阵列信号处理的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理经过几十年的发展,已经取得了诸多研究成果。但在一些工程具体应用中仍有较多关键问题亟待解决。如天线阵列拓扑设计、微弱信号测向、波束形成、互耦和通道误差校正等方面,在工程应用中的实现研究仍是难点。特别是利用星载平台对地面弱小信号目标进行侦测,面临着阵列单元数受限、可供布阵的区域形状和面积受限、最小单元半径受限、接收信号微弱、互耦和通道误差校正难度较大等不利条件,需要对星载阵列天线的阵列拓扑结构进行优化设计,结合阵列拓扑结构对微弱多信号测向和波束形成技术进行研究,对互耦和通道误差进行校正,以提高接收灵敏度和测向精度。论文主要针对星载阵列天线的布阵方式及优化方法、阵列测向方法、数字波束形成技术以及阵列误差校正方法等关键技术进行研究。文中提出、推导了一系列具有理论及实用价值的新算法,并通过计算机仿真实验验证了所提算法的优良性能。归纳起来,本文的贡献和创新主要在以下几个方面:
     1、基于微遗传优化算法和粒子群优化算法方法,研究了阵列拓扑结构设计及优化方法,分别设计了一维非均匀线阵、七臂圆环阵列和修改的七臂圆环阵列结构。对一维非均匀线阵、七臂圆环阵列和修改的七臂圆环进行了综合分析和仿真,给出了综合及仿真结果。仿真表明,在给定的条件下,七臂圆环阵列在副瓣性能上具有更好的特性。
     2、提出了基于二次组阵的MUSIC测向算法,该算法在阵列中选择多个子阵构成的子阵集合,可以通过子阵间阵元的交叉或重叠选取的方式增加整个阵列天线的阵元增益,从而实现对微弱信号的DOA估计。分别结合七臂圆环阵和修改的七臂圆环阵对测向性能进行了仿真,仿真验证了该方法的有效性。提出了基于二次虚拟内插技术的圆阵接收2D-DOA分离估计方法,该方法通过对圆阵进行了两次内插,根据内插出的两个圆阵之间的移不变性,可分别利用ESPRIT算法和MUSIC算法直接获得俯仰角和方位角的估计。仿真研究表明二次内插比单次内插的估计精度高。
     3、研究了基于协方差对角加载、广义线性组合和幅度加权的波束形成技术,设计了幅度加权方式,结合七臂圆环阵对这些波束形成方法进行了仿真,仿真表明采用圆环幅度加权形式,能够在较宽的频率范围内降低旁瓣。提出了基于粒子群优化的波束形成方法,该方法易于并行实现,能极大地提高算法的运算速度。经仿真验证,算法与SMI算法性能相当,即使存在阵列通道误差时,该算法也能有效收敛。研究了并行多波束形成方法和基于线性约束多波束形成方法,结合七臂圆环阵进行了仿真,仿真验证了这两种方法在七臂圆环阵情况下可有效地形成多波束,波束形成效果好,能同时分离多个信号。
     4、针对存在互耦情况下的阵列输出模型与阵列校正问题,提出了一种新的阵列互耦有源校正算法。该算法基于均匀圆阵,适用于校正多个源同时存在的情况。
After decades of advance in array signal processing, there are numerous research achievements. However in realistic application, there are still many key problems are to be solved. For example, antenna array structure design, direction finding for weak signal, beamforming, calibration of mutual coupling and channel errors, these problems are still hard to be solved. Especially when using satellite platform to sense the weak signal on the ground, we are facing many problems such as limitation of the number of array units, limitation of the area and the shape of the platform for array disposing, limitation of the radius of the minimum unit, weakness of the received signal, the difficulty of emendation of mutual coupling and channel errors. We have to optimize the design of the array structure for satellite carrier, research the direction finding and beamforming method for weak signal based on the array structure, amend the mutual coupling and channel error according to the impact of the direction finding and beamforming, thus we can improve the receive sensitivity and the precision of direction finding. In this dissertation, several key techniques in array signal processing such as the collocation and optimization method of the antenna array, direction finding method, digital beamforming and array calibration method are to be studied. Several novel and valuable algorithms were proposed and derived in the dissertation, computer simulation validated their efficientness. The main contributions and innovations of this dissertation are as follow:
     1. Based on the micro-genetic optimization algorithm and the particle swarm optimization algorithm, the array collocation and optimization methods are studied, one dimensional nonuniform linear array, seven arm circle array and modified seven arm circle array are designed. We synthesized, analyzed and simulated the performance of the one dimensional nonuniform linear array, seven arm circle array and modified seven arm circle array, the synthesized and simulation results are given. The simulations show that the seven arm circle array owns the lowest sidelobe level in the same condition.
