算法都是基于阵列流形精确已知的前提下得到的。但是在实际的工程应用中,真实的阵列流形往往会随着气候、环境以及器件本身的变化而出现一定程度的偏差。此时,这些算法的估计性能会严重恶化,甚至失效。因此,研究阵列误差条件下的DOA估计算法具有重要的理论意义和实用价值,也是近年来阵列信号处理领域的一个重要方向。本文主要针对三种典型阵列误差条件下的DOA估计问题展开研究,提出了几种有效的自校正算法,主要工作可以概括如下:
     首先,对于通道幅相误差,我们提出了一种基于协方差矩阵幅值的估计算法。算法从参数去“耦合”的角度出发,通过对协方差矩阵的变换,依次对幅度误差、信号方向和相位误差进行估计。算法不需要迭代,且相位误差的大小不影响估计性能,即能获得独立于相位误差的性能。对于现代通信系统中的幅相误差自校正问题,所提算法能够很方便地推广到非圆信号的情况。进一步我们将算法推广到四阶累积量的情况,利用高阶累积量具有抑制高斯噪声和孔径扩展的能力,四阶算法在空间色噪情况下仍然能够有效地消除通道幅相误差的影响。
     其次,对于阵元间的互耦,我们从信号的统计特性出发,提出了两种互耦自校正算法。现有的互耦自校正算法,利用阵列的结构特点,将互耦矩阵表示为特殊的矩阵形式,用维数较低的互耦系数表征互耦矩阵。为了提高互耦校正的性能,我们考虑利用信号的特殊统计特性来设计互耦自校正算法。我们提出了两种算法:第一种算法利用信号的不相关性,从协方差矩阵拟合出发,定义关于互耦系数、信号方向和信号功率的代价函数,利用轮换迭代方法进行求解,得到信号方向的估计。该算法可以适用于均匀线阵、均匀圆阵等特殊阵型,仿真实验表明该算法在低信噪比情况下能获得估计性能的改进。第二种算法针对均匀线阵,利用协方差矩阵和椭圆协方差矩阵定义代价函数,通过类似的迭代求解得到互耦系数的估计。仿真实验表明,利用信号的非圆特性能够有效地提高自校正算法的性能。
     再次,对于阵元位置误差,我们针对代价函数最小化算法依赖于初始值的问题,提出了一种校正算法。鉴于位置误差可以表示为方向依赖的相位误差,我们基于MUSIC算法定义一种对于相位误差具有稳健性的空间谱,通过谱峰位置搜索可以得到信号方向和各信号导向矢量的估计,再利用导向矢量跟阵元位置的关系可以求得位置误差的最小二乘估计。该算法在获得初始方向估计的时候考虑了位置误差的影响,在一些传统算法不能有效分辨信号的情况下可以对阵列进行一定程度的校正,从而保证迭代算法的有效性。
     最后,针对非均匀线阵的DOA估计和互耦自校正问题,从低秩矩阵重构的角度出发,我们提出了一种新的增广协方差矩阵构造算法。现有的基于协方差矩阵结构的自校正算法,都只利用了协方差的托普利兹性。我们考虑利用协方差矩阵秩的特性来提高重构精度,从而获得更好的误差校正性能。借鉴近几年低秩矩阵恢复的研究成果,我们将增广协方差矩阵构造问题表示为一个确定秩的半正定托普利兹矩阵恢复问题,再利用截断核范数规则化思想对问题进行简化,并通过轮换迭代的方法进行求解。利用构造的增广协方差矩阵,再应用传统的DOA估计算法即可以得到信号方向的估计。
As an important research branch of array signal processing, direction of arrival (DOA) estimation has been widely used in radar, sonar, communication systems, smart appliances and smart meeting systems. The vast majority of existing DOA estimation algorithms are based on the assumption that the array manifold is known precisely. However, in practical engineering applications, affected by the climate, environment and changes in the device itself, the uncertainties of the array manifold are unavoidable. Then the performance of these algorithms will deteriorate seriously, or even fail. Therefore, with important theoretical and practical value, DOA estimation in the presence of array error has become an important research area. In this paper, we focus on the problem of DOA estimation in the presence of three type of typical array errors. Several self-calibration algorithms are proposed, and the main contributions can be summarized as follows:
     Firstly, for channel gain and phase errors, we propose an algorithm which is based on the amplitude of the covariance matrix. From perspective of "decoupling", the gain errors, source directions and phase errors are estimated sequentially. The proposed algorithm needs no iteration and has the advantage that the performance is independent of the phase errors. For applications in the modern communication systems, the proposed algorithm can be easily extended to exploit the noncircularity of the signals. As the high-order cumulant can be used to suppress the Gaussian noise, we proposed a similar fourth-order cumulants based algorithm, which can effectively eliminate the influence of channel gain and phase errors in colored noise environment.
