认知无线电频谱感知技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信技术的发展为人们提供了越来越强大.便捷的通信手段,正深刻地改变着人们的生产与生活方式?但是,随着全球范围内移动用户数的快速攀升?互联网业务的迅猛增长以及便携计算机设备的广泛使用,通信系统对无线频谱资源的需求也在不断增加?在自然的频谱资源有限的情况下,现有的静态频谱分配方案已显然不能满足高速无线通信业务快速增长的需求,因此,需要开发新的技术,为新的业务提供更多可用的频谱?认知无线电能够通过择机利用主用户空闲的无线频谱资源,被认为是解决当前无线频谱短缺问题的有效技术?同时,认知无线电技术是一项复杂的技术,其研究内容包括频谱感知?频谱共享和频谱管理等诸多方面?本文主要对认知无线电频谱感知技术进行了研究,主要研究内容和取得的创新性成果如下:
     1.提出了一种自适应分步合并协作频谱感知算法?传统的合作频谱感知方法中,等增益合并协作频谱感知可以获得接近最优软合并的检测性能,是认知系统中常用的频谱感知方法,但是,当参与合作的认知用户较多时,通过控制信道向融合中心传送本地检测统计量会占用大量的信道资源,这对带宽受限的认知无线电系统来说是不利的?为了缓解这个问题,在分析传统合作频谱感知性能的基础上,提出了一种自适应分步合并协作频谱感知算法,根据认知用户接收信噪比的变化,通过自动调整参与协作频谱感知的认知用户数,以减少认知无线电网络中的数据开销?推导了在瑞利衰落信道下采用此算法时,认知用户通过控制信道向融合中心发送的平均数据量的计算公式,理论推导和仿真结果表明,和等增益合并协作频谱感知算法相比,在保证频谱感知性能的前提下,该算法减少了认知用户通过控制信道向融合中心发送的平均数据量.
     2.提出了一种基于分群的自适应双门限合作频谱感知算法?认知无线电网络中,合作频谱感知的性能会受到诸多因素的制约,除了通知信道带宽受限对合作频谱感知性能的提高是一个挑战之外,通知信道的可靠性对合作频谱感知性能也有很大的影响,实际应用中,随着认知网络范围的扩大,同感知信道一样,通知信道也会受到多径衰落和阴影等因素的影响,频谱感知性能可能会因此严重下降?针对这些问题,提出了一种基于分群的自适应双门限合作频谱感知算法:认知用户被分成若干群,选择群内通知信道增益最大的认知用户为中心节点,采用自适应双门限机制负责群内认知用户进行合作频谱检测,并将检测结果报告给认知基站进行合并,以确定主用户信号是否存在?仿真结果表明:相对于传统的合作频谱感知,一方面,该算法能利用分集技术降低通知信道传输错误率,缓解通知信道衰落对合作频谱感知性能的影响,另一方面,通过自适应双门限机制,能进一步减少认知系统频谱感知过程中的平均数据开销,避免控制信道拥塞,降低感知延迟.
     3.提出了一种通过优化感知时间使认知用户平均信道效率最大的方法?频谱感知的目的是快速可靠地发现主用户的频谱空穴,因此,如何提高频谱感知效率,有效利用频谱空穴是频谱感知中的一个重要问题?以能量检测作为频谱感知的基本方法,以最大化认知用户平均信道效率为目标,分析了单用户频谱感知情况下,在认知用户的不同活动阶段,感知时长对认知用户平均信道效率的影响,提出了在不对主用户造成有害干扰的前提下,通过优化感知时间使认知用户平均信道效率最大的方法,并通过仿真对理论分析进行了验证.
The development of mobile communication technology has provided a more powerful and convenient means of communication and it has profoundly changed people’s production and life. However, as the rapid rise of the number of worldwide mobile subscriber, the growth of Internet business and the wide use of portable computer equipment, the need for wireless spectrum is also increasing rapidly. It is leading to a shortage for spectrum resources. Given the limitations of the natural frequency spectrum, it becomes obvious that current static frequency allocation schemes can not accommodate the requirements of the increasing of the number of higher data rate devices. As a result, innovative techniques that can offer new ways of exploiting the available spectrum are needed. Cognitive radio arises to be a tempting solution to the spectral congestion problem by introducing opportunistic usage of the frequency bands that are not heavily occupied by licensed users. Cognitive radio offers a variety of research fields, including spectrum sensing, sharing and management. This dissertation deals with the problem of spectrum sensing in cognitive radio. The main achievements and results are listed as follows.