     2. The MUSIC algorithm based on twice organized array is proposed, this algorithm chooses multiple subarray in the array as subarray set, thus improving the array gain for the whole array by crossing or overlapping the subarrays, and realize the direction of arrival(DOA) estimation for weak signal. Combining with seven arm circle array and modified seven arm circle array, we simulated the the direction finding algorithm, the simulation validated the efficiency of the algorithm. The circular array received 2D-DOA separable estimation method based on twice virtual interpolation is proposed. This method interpolated the circular array twice, according to the shift invariance of the two interpolated virtural circular array, we can obtain the estimation of the azimuth and elevation by using ESPRIT and MUSIC algorithm respectively. Computer simulation shows that the performance of twice interpolation is superior than single interpolation.
     3. Single beam forming methods which based on covariance matrix load, amplitude weighted using generalized linear combination are studied. The amplitude weight method is designed. We simulated these beamforming algorithms based on seven arm circle array, simulation results shows that we can get lower sidelobe in wider band by using circle amplitude weighted method. Beamforming method based on particle swarm optimization algorithm is proposed. This method is easy to realize, can improve the computation efficiency greatly. From the simulation, we can see that the performance of this algorithm is as good as SMI algorithm, when there is channel error, the algorithm can also be convergence efficiently. Parallel and linearity restriction multiple beamforming method were studied respectively. The simulation is based on seven arm circle array, the simulation validated the efficiency of the two algorithm, they can beamform efficiently, and can separate multiple signals.
     4. The array output model and array calibration problem are studied in presence of mutural coupling, a new active array calibration algorithm is proposed to solve the problem of mutural coupling. This algorithm is based on uniform circular array. It is suitable to calibrate the array when multiple sources exist.
引文
[1] A.Manikas, A.Alexiou, H.R.Karimi. Comparison of the ultimate direction-finding capabilities of a number of planar array geometries. Radar, Sonar and Navigation, IEE Proceedings. 1997.144(6):321-329.
    [2] U.Baysal, R.L.Moses. On the geometry of isotropic arrays. IEEE Trans on Signal Processing, 2003. 51(6):1469-1478.
    [3] P.Ioannides, C.A.Balanis. Uniform circular arrays for smart antennas. IEEE Antennas and Propagation Magazine. 2005, 47(4):192-206.
    [4] M.Hajian, C.Coman, L.P.Ligthart. Comparison of circular, Uniform and non uniform Y-shaped array antenna for DOA estimation using music algorithm. The 9th European Wireless Technology Conference. 2006:143-146.
    [5] A.Abouda, H.M.El-Sallabi., and S.G.Haggman. Effect of antenna array geometry and ULA azimuthal orientation on MIMO channel properties in urban city street grid. Progress In Electromagnetics Research, PIER, 2006:257-278.
    [6] P.J.Bevelacqua, C.A.Balanis. Optimizing Antenna Array Geometry for Interference Suppression. IEEE Trans on Antennas and Propagation. 2007, 55(3):637-641.
    [7] A.Manikas, A.Sleiman, I.Dacos. Manifold studies of nonlinear antenna array geometries. IEEE Transactions on Signal Processing. 2001 49(3):497-506.
    [8] J.T.H.Lo. and S.L.Marple. Observability conditions for multiple signal direction finding and array sensor localization. IEEE Trans. Signal Prosessing, 1992, 40(11):2641-2650.