     Secondly, for mutual coupling between array elements, we proposed two self-calibration algorithms utilizing the statistical characteristics of the signals. In most existing algorithms, the mutual coupling matrix is expressed with a particular form, which can be characterized using a few of mutual coupling coefficients. In order to improve the performance, we can take advantage of the statistical properties of the signals. We proposed two algorithms:The first one assumes that all signals are uncorrelated. According to the principle of covariance matrix fitting, a cost function is defined with respect to the mutual coupling coefficients, signal directions and power. An iterative method can be used to get the minimizer of the cost function and estimate the DOAs. This algorithm can be applied to uniform linear arrays, uniform circular arrays and some other special arrays. Simulation results have shown that this algorithm can obtain performance improvements for low SNR condition. The second algorithm is designed for uniform linear arrays. A cost function is defined based on the covariance matrix and the ellipse covariance matrix. The mutual coupling coefficients can be estimated using a similar iterative method. Simulation results show that using the noncircularity of the signals can effectively improve the performance of mutual coupling self-calibration.
     Thirdly, for sensor location errors, we proposed an algorithm to solve the problem that the existing iterative algorithms are dependent on the initial estimates. As location errors can be expressed as direction-dependent phase errors, we define an MUSIC based spatial spectrum which is robust to phase errors. The DOAs and the steering vectors can be estimated by searching the peaks of this spectrum. Then the least squares estimate of the location errors can be got from the estimated steering vectors. Since the effect of the location errors is considered, the proposed algorithm can calibrate the array to some extent even when traditional algorithms cannot distinguish all signals. Therefore, the proposed algorithm can be used to ensure the effectiveness of the iterative algorithms.
     Finally, for the problem of DO A estimation and mutual coupling self-calibration for non-unifrom linear arrays, we propose a new algorithm for constructing augmented covariance matrix. The existing self-calibration algorithms just make use of the Toeplitz structure of the covariance matrix. We consider utilizing the property of the rank of the covariance matrix to improve reconstruction accuracy. Inspired by the research in the field of low-rank matrix reconstruction, we construct the augmented covariance matrix through a problem of constructing a positive semidefinite Toeplitz matrix with determined rank. This problem is simplified by the way of truncated nuclear norm regularization and a solution can be got using an iterative schema. Then the DOAs can be estimated using traditional algorithms based on the constructed augmented covariance matrix.
引文
[1]叶中付,统计信号处理[M],合肥:中国科学技术大学出版社,2009.
    [2]王永良等,空间谱估计理论与算法[M],北京:清华大学出版社,2004.
    [3]Johnson D H, Dudgeon D E. Array signal processing:Concepts and Techniques[M]. Englewood Cliffs:Prentice Hall,1993.
    [4]Krim H, Veberg M. Two decades of array signal processing research:the parametric approach[J]. IEEE Signal Processing Magazine,1996,13(4):67-94.
    [5]Bolcskei H, Gesbert D, Papadias CB, Veen A. J. Space-time wireless systems:from array processing to MIMO communications[M]. New York:Cambridge University Press,2008.
    [6]Benesty J, Chen J, Huang Y. Microphone array signal processing[M], Heidelberg: Springer-Verlag,2008.