     1. An adaptive step-by-step combination cooperative spectrum sensing in cognitive radio network is proposed. Among the traditional cooperative spectrum sensing methods, equal gain combining cooperative spectrum sensing is commonly used in cognitive radio systems as it has the performance close to that of the optimal soft-combining spectrum sensing. However, when the number of cognitive users involved in cooperation becomes larger, it takes a lot of resources to send local test statistics to the fusion center through control channels. This is negative to the cognitive radio (CR) system whose bandwidth is limited. To alleviate this problem, based on the analysis of traditional cooperative spectrum sensing, an adaptive step-by-step combination cooperative spectrum sensing in cognitive radio network is proposed. With the change of the signal-to-noise ratio received by CR users, this algorithm can adjust automatically the number of CR users which participate in cooperative spectrum sensing in order to decrease the data overhead produced by spectrum sensing in the cognitive radio network. The formula for computing the average data magnitude from the CR users to the fusion center over Rayleigh channels is acquired. Theoretical analysis and simulation results show that the method reduces the average data overhead from the CR users to the fusion center under the same detection performance compared with the conventional equal gain combination cooperative spectrum sensing.
     2. An adaptive dual threshold cooperative spectrum sensing based on grouping is proposed. In cognitive radio networks, the performance of cooperative spectrum sensing will be subject to many factors. In addition to bandwidth requirement being a challenge to the performance improvement of cooperative spectrum sensing, the reliability of the reporting channels has the great impact on cooperative sensing performance. Actually, with the expansion of the scope of cognitive network, the reporting channels are susceptible to multipath fading and shadowing like sensing channels. Hence, the channel impairments must be considered in the reliability issue of control channel. The adverse effects on sensing performance due to the reporting channel fading can not be ignored. It may lead to serious decline of cooperative spectrum sensing. To solve these problems, an adaptive dual threshold cooperative spectrum sensing based on grouping is proposed. All CR users are divided into several groups. In each group, the one with the largest reporting channel gain is selected as the central node. After performing cooperative spectrum sensing with adaptive dual threshold, the central node forwards its sensing result to the cognitive radio base station (CRBS), and then the CRBS fuses the results from all groups to decide the presence or absence of the authorized users. Simulation results indicate that this method can lower the error rate of the reporting channel through selection diversity. By adopting the adaptive dual sensing mechanism, it also decreases the average data overhead. Consequently, the congestion on control channel can be alleviated and sensing delay can be reduced.
     3. A method is proposed that maximizing the average channel efficiency of cognitive radio user by optimizing the spectrum sensing time. The purpose of spectrum sensing is to find white space of licensed spectrum fast and reliably. Therefore, how to improve the efficiency of spectrum sensing is an important issue. With the energy detection as the underlying method of spectrum sensing and maximizing the average channel efficiency of CR user as our target, the effect of sensing durations in different stages on the average channel efficiency of CR user is analyzed in the context of spectrum sensing with a single user. The sensing durations that maximize the CR user’s average channel efficiency are derived while providing the primary users with their desired level of interference protection. The theoretic analysis is verified by the simulation results.
引文
[1] J.Chuang and N. Sollenberger. Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment [J]. IEEE Communications Magazines, 2000, 38(7): 78-87.
    [2] W. W. Lu. 4G mobile research in Asia [J]. IEEE Communications Magazines, 2003, 41(3): 104-106.
    [3] P. Zhang and L. Li. Rearch on beyond 3G mobile communications [C]. // IEEE. In proceedings of IEEE ICCT2003. USA: IEEE Press, 2003. 28-31.
    [4] FCC, Establishment of Interference Temperature Metric to Qnantfy and Manage Interference and to Expand Available Unlicensed Operation in Certain Fixed Mobile and Satellite Frequency Bands.Notice of Inquiry and Proposed Rulemaking, ET Docket No.03-289,2003.
    [5] E Capar,T.Weiss,I.Martoyo,et a1.Analysis of Coexistence Strategies for Cellular and Wireless Local Area Networks.Vehicular Technology Conference(VTC 03),2003,3:1812-1816.
    [6] J. O. Neel,“Analysis and design of cognitive radio networks and distributed radio resource management algorithms,”Ph.D. dissertation, Virginia Polytechnic Institute and State University, Sept. 2006.
    [7] M. McHenry, Nsf spectrum occupy measurements project summary,? tech. rep., Shared Spectrum Co. report, Aug. 2005.
    [8] FCC, ET Docket No 03-222 Notice of proposed rule making and order, December 2003.
    [9] U.S. Department of Commerce National Telecommunications and Information Administration, U.S. Frequency Allocation Chart?, October 2003.
    [10] A. J. Paulraj, D. A. Gore, and R. U. Nabar, et al. An overview of MIMO communications-a key to gigabit wireless, Proceedings of the IEEE, Feb. 2004, 92(2): 198-218.
    [11] L. Zheng and D. N. C. Tse. Diversity and multiplexing: A fundamenta tradeoff in multiple antenna channels [J]. IEEE Transactions on Information Theory, 2003, 49(5):1073-1096.
    [12] D. Gesbert, M. Shafi, Da-shan Shiu, P. J. Smith and A. Naguib. From theory to practice: an overview of MIMO space-time coded wireless systems [J]. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 281-302.
    [13] H. Yang, A road to future broadband wireless access: MIMO-OFDM-Based air interface. IEEE Communication Magzine, Jan. 2005, 43(1): 53-60.
    [14] Richard, Nee Ramjee Prasad. OFDM for Wireless Multimedia Communications [M]. New York: Artech House, 2000.
