虚拟专用网关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络互联技术和企业间安全通信需求的迅猛发展,虚拟专用网(Virtual Private Network, VPN)技术成为了宽带互联网技术发展和研究的热点,成为近年来快速发展并得到应用普及的新兴互联网业务。VPN是一种利用公众信息网络基础设施、隧道协议和安全技术提供具有保密性、灵活性和低成本优势的专用数据网络。下一代网络的服务互通、复杂网络连接、多层次的服务体系结构的目标对未来虚拟专用网技术的发展提出了更高的要求。为了适应下一代网络的发展变化,未来的虚拟专用网技术应更加具多样性与灵活性,技术服务与需求趋向紧密结合,在保证安全的前提下,具有同时支持数据、语音和视频业务的能力;支持组播、服务质量和移动性;接入技术的多样性、复杂环境的适应能力和互操作性。
     本论文针对VPN组播、移动和服务质量等关键技术,主要研究工作与创新点如下:
     1、提出了基于虚拟路由器VR VPN的用户站点组播及骨干网络上的三种组播方案。首先,在用户站点组播实现方面提出了组播代理源/RP机制,基本思想是将与用户站点相连的VR作为站点内部的组播代理源/RP,VR作为用户站点组播流的出入接口,配置方式简单固定,为整个网络提供一致的视图,可以有效地减少站点内部的路由迂回和环路,实现了对VPN站点内部组播状态完整的控制。其次,针对不同的VR拓扑结构提出三种骨干网络上的组播实现方案,分别是基于共享树的组播、基于有源树的组播以及基于聚合共享树的组播,并从可扩展性、安全性、资源利用率、服务质量四个方面进行分析评价。结果表明,本文提出的组播实现机制在扩展性、安全性和服务质量方面优于现有的VPN组播方案。
     2、提出了一种基于非对称的正反向隧道的移动VPN方案。通过IPSec安全协议提供数据源验证以及数据的完整性和保密性服务,在确保安全性的基础上,利用互联网上下行流量分布非对称的特点建立非对称隧道,以合理的负载代价实现了传输效率的优化,通过预协商机制实现移动节点无缝切换功能。方案有效地解决了移动VPN节点漫游过程中的注册问题和数据传输,对现有VPN基础设施改动较小,利于实际部署。理论分析了方案在MIPv6以及移动网络环境下的适用性,并提出了移动网络环境下的改进方案。
     3、提出了一种基于VPN软管模型的满足最大最小公平性的带宽资源分配模型,在无需预知VPN网络拓扑结构和详细的流量分布矩阵前提下,依据对到达流的速率估算来实时分配软管预留资源,从而得到可预测的QoS性能保障及带宽的复用增益。该模型可以实现VPN网络吞吐量的最大化,并具有良好的可扩展性。为了更有效地适应动态变化网络的带宽管理,本文还提出了一种基于误差补偿机制的网络流量预测模型。应用于实际的VPN网络带宽资源管理可以有效地动态调整链路资源,使VPN共享链路上的负载得以有效地均衡分配。
With the rapid development of inter-networking technology and the increasing needs of secure communications between corporations, Virtual Private Network (VPN) technology has attracted a lot of attention from researchers and developers on the broadband Internet technology. It is recently rising up as new Internet operations with rapid growth and extensive implications. VPN is a private data network that provides confidentiality, flexibility and lower cost through the use of public network infrastructure, tunneling protocol and security technologies. Characteristics of the next generation networks (NGN), such as the services interworking, complex connectivity and multi-level service architecture, have imposed higher requirements on the future development of Virtual Private Network. In order to adapt to the development of NGN, the VPN should be more diversified and flexible in order to make the technology services meet with the demands. Besides providing security insurance, the emerging requirements for VPN include supporting data, voice and video traffic simultaneously; multicast, quality of service (QoS) and mobility; service interworking scenarios, complex connectivity scenarios, customer-on-demand capabilities.