    [9] M.D.Zoltowski, C.P.Mathews. Real-time frequency and 2-d angle estimation with sub-nyquist spatio-temporal sampling. IEEE Trans on Signal Processing. 1994, 42(10):2781-2794.
    [10] A.Manikas and C.Proukakis and V.Lefkaditis. Investigative study of planar array ambiguities based on“hyperhelical”parameterization. IEEE Trans on Signal Prosessing.1999, 47(6):1532-1541.
    [11] C.W.Ang, C.M.See and C.K.Alex. Optimization of array geometry for identifiable high resolution parameter estimation in sensor array signal processing. ICICS '97 Singapore, 1997:9-12.
    [12] M.Eric, A.Zejak, M.Obradovic. Ambiguity characterization of arbitrary antenna array: type IIambiguity. IEEE 5th International Symposium on Spread Spectrum Techniques and Applications, 1998, 3:955-958.
    [13] J.L.Schwartz, B.D.Steinberg. Ultrasparse, ultrawideband arrays. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control. 1998, 45(2):376-393.
    [14]李艳斌.空间谱估计无模糊测向的天线阵设置.无线电工程.1998, 28(6):5-6.
    [15]陈辉,王永良,万山虎.非均匀线阵的模糊问题及方位估计.空军雷达学院学报.1999, 13(1):7-10.
    [16]邵丽君,赵淑清.非均匀阵列天线超分辨测向性能分析.无线电工程. 2005.35(10):43-46.
    [17]邵丽君,赵淑清.一种优化非均匀阵列天线测向性能的方法.电讯技术. 2005:116-119.
    [18]刁鸣,孙鉴.二维超分辨测向天线阵性能仿真与分析.弹箭与制导学报. 2006 26(1):153-156.
    [19]吴世龙,罗景青.星载稀布L阵对地面辐射源的高精度测向研究.上海航天. 2006.2:24-27.
    [20]陈磊,王建英,吕雪,王峰.一种特殊阵列实现DOA估计的方法.山东大学学报. 2007. 37(2):84-88.
    [21]谢维华,左继章.基于Y形阵的空时二维DOA估计.现代雷达2007.29(1):71-75.
    [22]赵春晖,李刚,唐爱华.五元十字交叉阵的测向模糊分析及阵列改进措施.应用科技. 2006.33(2):1-3.
    [23]吕泽均.高分辨阵列测向技术研究. [博士学位论文].成都:电子科技大学,2003.
    [24]顾建峰.空间方向估计的阵列结构及其算法的研究.[博士学位论文].成都:电子科技大学,2004.
    [25]陈客松,何子述,韩春林.非均匀天线优化布阵研究.电子学报. 2006.34(12):2263-2266.
    [26]孙绍国,张玉梅,卢晓鹏.L波段宽带超低副瓣偶极子阵列天线研制.微波学报. 2006.22:5-10.
    [27]邓淑英.X波段低损耗高增益微带天线阵列拓扑设计.现代电子技术.2006. 232(17):76-80.
    [28] R.O.Schmit. Multiple emitter location and signal parameter estimation. IEEE Trans. Antenna Propagation. 1986,34(3):276-280.
    [29] R.Roy, T.Kailath. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. ASSP.1989, 37(6):984-995.
    [30] T.J.Shan, M.Wax, T.Kailath. On spatial smoothing for direction-of-arrival estimation of coherent signals . IEEE Trans on ASSP. 1985. 33 (4) :806-811.
    [31] Y.H.Choi, On conditions for the rank restoration in forward/backward spatial smoothing. IEEE Trans on SP. 2002. 50 (11): 2900-2901.
    [32] I.Ziskind, M.Wax. Maximum likelihood localization of multiple sources by alternatingprojection. IEEE Trans. ASSP, 1988. 36(10):1553-1560.