    [7]Moffet A T. Minimum-redundancy linear arrays[J], IEEE Transactions on Antennas and Propagation,1968,16(2):172-175.
    [8]Gazzah H. Optimum antenna arrays for isotropic direction finding[J], IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1482-1489.
    [9]Gazzah H, Abed-Meraim K. Optimum ambiguity-free directional and omnidirectional planar antenna arrays for DOA estimation[J], IEEE Transactions on Signal Processing,2009, 57(10):3942-3953.
    [10]Wax M, Kailath T. Detection of signals by information theoretic criteria[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1985,33(2):387-392.
    [11]Wax M, Ziskind I. Detection of the number of coherent signals by the MDL principle[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(8):1190-1196.
    [12]Wu H T, Yang J, Chen F K. Source number estimators using transformed Gerschgorim radii[J], IEEE Transactions on Signal Processing,1995,43(6):1325-1333.
    [13]Kay S M, Marple S L. Spectrum analysis-a modern perspective[J], Proceedings of the IEEE,1981,69(11):1380-1419.
    [14]Capon J. High-resolution frequency-wavenumber spectrum analysis[J], Proceedings of the IEEE,1969,57(8):1408-1418.
    [15]Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves[J]. IEEE Transactions on Aerospace and Electronic Systems,1983,19(1):134-139.
    [16]Schmidt R. O., Multiple emitter location and signal parameter estimation[J], IEEE Transactions on Antennas and Propagation,1988,34(3):276-280.
    [17]Rao B D, Hari K V S. Performance analysis of Root-MUSIC[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(12):1939-1949.
    [18]Porat B, Friedlander B. Direction finding algorithms based on high-order statistics[J], IEEE Transactions on Signal Processing,1991,39(9):2016-2024.
    [19]Marcos S, Marsal A, Benidir M. The propagator method for source bearing estimation[J], Signal Processing,1995,42(2):121-138.
    [20]Roy R, T. Kailath, ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1986, 34(10):1340-1342.
    [21]Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(7):984-995.
    [22]Clergeot H, Tressens S, Ouamri A. Performance of high resolution frequencies estimation methods compared to the Cramer-Rao bounds[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(11):1703-1720.
    [23]Bohme J F, Estimation of source parameter by maximum likelihood and nonlinear regression[C], IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'84), Bochum, Mar 1984:271-274.
    [24]Bohme J F., Estimation of spectral parameters of correlated signals in wavefields[J], Signal Processing,1986,11(4):329-337.
    [25]Viberg M, Ottersten B, Kailath T. Detection and estimation in sensor arrays using weighted subspace fitting[J], IEEE Transactions on Signal Processing,1991,39(11):2436-2449.
    [26]Ziskind I, Wax M, Maximum likelihood localization of multiple sources by alternating projection[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1988,36(10): 1553-1559.
    [27]Stoica P, Sharman K C. Novel eigenanalysis method for direction estimation[J], IEE Preceeding,1990,137(1):19-26.
    [28]Baraniuk R G Compressive sensing[J], IEEE Signal Processing Magazine,2007,24(4): 118-121.
    [29]Candes E J, Wakin M B. An introduction to compressive sensing[J], IEEE Signal Processing Magazine,2008,25(2):21-30.
    [30]Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruct on perspective for source localization with sensor arrays[J], IEEE Transactions on Signal Processing,2005, 53(8):3010-3022.
    [31]Hyder M M, Mahata K. Direction-of-arrival estimation using a mixed l2,0 norm approximation[J], IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
    [32]Stoica P, Babu P, Li J. SPICE:a sparse covariance-based estimation method for array processing[J], IEEE Transactions on Signal Processing,2011,59(2):629-638.
    [33]Wipf D P, Rao B D. Sparse Bayesian learning for basis selection[J], IEEE Transactions on Signal Processing,2004,52(8):2153-2164.