     The thesis studies the VPN technologies of multicast, mobility and QoS. The main research results and innovations are as follows:
     1、Three innovative VPN multicast mechanism on service provider backbone network and one scheme on the customer sites are proposed based on IP VPN using Virtual Routers. First, it put forward a Multicast Proxy Source/RP mechanism on the customer sites multicast, the main idea is to deploy the VR connecting to a customer site as a Multicast Proxy Source/RP of this VPN site, then the VR as the interface to access the multicast stream in customer sites. It provides consistent view of the whole network and simple configuration for customers and providers. It can effectively reduce the circuitous route and the loop within the site and complete control of multicast states within the VPN site. Second, according to different VR topology, three VPN multicast schemes on backbone network are proposed, respectively based on shared tree, Shortest Path Tree and aggregate share-based tree, then detailed analysis and evaluation on the scalability, safety, resource utilization and quality of service are presented. The results show that the proposed multicast mechanisms are superior to existing VPN Multicast schemes on scalability, security and quality of service.
     2、A mobile VPN scheme based on asymmetric tunnels is bring forward. It provides services of source authentication, data integrity and confidentiality through the IPSec security protocol. The establishment of the asymmetric tunnels is taking advantage of the asymmetry distribution of the total upstream and downstream traffic on Internet. It optimizes the transmission efficiency at the expense of a reasonable payload on the premise of ensuring the security, adopts pre-negotiation mechanism to achieve seamless handover and addresses the problems of the registration and data transmission effectively in the process of mobile nodes roaming. Only few modifications to existing VPN infrastructure makes it easy to be implemented. Theoretical analysis of the scheme in MIPv6 and the NEMO environment is presented and an improved solution in the NEMO environment is proposed.
     3、A novel bandwidth allocation model satisfied the Max-Min fairness is proposed for hose-modeled VPN. It realizes real-time hose bandwidth resource allocation based on the estimated arrival rate of the hose flow without the premise of detailed VPN network topology and traffic distribution matrix, thus achieve the predictable QoS performance guarantees and bandwidth multiplexing gain. It is proved, analytically, that the proposed model with weighing Max-Min fair allocation algorithm is able to achieve the maximum overall VPN throughput and good scalability. Moreover, we strictly prove the stability and adaptability of this fair allocation algorithm by theoretical analysis and simulation results. To better adapt to the bandwidth management in dynamic mutative network, it proposes a network traffic prediction model with error compensation. Applied to the actual VPN network, it can dynamically adjust link resources and effectively balance the payload on the sharing link of the VPN.
引文
[1]B. Gleeson, A. Lin et al.. A Framework for IP Based Virtual Private Networks, IETF RFC 2764, February 2000.
    [2]P. Ferguson and G. Huston, What Is a VPN? Revision1, www.potaroo.net/papers/1998-3-vpn/ vpn.pdf, April.1998.
    [3]R. Vida, L. Costa. Multicast Listener Discovery Version 2 (MLDv2) for IPv6. IETF RFC2710, November 2002.
    [4]S.Deering. Host Extensions for IP Multicasting. IETF RFC1112, August 1989.
    [5]B. Cain, S. Deering, I. Kouvelas. Internet Group Management Protocol, Version 3, IETF RFC3376, October 2002.
    [6]P. Radoslavov, D. Estrin, R. Govindan et al.. The Multicast Address-Set Claim (MASC) Protocol, IETF RFC2909, September 2000.
    [7]Waitzman D, Partridge C, Deering S. Distance vector multicast routing protocol (DVMRP). IETF RFC 1075, November 1988.
    [8]Moy J. Multicast extensions to OSPF. IETF RFC 1584, March 1994.
    [9]Deering S, Estrin D, Farinacci D, Jacobson V, Liu CG, Wei LM. The PIM architecture for wide-area multicast routing. IEEE/ACM Transactions on Networking,1996,4(2):153-162.
    [10]Estrin D, Farinacci D, Helmy A, Thaler D, Deering S, Handley M, Jacobson V, Liu CG, Sharma P, Wei LM. Protocol independent multicast-sparse mode (PIM-SM):Protocol specification. IETF RFC 2362, June 1998.