    [33] H.Watanabe, M. Suzuki, N. Nagai and N.Miki. Maximum likelihood bearing estimation by quasi-Newton method using a uniform linear array. Proc. IEEE Int. Conf. Acoust. , Speech, Signal Processing (ICASSP), 1991: 3325-3328
    [34]王姝,何子述.宽带强干扰背景下的弱信号源DOA估计方法.现代雷达.2006, 28(9):68-71.
    [35]陈辉,苏海军.强干扰/信号背景下的DOA估计新方法.电子学报.2006. 34(3):530-534.
    [36]柴立功,罗景青.一种强干扰条件下微弱信号DOA估计的新方法.电子与信息学报, 2005, 27(10):1517-1520.
    [37] P. Stocia, A. Jakobsson, and J. Li. Cisoid parameter estimation in the colored noise case: Asymptotic Cramér–Rao bound, maximum likelihood, and nonlinear least squares. IEEE Trans. Signal Processing. 1997, 45(8):2048–2059.
    [38] M.Peasavento, A.B.Gershman.Maximum likelihood direction-ofarrival estimation in the presence of unknown nonuniform noise. IEEE Trans. Signal Processing. 2001, 49(7):1310–1324.
    [39] M.Wax, T.Kailath. Detection of signals by information theoretic criteria. IEEE Trans. Acoust Speech Signal Processing. 1985. 33: 387-392.
    [40] S.Valaee and P.Kabal. An information theoretic approach to source enumeration in array signal processing. IEEE Trans. Signal Processing. 2004.52(5): 1171-1178.
    [41] A.A.Tadaion, M.Derakhtian. A Fast Multiple-Source Detection and Location Array Signal Processing Algorithm Using the Spatial Filtering and ML Approch. IEEE Trans. Signal Processing. 2007. 55(5):1815-1827.
    [42] E.Taillefer, J.Cheng, Y.Watanabe. Full azimuth direction-of-arrival estimation with successive-selection technique. IEEE Trans. Signal Processing. 2008.56(12): 5903-5915.
    [43] J.Dmochowski, J.Benesty, S.Affes. Direction of arrival estimation using the parameterized spatial correlation matrix. IEEE Trans. Signal Processing. 2007.15(4):1327-1339.
    [44] E.Taillefer, W.Nomura, J.Cheng, et.al. Enhanced reactance-domain ESPRIT algorithm employing multiple beams and translational-invariance soft selection for direction-of-arrival estimation in full azimuth. IEEE Trans. Signal Processing. 2008.56(8):2514-2526.
    [45] A.Hatara, E.Taillefer, H.Yamada, et.al. Handheld direction of arrival finder with electronically steerable parasitic array radiator using the reactance-domain multiple signal classification algorithm. IET Microwave, Antenna and Propagation. 2007.1(4):815-821.
    [46] C.E.Chen, F.Lorenzelli, R.E.Hudson, et.al. Stochastic maximum-likelihood DOA estimation inthe presence of unknown noise. IEEE Trans. Signal Processing. 2008. 56(7):3038-3044.
    [47] T.T.Zhang, Y.L.Lu, H.T.Hui. Compensation for the mutual coupling effect in uniform circular arrays for 2D DOA estimations employing the maximum likelihood technique. IEEE Trans. Aerospace and Electronic Systems. 2008.44(3): 1215-1221.
    [48] M.Rubsamen, A.B.Gershman. Direction-of-arrival estimation for nonuniform sensor arrays: from manifold separation to fourier domain MUSIC methods. IEEE Trans. Signal Processing. 2009.57(2):588-599.
    [49] Z.Ye, C.Liu. 2D DOA estimation in the presence of mutual coupling. IEEE Trans. Antenna and Propagation. 2008.56(10):3150-3158.
    [50] X.Mestre, M.A.Lagunas. Modified subspace algorithms for DOA estimation with large arrays. IEEE Trans. Signal Processing. 2008.56(2):598-614.
    [51] S.Vigneshwaran, N.Sundararajan, P.Saratchandran. Direction of arrival estimation under array sensors failures using a minimum resource allocation neural network. IEEE Trans. Antenna and Propagation. 2007.55(2):334-343.