    [34]刘寅,基于稀疏信号重构的空间谱估计算法研究[D],西安电子科技大学博士学位论文,2012年9月。
    [35]胡南,基于稀疏重构的阵列信号波达方向估计算法研究[D],中国科学技术大学博士学位论文,2013年5月。
    [36]Chevalier P, Blin A. Widely linear MVDR beamformers for the reception of an unknown signal corrupted by noncircular interferences[J], IEEE Transactions on Signal Processing, 2007,55(11):5323-5336.
    [37]Chevalier P, Delmas J P, Oukaci A. Optimal widely linear MVDR beamforming for noncircular signals[C], IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2009), Taipei, April 2009:3573-3576.
    [38]Gounon P, Adnet C, Galy J. Localization angulaire de signaux non circulaires[J], Traitement du Signal,1998,15(1):17-23.
    [39]Charge P, Wang Y, Saillard J. A non-circular sources direction finding method using polynomial root[J], Signal Processing,2001,81(6):1765-1770.
    [40]Harrdt M, Romer F. Enhancements of unitary ESPRIT for non-circular sources [C], IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'2004), Montral, QC, Canada, May 2004,2:101-1-4.
    [41]Liu Z, Huang Z, Zhou Y, Liu J. Direction of arrival estimation of noncircular signals via sparse representation[J], IEEE Transactions on Aerospace and Electronic Systems,2012, 48(3):2690-2698.
    [42]Schmidt R O. Multilinear array manifold interpolation[J], IEEE Transactions on Signal Processing,1992,40(4):857-866.
    [43]Weiss A J, Friedlander B. Manifold interpolation for diversely polarized arrays, Radar, Sonar and Navigation[J], IEE Proceedings,1994,141(1):19-24.
    [44]See C M S. Method for array calibration in high-resolution sensor array processing, Radar, Sonar and Navigation[J], IEE Proceedings,1995,142(3):90-96.
    [45]Ng B C, See C M S. Sensor-array calibration using a maximum-likelihood approach[J], IEEE Transactions on Antennas and Propagation,1996,44(6):827-835.
    [46]Fistas N, Manikas A. A new general global array calibration method[C], IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'94),4: 73-76.
    [47]See C M S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases[J], Electronics Letters,1994,30(5):373-374.
    [48]Zhang M, Zhu Z D. Array shape calibration using sources in known locations[C], Proceedings of the IEEE National Aerospace and Electronics Conference, NAECO 1993: 70-73.
    [49]Zhang M, Zhu Z D. DOA estimation with sensor gain, phase and position perturbations, Proceedings of the IEEE National Aerospace and Electronics Conference, NAECO 1993: 67-69.
    [50]Stavropouls K, Manikas A. Array calibration in the presence of unknown sensor characteristics and mutual coupling[C], Preceedings of the European Signal Processing Conference, EUSIPO 2000,3:1417-1420.
    [51]Rockah Y, Schultheiss P M. Localization performance of arrays subject to phase errors[J], IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):402-409.
    [52]Rockah Y, Schultheiss P M. Array shape calibration using sources in unknown locations-Part Ⅰ:Far-field sources[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1987,35(3):286-299.
    [53]Rockah Y, Schultheiss P M. Array shape calibration using sources in unknown locations-Part Ⅱ:Near-field sources and estimator implementation[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1987,35(6):723-735.
    [54]Friedlander B, Weiss A J. Eigenstructrue methods for direction finding with sensor gain and phase uncertainties[C], IEEE International Conference on Acoustics, Speech, and Signal Processing,1988:2681-2684.
    [55]Weiss A J, Friedlander B. Eigenstructrue methods for direction finding with sensor gain and phase uncertainties[J], Circuits Systems Signal Process,1990,9(3):271-300.
    [56]Friedlander B. Weiss A J. Direction finding in the presence of mutual coupling[J], IEEE Transactions on Antennas and Propagation,1991,39(3):273-284.
    [57]Weiss A J, Friedlander B. Array shape calibration using eigenstructure methods[C], Twenty-third Asilomar Conference on Signals, Systems and Computers,1989:925-929.
    [58]Weiss A J, Friedlander B. Array shape calibration using sources in unknown locations-a maximum likelihood approach[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(12):1958-1966.