    [11]Adms A, Nicholas J, Siadak W. Protocol independent multicast-dense mode (PIM-DM): Protocol specification. IETF RFC3973, June 2005.
    [12]Ballardie A. Core Based trees (CBT) multicast routing architecture. IETF RFC 2201, September 1997.
    [13]T. Bates, R. Chandra, D. Katz, and Y. Rekhter, Multiprotocol extensions for BGP-4, IETF RFC 2283, February 1998.
    [14]M. McBride, J. Meylor, D. Meyer. Multicast source discovery protocol (MSDP) Deployment. IETF RFC4611, August 2006
    [15]K. Kumar, P. Radoslavov, el. The MASC/BGMP architecture for interdomain multicast routing, In Proc, ACM SIGCOMM 98, British Columbia, Canada, September 1998,93-104.
    [16]S. Bhattacharyya, Ed. An Overview of Source-Specific Multicast (SSM). IETF RFC3569, July 2003.
    [17]Fenner, B., Handley, M., Holbrook, H. and I. Kouvelas, Protocol Independent Multicast Sparse Mode (PIM-SM):Protocol Specification, IETF RFC4601, August 2006.
    [18]M. Handley, I. Kouvelas. T. Speakman, el.; Bidirectional Protocol Independent Multicast (BIDIR-PIM), IETF RFC5015, October 2007.
    [19]C.Perkins, Ed. IP Mobility Support for IPv4. IETF RFC3344, August 2002.
    [20]D.Johnson, C.Perkins, J-Arkko. Mobility Support in IPv6. IETF RFC3775, June 2004.
    [21]张晖,移动互联网的组播切换算法研究,博士学位论文,北京交通大学,2008.
    [22]关建峰,基于IPv6的移动组播关键技术研究,博士学位论文,北京交通大学,2009.
    [23]E. Rosen, Y. Rekhter, BGP/MPLS IP Virtual Private Networks(VPNs), IETF RFC 4364, February 2006.
    [24]T. Morin, Ed. Requirements for Multicast in Layer 3 Provider-Provisioned Virtual Private Networks(PPVPNs), IETF RFC4834, April 2007.
    [25]Eric C. Rosen, Rahul Aggarwal. Multicast in MPLS/BGP IP VPNs, IETF Internet-Draft. draft-ietf-13vpn-2547bis-mcast-10.txt, January 2010.
    [26]Eric C. Rosen, Yiqun Cai, IJsbrand Wijnands. Multicast in MPLS/BGP VPNs, IETF Internet-draft. draft-rosen-vpn-mcast-14.txt, May 2010.
    [27]R. Aggarwal, E. Rosen, T. Morin, Y. Rekhter. BGP Encodings and Procedures for Multicast in MPLS/BGP IP VPNs, IETF Internet-draft, draft-ietf-13vpn-2547bis-mcast-bgp-08.txt, October 2009.
    [28]Matthew Bocci and Yakov Rekhter. Multicast in MPLS/VPLS Networks, tutorial. MPLS World Congress,2008.
    [29]Rahul Aggarwal. Next-Generation Solution for Multicast in 2547 VPNs and VPLS. MPLS World Congress,2006.
    [30]Rahul Aggarwal. Multicast in BGP/MPLS VPNs and VPLS, IETF Internet-Draft. draft-raggarwa-13vpn-mvpn-vpls-mcast-00.txt, April 2005.
    [31]Sean Clarke, Julian Lucek, and Andre Stiphout. Carrying Mission-Critical Traffic over MPLS Networks. MPLS World Congress,2008.
    [32]Rahul Aggarwal, Yakov Rekhter. PIM/GRE Based MVPN Deployment Experience and Recommendations, IETF Internet-Draft, draft-rekhter-mboned-mvpn-deploy-00.txt. July 2008.
    [33]Hong-Ke Zhang, Chun-Yue Zhou. et. al., Multicast in Virtual Router-based IP VPNs, IETF Internet-Draft, draft-zhang-13vpn-vr-mcast-03.txt, October 2007.