    [52] Y.Nagata, T.Fujioka, M.Abe. Two-dimensional DOA estimation of sound sources based on weighted Wiener gain exploiting two-directional microphones. IEEE Trans. Audio, Speech and Language Processing. 2007.15(2):416-429.
    [53] Z.Ye, Y.Yang, C.Liu. Direction-of-arrival estimation for uncorrelated and coherent signals with fewer sensors. IET Microwaves, Antenna and Propagation. 2009.3(3):473-482.
    [54]邱力军,周智敏,梁旬农.稀布相控阵雷达子阵划分方法研究.系统工程与技术.1997. (7):31-35.
    [55] S.Haykin, Advaned in array signal processing, Springer,1997。
    [56] B.V.Veen. An analysis of several partially adaptive beamformer designs. IEEE Acoust. Speech, Signal Processing, 1989.37:192-203.
    [57] B.D.Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. Aerospace and Electronic Systems, 1988.24(4):397-401.
    [58] R.L.Dilsavor and R.L.Moses. An experimental smi adaptive antenna array simulator for weak interfering signals. IEEE Antennas and Propagation. 1991. 39(2):236-243.
    [59] L.J.Gruffiths, C.W.Jim. An alternative approach to linearly constrained optimum beamforming.IEEE Trans.Antennas Propag.1982.30:27-34.
    [60] Van Veen B,Buckley K M.Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag.1988.5:4-12.
    [61] J.R.Treichler and B.G.Agee. A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust. Speech, Signal Processing. 1983. 31:459-472.
    [62] M.J Wilson and R.McHugh .Sparse-periodic hybrid array beamformer. IET Radar Sonar Naving.,2007.1 (2):116-123
    [63] H.Cox, R.M.Zeskind, and M.M.Owen.Robust adaptive beamforming. IEEE Trans. Acoust. Speech Signal Processng. 1987.35:1365-1367.
    [64] D.W.Boeringer, D.H.Wemer. Particle swarm optimization of a modified bernstein polynomial for conformal array excitation synthesis. IEEE Antennas Propaga, Symposium,Monterey, Canada. 2004:2293-2296.
    [65] G erlach K.Adaptive Array Transient Sidelobe Levels and R e-Mddies. IEEE Transon AES. 1990.26(5):560-568.
    [66]龚耀寰.自适应滤波———时域自适应滤波和智能天线.北京:电子工业出版社.2003.
    [67] C.hou, J.H.Lee. Robust Adaptive Array Beamforming under Steering Vector Error. 1982.30:27-34.
    [68] H.Saioh, A.Sano. New Accelerated Adaptive Beamforming Algorithm. Sensor Array And Multichannel Signal Processing Workshop, 2004,94(1):1-7
    [69] V.B.Van, K.M.Buckley. Beamforming: a versatile approach to spatial filtering. IEEE ASSP Mag.1988.5:4-12.
    [70] J.R.Treichler and B.G.Agee. A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust Speech Signal Processing. 1983.(31):459-472.
    [71] Wilson.M.J, McHugh.R. Sparse-periodic hybrid array beamformer. IET Radar Sonar Naving. 2007.1(2):116-123.
    [72] C.M.S See. Sensor array calibration in the presence of mutual coupling and unknown sensor gain and phases. Electron Lett, 1994, 30(3): 373-374.
    [73] C.M.S.See. Method for array calibration in high-resolution sensor array processing. IEE Proc. Radar, Sonar, Naving, 1995, 142(3): 90-96.
    [74] B.C.Ng. Sensor array calibration using a maximum-likelihood approach. IEEE Trans on AP, 1996, 44(8): 827-835.
    [75] A.G.Jaffer. Constrained mutual coupling estimation for array calibration. Proceeding of the 35th Asilomar Conference on Signal, Systems and Computers, 2001, 1273-1277.
    [76] B.Friedlander, A.J.Weiss. Direction finding in the presence of mutual coupling. IEEE Trans on AP, 1991, 39(3): 273-284.