    [59]Hung E K L. A critical study of a self-calibrating direction-finding method for arrays[J], IEEE Transactions on Signal Processing,1994,42(2):471-474.
    [60]Wijnholds S J, Veen A J D. Multisource self-calibration for sensor arrays[J], IEEE Transactions on Signal Processing,2009,57(9):3512-3522.
    [61]Viberg M, Swindlehurst A L. A Bayesian approach to auto-calibration for parametric array signal processing[J], IEEE Transactions on Signal Processing,1994,42(12):3495-3507.
    [62]Jansson M, Swindlehurst A L, Ottersten B. Weighted subspace fitting for general array error medels[J], IEEE Transactions on Signal Processing,1998,46(9):2483-2497.
    [63]Hong J S. Genetic approach to bearing estimation with sensor location uncertainties[J], Electronics Letters,1993,29(23):2013-2014.
    [64]Li M, Lu Y. Source bearing and steering-vector estimation using partially calibrated arrays[J], IEEE Transactions on Aerospace and Electronic Systems,2009,54(4): 1361-1372.
    [65]Li M, Lu Y. Maximum likelihood processing for arrays with partially unknown sensor gains and phases[C],7the International Conference on ITS Telecommunications,2007:1-6.
    [66]徐青,陶海红,廖桂生,基于GA的阵列幅相误差校正新算法[J].系统工程与电子技术,2006,28(5):653-657.
    [67]Liu A, Liao G, Zeng C, Yang Z, Xu Q. An eigenstructure method for estimating DOA and sensor Gain-Phase errors[J], IEEE Transactions on Signal Processing,2011,59(12): 5944-5956.
    [68]Qi C, Wang Y, Zhang Y, Chen H. DOA estimation and self-calibration algorithm for uniform circular array[J], Electronics Letters,2005,41(20):1092-1094.
    [69]王布宏,王永良,陈辉,陈旭.均匀线阵互耦条件下的鲁棒DOA估计及互耦自校正[J],中国科学,2004,34(2):229-240.
    [70]Ye Z, Liu C. On the resiliency of MUSIC direction finding against antenna sensor coupling[J], IEEE Transactions on Antennas and Propagation,2008,56(2):371-380.
    [71]Liu C, Ye Z, Zhang Y. Autocalibration Algorithm for Mutual Coupling of Planar Array[J], Signal Processing,2010,90(3):784-794.
    [72]Ye Z, Dai J. Xu X, Wu X. DOA estimation for uniform linear array with mutual coupling[J], IEEE Transactions on Aerospace and Electronic Systems,2009,45(1): 280-288.
    [73]Dai J, Xu W, Zhao D. Real-valued DOA estimation for uniform linear array with unknown mutual coupling[J]. Signal processing,2012,92(9):2056-2065.
    [74]Ye Z, Liu C,2-D DOA Estimation in The Presence of Mutual Coupling[J], IEEE Transactions on Antennas and Propagation,2008,56(10):3150-3158.
    [75]Lin M, Yang L. Blind Calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling[J], IEEE Antennas and wireless propagation letters,2006,5(1): 315-318.
    [76]Paulraj A, Kailath T. Direction of arrival estimation by eigenstructure methods with unknown sensor gain and phase[C], IEEE International Conference on Acoustics, Speech, and Signal Processing,1985:640-643.
    [77]Wylie M P, Roy S, Messer H. Joint DOA estimation and phase calibration of linear equispaced (LES) arrays[J], IEEE Transactions on Signal Processing,1994,42(12): 3449-3459.
    [78]Li Y, Er M H. Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array[J], IEEE Transactions on Signal Processing, 2006,54(2):712-723.
    [79]Heidenreich P, Zoubir A M, Rubsamen M. Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays[J], IEEE Transactions on Signal Processing,2012,60(29): 4683-4693.
    [80]Sellone F, Serra A. A novel online mutual coupling compensation algorithm for uniform and linear array[J], IEEE Transactions on Signal Processing,2007,55(2):560-573.