    [34]S. Kent and K. Seo. Security Architecture for the Internet Protocol, IETF RFC4301, December 2005.
    [35]S. Kent. IP Authentication Header. IETF RFC4302, December 2005
    [36]S. Kent. IP Encapsulating Security Payload (ESP). IETF RFC4303, December 2005.
    [37]F. Adrangi, Ed.. Problem Statement:Mobile IPv4 Traversal of Virtual Private Network (VPN) Gateways, IETF RFC4093, August 2005.
    [38]S. Vaarala, E. Klovning. Mobile IPv4 Traversal Across IPsec-based VPN Gateways, IETF RFC5265, June 2008.
    [39]J. Arkko, V. Devarapalli, F. Dupont, Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and Home Agents, IETF RFC3776, June 2004.
    [40]V. Devarapalli, F. Dupont.. Mobile IPv6 Operation with IKEv2 and the Revised IPsec Architecture, IETF RFC4877, April 2007.
    [41]Nikander P.A. Applying Host Identity Protocol to the Internet Addressing Architecture. International Symposium Application and Internet. July 2004.
    [42]Moskowitz R, Nikander P. Host Identity Protocol(HIP) Architecture. IETF RFC4423, April 2006.
    [43]P. Eronen. IKEv2 Mobility and Multihoming Protocol(MOBIKE). IETF RFC 4555, June 2006.
    [44]V. Devarapalli, Wichorus, P. Eronen. Secure Connectivity and Mobility Using Mobile IPv4 and IKEv2 Mobility and Multihoming (MOBIKE), IETF RFC5266, June 2008.
    [45]符刚.移动VPN解决方案,邮电设计技术,2004(11),pp44-49.
    [46]Donghai Shi, Chaojing Tang. An Authentication Method on Security Association for Mobile IP Fast Handoff. IEEE Proceedings of WCNM2005, September 2005, pp 1324-1327.
    [47]Haoli Wang, Aravind Velayutham. An Enhanced One-bit Identity Authentication Protocol for Access Control in IEEE 802.11. IEEE Proceedings of MILCOM2003, October 2003, pp 839-843.
    [48]Byoung-Jo, K., Srinivasan,S.. Simple Mobility Support for IPsec Tunnel Mode. IEEE Proceedings of VTC2003, October 2003, pp 1999-2003.
    [49]Dong Hu, Dong Zhou. Security Research on Mobile IP network Handover. Proceedings of ISCIT 2005, October 2005, pp 23-26.
    [50]薛海波,移动VPN的研究和实现,硕士学位论文,北京交通大学,2006.
    [51]David Benenati, A seamless mobile VPN data solution for CDMA2000, UMTS, and WLAN users, Bell Labs Technical Journal 7(2),2002, pp143-165.
    [52]Ann-Tzung Cheng, Chun-Hsin Wu, Jan-Ming Ho and D.T. Lee. Secure Transparent Mobile IP for Intelligent Transportation Systems. IEEE Proceedings of the International Conference on Networking, Sensing and Control, March 2004, pp495-500.
    [53]Ravi Bhagavathula, Nagaraja Thanthry, Dr. Ravi Pendse. Mobile IP and Virtual Private Networks. IEEE Proceedings of the VTC2004, December 2004, pp 2414-2418.
    [54]Namhi Kang, Luigi Lo Iacono, Christoph Ruland, Younghan Kim. Efficient Application of IPsec VPNs in Wireless Networks. IEEE Proceedings of the Wireless Pervasive Computing2006, January 2006.
    [55]焦利,互联网服务质量管理体系及关键技术研究,博士学位论文,北京邮电大学,2005.
    [56]QoS support for VPN services-Framework and characteristics, Y.1315, ITU-T Recommendations, September 2006.
    [57]N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K. Ramakrishnan, and J. E. van der Merive, A flexible model for resource management in virtual private networks, in ACM SIGCOMM, San Diego, CA, August 1999.
    [58]Haeryong Lee, Jeongyeon Hwang, Byungryong Kang, et al.End-To-End QoS Architecture for VPNs:MPLS VPN Deployment in a Backbone Network.ICPPW'00, Canada, August 2000.