    [77] F.Sellone, A.Serra. A novel mutual coupling compensation algorithm for uniform and linear arrays. IEEE Trans on SP, 2007, 55(2): 560-573.
    [78] A.J.Weiss, B.Friedlander.“Almost Blind”steering vector estimation using second-order moments. IEEE Trans on SP, 1996, 44(4): 1024-1027.
    [79] A.J.Weiss, B.Friedlander. Performance analysis of spatial smoothing with interpolated arrays. IEEE Trans. on Signal Processing, 1993, 41(4):1881-1892.
    [80] A.J.Weiss, M.Gavish. Direction finding using ESPRIT with interpolated arrays. IEEE Trans. on Signal Processing, 1991, 39(6):1473-1478.
    [81] B.Friedlander, A.J.Weiss. Performance analysis of spatial smoothing with interpolated arrays. ICASSP’91. Toronto. ONT., Canada, 1991:1377-1380.
    [82] B.Friedlander, A.J.Weiss. Performance analysis of wideband direction finding using interpolated arrays. ICASSP’92, San Francisco, CA, USA, 1992:457-460.
    [83] B.Friedlander. Direction finding using spatial smoothing with interpolated arrays. IEEE Trans. on Aerospace and Electronic Systems. 1992, 28(2):574-587.
    [84] B.Friedlander. The root-MUSIC algorithm for direction finding with interpolated arrays. IEEE Trans on Signal Processing, 1993, 41(1):15-25.
    [85] C.U.Padmini, P.S.Naidu. Circular array and estimation of direction of a wideband source. Signal Processing. 1994, 37(4):243-254.
    [86] E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part III: blind beamforming for cohernt signals. IEEE Trans. Signal Processing. 1997, 45(9):2252-2264.
    [87] E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part IV: direction finding in coherent signals case. IEEE Trans. Signal Processing. 1997, 45(9):2265-2276.
    [88] E.Gonen, J.M.Mendel. Applications of cumulants to array processing Part VI: polarization and direction of arrival estimation with minimal constraned arrays. IEEE Trans. Sginal Processing. 1999, 47(9):2589-2592.
    [89] H.Chen, Y.L.Wang, Z.W.Wu. Frequency and 2-D angle estimation based on uniform circular array. IEEE international symposium on phased array systems and technology, Boston, Massachusetts, USA, 2003, 22-27:547-552.
    [90] H.Chen, Y.L.Wang. A modified method of frequency and 2-D angle estimation, IEEE antennas and propagation society international symposium, Columbus, OH, USA, 2003, 22-27:920-923.
    [91] J.M.Mendel. Tutorial on higher-order statistics(spectra) in signal processing and system theory:theoretical results and some applications. Procedding of the IEEE, 1991, 79(3): 278-305.
    [92] J.Y.Wang, F.Wang, Z.K.Yin. Wideband signal DOA estimation based on MP decomposition. IWSDA’07. Chengdu, China, 2007:18-21.
    [93] M.C.Dogan, J.M.Mendel. Applications of cumulants to array processing Part I: aperture extension and array calibration. IEEE Trans. Signal Processing. 1995, 43(5):1200-1216.
    [94] M.C.Dogan, J.M.Mendel. Applications of cumulants to array processing Part II: non-Gaussian noise suppression. IEEE Trans. Signal Processing. 1997, 43(7):1663-1676.
    [95] M.D.Zoltowski, D.Stavrinides. Sensor array signal processing via a procrustes rotations based on eigenanalysis of the ESPRIT data pencil. IEEE Trans. Signal Processing. 1989, 37(6):832-861.
    [96] M.Viberg, B.Ottersten. Sensor array processing based on subspace fitting. IEEE Trans. Signal Processing, 1991, 39(5):1110-1121.
    [97] Mubarak.M.S, Sawafi.A, Joseph.A.J.A Micro Genetic Algorithm-based CDMA Multi-user Detector. Proceedings. Second Annual Conference on Communication Networks and Services Research, 2004:175-180
    [98] N.Yilmazer, J.Koh, T.K.Sarkar. Utilization of a unitary transform for efficient computation in the matrix pencil method to find the direction of arrival. IEEE Trans. Antennas and Propagation. 2006, 54(1):175-181.