    [81]Kim J, Yang H J, Jung B W, Chun J. Blind calibration for a linear array with gain and phase error using independent component analysis[J], IEEE Antennas and Wireless Propagation Letters,2010,9:1259-1262.
    [82]Weiss A J, Friedlander B. DOA and steering estimation using a partially calibrated array[J], IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1047-1057.
    [83]Liao B, Chan S C. Direction finding with partly calibrated uniform linear arrays[J], IEEE Transactions on Antennas and Propagation,2012,62(2):922-929.
    [84]Wang B, Wang Y, Chen H. Array calibration of angularly dependent gain and phase uncertainties with instrumental sensors[C], IEEE International Symposium on Phased Arrays Syestems and Technology,2003:182-186.
    [85]Wang B, Wang Y, Guo Y. Mutual coupling calibration with instrumental sensors[J], Electronics Letters,2004,40(7):406-408.
    [86]Wang B, Guo Y. Mutual coupling auto-calibration of conformal array antenna with instrumental sensors method[C], International Workshop on Antenna Technology:Small Antennas and Novel Metamaterials,2008:406-409.
    [87]See C M S, Gershman A B. Direction of arrival estimation in partly calibrated subarray-based sensor arrays[J], IEEE Transactions on Signal Processing,2004,52(2): 329-338.
    [88]Swindlehert A L, Stoica P, Jansson M. Apllication of MUSIC to arrays with multiple inveriances[C], IEEE International Conference on Acoustics, Speech, and Signal Processing, Bochum, Mar 2000:3057-3060.
    [89]Pesavento M, Gershman A B, Wong K M. Direction finding in partly calibrated sensor arrays composed of multiple subarrasy[J], IEEE Transactions on Signal Processing,2002, 50(9):2103-2115.
    [90]Parvazi P, Pesavento M, Gershman A B. Direction of arrival estimation and array calibration for partly calibrated arrays[C], IEEE International Conference on Acoustics, Speech, and Signal Processing, Bochum, Mar 2011:2552-2555.
    [91]Liu C, Ye Z, Zhang Y. DOA Estimation Based on Fourth-Order Cumulants with Unknown Mutual Coupling[J], Signal processing,2009,89(9):1839-1843.
    [92]Xiang L, Ye Z, Xu X, Chang C, Xu W, Hung Y S. Direction of arrival estimation for uniform circular array based on fourth-order cumulants in the presence of unknown mutual coupling[J], IET Microwaves, Antennas and Propagation,2008,2(3):281-287.
    [93]Dai J, Ye Z. Spatial smoothing for direction of arrival estimation of coherent signals in the presence of unknown mutual coupling[J], IET Signal Processing,2011,5(4):418-425.
    [94]Bao Q, Ko C C, Zhi W. DOA estimation under unknown mutual coupling and multipath[J], IEEE Transactions on Aerospace and Electronics Systems,2005,41(2):565-573.
    [95]王布宏,王永良,陈辉,多径条件下基于加权空间平滑的阵元幅相误差校正[J],通信学报,2004,25(5):166-174.
    [96]陈德莉,卢焕章,张聪,空间非平稳噪声环境下阵列通道幅相误差自校正算法[J],信号处理,2008,24(4):515-519.
    [97]Ye Z, Liu C. Non-sensitive Adaptive Beamforming against Mutual Coupling[J], IET Signal Processing,2009,3(1):1-6.
    [98]Liang J, Liu D. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm[J], IEEE Transactions on Signal Processing,2010,58(1): 108-120.
    [99]张小飞,汪飞,徐大专,阵列信号处理的理论和应用[M],北京:国防工业出版社,2010.
    [100]费元春等,宽带雷达信号产生技术[M].北京:国防工业出版社,2002.
    [101]Dogan M C, Mendel J M. Applications of cumulants to array processing-part I:Aperture extension and array clibration[J], IEEE Transactions on Signal Processing,1995,43(5): 1200-1216.