    [59]Sabrina, F., Rogers, G.. QoS Aware Dynamic Flow Control in Virtual Private Network, IEEE International Conference on ICC'07, June 2007, pp 272-278.
    [60]Girish, M.; John Yu; Soon, T.;A QoS specification proposal for IP virtual private networks,IP Operations and Management,3rd IEEE Workshop on IPOM 2003,2003, pp 85-90.
    [61]Kumar. A, Rastogi. R, Silberschatz. A, Yener. B, Algorithms for provisioning virtual private networks in the hose model, in proceeding of Networking, IEEE/ACM Transactions Vol. 10, Issue 4, August 2002, pp.565-578.
    [62]C. Swamy and A. Kumar, Primal-dual algorithms for connected facility location problems, in 5th International Workshop on Approximation Algorithms for Combinatorial Approximation (APPROX'02),2002, pp256-269.
    [63]Juttner. A, Szabo. I, Szentesi. A. On bandwidth efficiency of the hose resource management model in virtual private networks, in proceeding of Networking, IEEE INFOCOM Vol.1,30 March-3 April 2003. pp 386-395.
    [64]T. Erlebach and M. Ruegg, Optimal bandwidth reservation in hose model VPNs with multipath routing, in IEEE INFOCOM,2004. Vol.4,7-11 March 2004. pp.2275-2282.
    [65]Haibo Wang, Gee-Swee Poo, Availability Guaranteed Service Provisioning in Hose Model VPNs with Multi-Path Routing, in proceeding of Communications, IEEE International Conference Vol.3, June 2006. pp.1014-1019.
    [66]Gupta. A, Kleinberg. J, Kumar. A, Rastogi. R, and Yener. B, Provisioning a virtual private network:A network design problem for multi-commodity flow, in proceeding of the 33rd Annual ACM Symposium on Theory of Computing (STOC),2001. pp.389-398.
    [67]Tat Wing Chim, King-Shan Lui, Yeung. K.L, Chi Ping Wong, Routing algorithm for provisioning symmetric virtual private networks in the hose model, in proceeding of Global Telecommunications Conference, IEEE Vol.2,28 Nov-2 Dec 2005. pp.802-806.
    [68]J. Chu and C. T. Lea, New architecture and algorithms for fast construction of hose-model VPNs, IEEE/ACM Trans. Networking, vol.16, no.4, August 2008, pp.670-679.
    [69]M. Kodialam, T. V. Lakshman, and S. Sengupta, Maximum throughput routing of traffic in the hose model, in IEEE Proceeding of the INFOCOM 2006, April 2006, pp1-11.
    [70]Giuseppe F, Italiano, Stefano Leonardi, and Gianpaolo Oriolo. Design of Networks in the Hose Model, Proceedings of the 3rd Workshop on Approximation and Randomization Algorithms in Communication Networks (ARACNE),2002, pp 65-76.
    [71]R. Guerin, H. Ahmadi, and M. Naghshineh, Equivalent capacity and its application to bandwidth allocation in high-speed networks, IEEE Journal on Selected Areas in Communications, vol.9, no.7,1991, pp 968-981.
    [72]P. Siripongwutikorn, S. Banerjee, and D. Tipper, A survey of adaptive bandwidth control algorithms, IEEE Communications Surveys and Tutorials, vol.5, no.1,2003, pp 14-26.
    [73]S. Raghunath and S. Kalyanaraman, Statistical point-to-set edge-based quality of service provisioning, in International Workshop on Quality of Future Internet Services, QoFIS 2003, vol. 2811,2003, pp 132-141.
    [74]T. Morin, Ed. Requirements for Multicast in Layer 3 Provider-Provisioned Virtual Private Networks (PPVPNs), IETF RFC4834, April 2007.
    [75]Seisho Yasukawa, Shankar Karuna, Sarveshwar Bandi, Adrian Farrel, BGP/MPLS IP Multicast VPNs, IETF Internet-Draft, draft-yasukawa-l3vpn-p2mp-mcast-01.txt, February 2005.