    [99] N.Yilmazer, R.F.Recio, T.K.Sarkar. Matrix pencil method for simultaneously estimationg azimuth and elevation angles of arrival along with the frequency of the incoming signals. Digital Signal Processing. 2006, 16:796-816.
    [100] P.Chevalier and A.Ferreol. On the virtual array concept for the fourth order direction finding problem. IEEE Trans. Sginal Processing. 1999, 47(8):2592-2595.
    [101] P.Chevalier, L.Albera, A.Ferreol, et.al. On the virtual array concept for higher order array processing. IEEE Trans. Signal Processing. 2005, 53(4):1254-1271.
    [102] P.Hyberg, M,Jansson, B.Ottersten. Array interpolation and bias reduction. IEEE Trans. on Signal Processing, 2004, 52(10):2711-2720.
    [103] P.Hyberg, M,Jansson, B.Ottersten. Array interpolation and DOA MSE reduction. IEEE Trans. on Signal Processing, 2005, 53(12):4464-4471.
    [104] P.Stoica, K.C.Sharman. Maximum likelihood methods for direction of arrival estimation. IEEE Trans. ASSP, 1990,38(7):1132-1143.
    [105] P.Stoica, K.C.Sharman. Novel eigenanalysis method for direction estimation.IEEE-Proceedings 1990, 137(1):19-26.
    [106] P.Stoica, T.Soderstrom. On reparametrization of loss functions used in estimation and the invariance principle. Signal Processing. 1989, 17:383-387.
    [107] S.Haykin. Adaptive radar signal processing. A John Wiley&Sons, Inc., Publication, New Jersey, 2007.
    [108] Stoica.P, Nehorai.A. MUSIC, maximum likelihood and Cramér-Rao bound. IEEE Trans Acoust Speech Signal Processing. 1989.37: 720–741.
    [109] T.H.Liu, J.M.Mendel. Applications of cumulants to array processing Part V: sensitivity issues. IEEE Trans. Signal Processing. 1999, 47(3):746-759.
    [110] T.H.Liu, J.M.Mendel. Azimuth and elevation direction finding using arbitrary array geometries. IEEE Trans. Signal Processing. 1998, 46(7):2061-2065.
    [111] Wax.M and Ziskind.I. Detection of the number of coherent signals by the MDL principle. IEEE Trans Acoust Speech Signal Processing. 1989.37(8):1190-1196.
    [112] Y.B.Hua, T.K.Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acousitic, Speech and Signal Processing. 1990, 38(5):814-824.
    [113]李平安,孙进才,俞卞章.基于插值圆阵的宽带信号二维空间谱估计.电子科学学刊,1996,18(4):344-348.
    [114]唐斌,施太和,肖先赐.基于四阶累积量的空间信号2D-DOA分离估计.电子科学学刊. 1998, 20(6):745-749.
    [115]唐斌,施太和,肖先赐.一种新的空间信号三维参数可分离估计方法.信号处理. 1996, 12(2):174-178.
    [116]唐斌,肖先赐,施太和.空间信号二维到达方向估计的新方法.电子学报. 1999, 27(3):104-106.
    [117]唐斌,肖先赐.基于数据矩阵的信号频率和二维方向估计.电子科技大学学报. 1996, 25(3):225-230.
    [118]唐斌,肖先赐.一种新的信号多参数估计方法.电子科学学刊. 1996, 18(6):644-648.
    [119]唐斌,肖先赐.圆阵列接收的信号二维到达方向估计.通信学报. Supplement, 1999, 20:279-283.
    [120]王鼎,吴瑛.基于均匀圆阵的二维ESPRIT算法研究.通信学报,2006,27(9):89-95.
    [121]王永良,陈辉,彭应宇等.空间谱估计理论与算法.北京:清华大学出版社. 2004.