    [102]Abeida H, Delmas J P. MUSIC-like estimation of direction of arrival for noncircular sources[J], IEEE Transactions on Signal Processing,2006,54(7):2678-2690.
    [103]Gao F, Nallanathan A, Wang Y. Improved MUSIC under the coexistence of both circular and noncircular sources[J], IEEE Transactions on Signal Processing 2008,56(7): 3033-3038.
    [104]王布宏,王永良,陈辉,方位依赖阵元幅相误差校正的辅助阵元法[J],中国科学E辑,2004,34(8):906-918.
    [105]Wylie M P, Roy S, Schmitt R F. Self-calibration of linear equi-spaced (LES) arrays[C], IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'93), Minneapolis, April 1993:281-284.
    [106]Ye Z, Zhang Y. DOA estimation for non-Gaussian signals using fourth-order cumulants[J], IET Microwaves, Antennas and Propagation,2007,3(7):1069-1078.
    [107]Zeng W, Li X, Zhang X. Direction-of-arrival estimation based on the joint diagonalization structure of multiple fourth-order cumulant matrices[J], IEEE Signal Processing Letters,2009,16(3):164-167.
    [108]Ma W K, Chi C Y. DOA estimation of Quasi-Stationary signals with less sensors than sources and unknown spatial noise covariance:A Khatri-Rao subspace approach[J], IEEE Trans. Signal Processing,2010,58(4):2168-2180.
    [109]Aktas M, Tuncer T E. Iterative HOS-SOS (IHOSS) algorithm for direction-of-arrival estimation and sensor localization[J], IEEE Transactions on Signal Processing,2010,58(4): 6181-6194.
    [110]Santori A, Barrere J, Chabriel G, Jauffret C, Medynski D. Sensor self-localization for antenna arrays subject to bending and vibrations[J], IEEE Transactions on Aerospace and Electronic Systems,2010,46(2):884-898.
    [111]Yoon Y, Kaplan L M, McClellan J H. TOPS:New DOA estimator for wideband signals[J], IEEE Transactions on Signal Processing,2006,54(6):1977-1989.
    [112]Haykin S, Reilly J P, Kezys V, Vertatschitsch E. Some aspects of array signal processing[J], IEE Proceedings F-Radar and Signal Processing,1992,139(1):1-26.
    [113]Chambers C, Tozer T C, Sharman K C, Durrani T S. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals:When less can mean more[J], IEEE Transactions on Signal Processing,1996,44(12):3085-3098.
    [114]Pillai S, Bar-Ness Y, Haber F. A new approach to array geometry for improved spatial spectrum estimation, Proceedings of the IEEE,1985,73(10):1522-1534.
    [115]Pillai S, Haber F. Statistical analysis of a high resolution spatial spectrum estimator utilizing an augmented covariance matrix[J], IEEE Transactions on Acoustics, Speech, and Signal Processing,1987,35(11):1517-1523.
    [116]Abramovich Y I, Gray D A, Gorokhov A Y, Spencer N K. Positive-Definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays-Part I:fully augmentable arrays[J], Transactions on Signal Processing,1998,46(9):2458-2471.
    [117]Abramovich Y I, Spencer N K, Gorokhov A Y. Positive-Definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays-Part Ⅱ:partially augmentable arrays, [J], Transactions on Signal Processing,1999,47(6):1502-1521.
    [118]Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion[J], SIAM Journal on Optimization,2010,20(4):1956-1982.
    [119]Toh K C, Yun S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems[J], Pacific Journal of Optimization,2010,6(3):615-640.
    [120]Wright J, Ganesh A, Rao S, Peng Y, Ma Y. Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization[C], Annual Conference on Advances in Neural Information Processing Systems,2009:2080-2088.
    [121]Hu Y, Zhang D, Ye J, Li X, he X. Fast and accurate matrix completion via truncated nuclear norm regularization, IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(9):2117-2130.
    [122]Ottersten B, Stoica P, Roy R. Covariance matching estimation techniques for array signal processing application[J], Digital Signal Processing,1998,8(3):185-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700