    [76]Jun-Hong Cui. State Scalability and Group Modelling of Multicast in the Internet, Dissertation of the University of California.2003.
    [77]C. Kaufman, Ed. Internet Key Exchange (IKEv2) Protocol. IETF RFC4306, December 2005.
    [78]符坚,IPSec VPN中关键技术的研究与实现,博士学位论文,北京邮电大学,2003.
    [79]D. Farinacci, T. Li, S. Hanks, D. Meyer, P. Traina.. Generic Routing Encapsulation (GRE). IETF RFC2784, March 2000.
    [80]P.Srisuresh, etc.. Layer Two Tunneling Protocol(L2TP). IETF RFC2661, August 1998.
    [81]W.Simpson, etc.. IP in IP Tunneling. IETF RFC1853, October 1995.
    [82]T. Bates, R. Chandra, D. Katz, Y. Rekhter. Multiprotocol Extensions for BGP-4, IETF RFC2283, February 1998.
    [83]E.Roson, A. Vishwanathan and R.Collon. Multiprotocol Label Switch Architecture. IETF RFC3031, January 2001.
    [84]Droms, R., Dynamic Host Configuration Protocol, IETF RFC2131, March 1997.
    [85]Jin Tang and John A. Copeland. Mobile IPv4 Secure Firewall Traversal with Deployment of Foreign Agents. IEEE Proceedings of Wireless Communications and Networking Conference 2005, March 2005, pp 1533-1538.
    [86]Jyh-Cheng Chen, etc.. Fast Handoff in Mobile Virtual Private Networks. Proceedings of the WoWMoM'06,2006, pp 548-552.
    [87]Yi-wen Liu, Jyh-Cheng Chen, etc.. Dynamic Extrenal Home Agent Assignment in Mobile VPN. IEEE Proceedings of the VTC2004, pp 3281-3285.
    [88]P. Calhoun, etc.. Diameter Mobile IPv4 Application, IETF RFC4004, August 2005.
    [89]Matteo Berioli, Francesco Trotta. IP Mobility Support for IPsec-based Virtual Private Networks: an architectural solution, GLOBECOM'03, vol.3,2003, pp 1532-1536.
    [90]Devarapalli V, Wakikawa R, Petrescu A, et al. Network Mobility(NEMO) Basic Support Protocol, IETF RFC3963, January 2005.
    [91]K. Leung, G. Dommety et al. Network Mobility (NEMO) Extensions for Mobile IPv4, IETF RFC5177, April 2008.
    [92]J. Charzinski, Internet client traffic measurement and characterisation results, in Proceedings of the ISSLS'2000, Stockholm, Sweden, June 2000, pp 27-29.
    [93]K.Claffy, G.Miller, and K.Thompson, The nature of the beast:recent traffic measurements from an Internet backbone, in Proceedings of INET'98 Internet Society, July 1998.
    [94]David McDysan, QoS&Trafic Management in IP &ATM Networks,(英文影印版),北京:清华大学出版社,2000.
    [95]肖耿毅,IPSec虚拟专用网服务质量研究与仿真,华中科技大学硕士学位论文,2006
    [96]M. Carugi, D. Mcdysan, L. Fang.Service requirements for Layer 3 Provider Provisioned Virtual Private Networks[Z].IETF RFC4031, April 2005.
    [97]Network Based VPNs over MPLS Architecture. Y.1311.1 ITU-T Recommendation, July 2001.
    [98]W.Stallings,High-speed Networks:TCP/IP and ATM Design Principles,北京:电子工业出版社(中译本),1999.
    [99]Andrew S.Tanenbaum, Computer Networks,Third Edition,Prentice Hall,1996.
    [100]Grenville Armitage, Quality of Service in IP Networks:Foundations for Multi-Service Internet,(中译本),北京:机械工业出版社,2001.
    [101]J. A. Fingerhut, S. Suri, and J. S. Turner, Designing least-cost nonblocking broadband networks, Journal of Algorithms, vol.24, no.2, August 1997, pp 287-309.