    [122]丁齐.高分辨阵列测向技术研究.[博士学位论文].成都:电子科技大学.1997.
    [123]宋凯歌.低旁瓣数字波束形成研究.[硕士学位论文].成都:电子科技大学.1997.
    [124] Choi.Y.H. Interference subspace approximation based adaptive beamformig in the presence of a desired signal. IEE Proc.Radar Sonar Naving. 2005.152(4):232-238
    [125] Elkeyi, T.Kirubarajan. Robust Adaptive Beamforming Based on the Kalman Filter. IEEE Trans.on Signal Processing..2005. 53(8):3032-3041.
    [126] Xin.S, Jinkuan.W. Robust Recursive Least Squares Adaptive Beamforming Algorithm.IEEE International Symposium on Communications and Information Technologies. 2004.(1):238-241.
    [127]张钧,刘克诚.微带天线理论与工程.国防工业出版社.1988.
    [128]钟顺时.微带天线理论与应用.西安:西安电子科技大学出版社.1991.
    [129] Ghassan.A.L, Rahim.F.B. Convergence Variability and Population Sizing in Micro-Genetic Algorithms. Computer-Aided Civil and Infrastructure Engineering 1999.14:321-334.
    [130] Kesong Chen, Xiaohua Yun, Zishu He, and Chunlin Han. Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm. IEEE Trans on AP, 2007. 55(4):1067-1073.
    [131] Kesong Chen, Zishu He, and Chunlin Han. A Modified Real GA for the Sparse Linear Array Synthesis With Multiple Constraints. IEEE Trans on AP, 2006. 54(7):2169-2173.
    [132] Ling.C, Yong.L. A Modified Micro-Genetic Algorithm for the Design of Multiplierless Digital FIR Filters. IEEE Region 10 Conference on TENCON. 2004:52-55.
    [133] Perez.J.R, Basterrechea.J. Antenna Far-Fields from Planar Acquisition Using Micro-GeneticAlgorithms. Electronics Letters. 2003.39(13):948-949.
    [134] Perez.J.R, Basterrechea.J. Application of a Micro-Genetic Algorithms to Planar Near-Fiels Antenna Measurements. IEEE Trans on AP 2003. 2:68– 71.
    [135] Sourav Chakravarty, Raj Mittra, and Neil Rhodes Williams. Application of a Microgenetic Algorithm (MGA) to the Design of Broad-Band Microwave Absorbers Using Multiple Frequency Selective Surface Screens Buried in Dielectrics. IEEE Trans on AP. 2002. 50(3):284-296.
    [136] Olen.C.A, Compton.R.T. A numerical pattern synthesis algorithm for arrays. IEEE Trans. Antennas Propag. 1990. 38(10):1666–1676.
    [137] Mautz.J.R, Harrington.R.F. Computational methods for antenna pattern synthesis. IEEE Trans. Antennas Propag. 1975.23(7):507–512.
    [138] Mohammad.G. Wideband Smart Antenna Theory Using Rectangular Array Structures IEEE Trans on Signal Processing. 2002. 50(9): 2143-2151.
    [139] Proukakis.C, Manikas.A, V.Lefkaditis. Investigative study of planar array ambiguities based on“hyperhelical”parameterization. IEEE Trans. Signal Prosessing, 1999. 47 (6):1532-1541.
    [140] Tseng.C, Griffiths.L.J. A simple algorithm to achieve desired patterns for arbitrary arrays. IEEE Trans. Signal Process. 1992. 40(11):2737–2746.
    [141] Kumar.B.P, Branner.G.R. Design of unequally spaced arrays for performance improvement. IEEE Trans. Antennas Propag. Special Issue on Phased Arrays. 1999. 47(3):511–523.
    [142] Kennedy.J, Eberhart.R. Particle swarm optimization. In proc.IEEE Int. Conf.Neural Networks. 1995.4:1942-1948.
    [143]唐斌,甘泉,宋凯歌,孙学军等.天线组阵设计和阵列信号处理算法研究报告.电子科技大学. 2008.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700