    [102]杨鹏,基于效用函数的网络带宽分配模型的研究,硕士学位论文,华中师范大学,2007.
    [103]Bo. Radunovi ,Jean-Yves Le Boudec. A unified packet work for Max-Min and Min-Max fairness with applications. Lausanne, Proceedings of 40th Annual Allerton Conference, Switzerland, Allerton, IL, October 2002.
    [104]Kelly, F.P.. Charging and rate control for elastic traffic. European Transactions on Telecommunication,1997, pp 33-37.
    [105]Kelly, F.P., Maulloo, A., Tan, D. Rate control for communication networks:shadow prices, proportional fairness and stability. Journal of Operations Research Society,1998,49(3), pp 237-252.
    [106]D. Bertsekas and R. Gallager. Data Networks, Prentice Hall,1992.
    [107]E. Gafni and D. Bertsekas, Dynamic Control of Session Input Rates in Communication Networks, IEEE Transactions on Automatic Control, Volume 29, No.10,1984, PP 1009-1016.
    [108]Kelly, F.P.. Congestion control:fairness,pricing and stability,15th Annual IEEE Computer Communications Workshop (CCW 2000),2000, pp 115-122.
    [109]徐童,廖建新.基于分段线性函数的广义效用max-min公平分配算法研究,通信学报,Vol27, no 10,2006, pp26-30,37.
    [110]Hayden, Howard Paul, Voice flow control in integrated packet networks, MIT Laboratory for Information and Decision System, Thesis (Elec.E.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,1981.
    [111]E. Hahne, Round-robin scheduling for max-min fairness in data networks, IEEE Journal on Selected Areas Communications, vol.9, no.7,1991, pp 1024-1039.
    [112]S. Chong,S. Lee, S. Kang, A simple scalable and stable explicit rate allocation algorithm for max-min flow control with minimum rate guarantee, IEEE/ACM Transactions On Networking,Vol.9, no.3,2001, pp 322-335.
    [113]Radunovic B, Le Boudec J-Y. A unified framework for max-min and min-max fairness with applications, IEEE/ACM Transactions On Networking, Vol.15, no.5,2007, pp 1073-1083.
    [114]Jeonghoon Mo, lean Walrand. Fair end-to-end window-based congestion control, IEEE/ACM Transactions on Networking, Vol.8, no.5,2000, pp 556-567.
    [115]Bartek Wydrowski, Lachlan L.H., Andrew, Moshe Zukerman, MaxNet:a congestion control architecture for scalable networks, IEEE Communications Letters, Vol.7, no.10, October 2003, pp 511-513.
    [116]Traffic Management Working Group, Traffic management specification version 4.0, The ATM Forum, April 1996.
    [117]A Arnlambalam, Xiaoqiang Chen. N. Ansari. Allocating fair rates for available bit rate service in ATM networks, IEEE Communications Magazine, Vol.34, no.11,1996, pp 92-100.
    [118]Peng Yang,Yanyan Meng. MaxNet:A way to improve the fairness of TCP Reno, Electronic Measurement Technology, Vol.30, no.4,2007, pp 175-178.
    [119]李旻.主动队列管理若干问题的研究,博士学位论文,复旦大学,2003.
    [120]胡大民.网络流量自相似特性与预测研究,硕士学位论文,浙江大学,2008.
    [121]Lan K C, Heidemann J. A measurement study of correlations of Internet flow characteristics, Computer Networks, Vol.5 no.1,2006, pp 46-62.
    [122]李捷,刘先省,韩志杰.基于ARMA的无线传感器网络流量预测模型的研究,电子与信息学报,Vol.29,no.5,2007,pp 1224-1227.
    [123]盛骤,谢式千,潘承毅.概率论与数理统计,北京:高等教育出版社,2001.
    [124]NLANR. http://pma.nlanr.net/Special/.
    [125]姜明,吴春明,张旻,胡大民.网络流量预测中的时间序列模型比较研究,电子学报,Vol.37, no.11,2007, pp 2353-2358.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700