    [15]李建东,杨家玮,个人通信.北京:人民邮电出版社,1998年.
    [16]郭梯云,杨家玮,李建东,数字移动通信(修订本).北京:人民邮电出版社,2001年.
    [17] J. Mitola III and G. Q. Maguire, Cognitive radio: Making Software Radios More Personal. IEEE Personal Communications,1999,6(4):13-18.
    [18] J. Mitola III, Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio, Ph.D. Dissertation, Royal Institute of Technology, 2000.
    [19] D. Maldonado, B. Le, A. Hugine, T. Rondeau, and C. Bostian. Cognitive radio applications to dynamic spectrum allocation: a discussion and an illustrative example [C]. // IEEE. In Proceedings of IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. USA: IEEE Press, 2005, 597-600.
    [20] D. Cabric, I. D. O Donnell, M. S. Chen, and R. W. Brodersen. Spectrum sharing radios [J]. IEEE Circuits and Systems Magazine, 2006, 6(2): 30-45.
    [21] J. Mitola, The software radio architechture, Communication Magazine, IEEE, vol.33, pp.26-38, May 1995.
    [22]杨小牛,软件无线电原理与应用.北京:电子工业出版社,2001年.
    [23] Simon Haykin, Cognitive Radio: Brain-Empowered Wireless communications,IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    [24]陈劼,基于认知无线电的分级频谱共享网络关键技术研究.博士论文,2008年6月.
    [25]陈东认知无线电中无线频谱感知技术的研究.博士论文,2009年1月.
    [26]周贤伟,王建萍,王春江,认知无线电.北京:国防工业出版社,2008年1月.
    [27] Mengtic and F. Jondral, Extracting the channel allocation information in a spectrum pooling system useing a prefilter delay and multiply nonlinearity, Proceedings of the 2003 IEEE Workshop on Statistical Signal Processing, Sept. 28-Oct. 1, 2003, St. Louis, MO, USA.
    [28] T. A. Weiss and F. K. Jondral. Spectrum Pooling: An Innovative Strategy for the Enhancement of Spectrum Efficiency. IEEE Radio Communications, 2004, 42(3): 8-14.
    [29] T. Weiss, A. Krohn, J. Hillenbrand, et al. Efficient Signaling of Spectral Resources in Spectrum Pooling Systems. Proc. of the 10th Symposium on Communications and Vehicular Technology (SCVT’03), 2003, 1: 1-6.
    [30] T. Weiss, A. Krohn, F. Jondral. Synchronization Algorithms and Preamble Concepts for Spectrum Pooling Systems. Proc. of the Mobile & Wireless Communications Summit, 2003, 1: 788-792.
    [31] F. Capar, I. Martoyo, and T. Weiss, et al., Comparison of bandwidth utilization for controlled and uncontrolled channel assignment in a spectrum pooling system, IEEE VTC Spring 2002, Mar. 2002: 1069-1073.
    [32] J. Hillenbrand, T. Weiss, and F. Jondral, Calculation of detection and false alarm probability in spectrum pooling systems, IEEE Communications Letters, Apr. 2005, 9(4): 349-351.
    [33] T. Weiss, J. Hillenbrand, and A. Krohn, et al., Mutual interference in an OFDM-based spectrum pooling systems, IEEE VTC-Spring 2004, Milan, Italy, May 2004: 1873-1877.
    [34] T.A. Weiss, F.K. Jondral, Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency, IEEE Radio Communication Magazine 42 (March) (2004) 8–14.
    [35] F. Capar and F. Jondral, Resource allocation in a spectrum pooling systems for packet radio networks using OFDM/TDMA, IST Mobile and Wireless Telecommunications Summit, June, 2002.
    [36] T. Weiss, M. Spiering, and F. Jondral, Quality of service in spectrum pooling systems, IEEE PIMRC 2004, Barcelona, Spain, Sept. 5-8 2004: 345-349.
    [37] R. W. Brodenson, A. Wolisz, D. Cabric, et al. White paper (2004): CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum, UC Berkeley Wireless Research Center. [Online] Available at: http://bwrc.eecs.berkeley.edu/Research/MCMA/CRWhite paper_nall.pdf.
    [38] D.Cabric, S. M. Mishra, D. Willkomm, et al. A Cognitive Radio Approach for Usage of Virtual Unlicensed Spectrum. The 14th IST Mobile and Wireless Communications Summit, June 2005.
    [39] S.M. Nishra, D. Cabric, C. Chang, et al. A real time cognitive radio testbed for physical and link layer expriments. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 05), 2005, 1: 562-567.
    [40] Willkomnm D, Gross J, Wolisz A. Reliable link maintenancein cognitive radio systems. IEEE DySPAN2005, 2005.
    [41] D. Cabric, S. M. Mishra, and R.W. Broderson, Implementation issues in spectrum sensing for cognitive radio, Asilomar Conference on Signals, Systems, and Computers, 2004.
    [42] A. Sahai, N. Hoven, and R. Tandra, Some fundamental limits on Cognitive Radio, Allerton Conference on Communications, Control and Computing, October 2004.
    [43] N. Hoven and A. Sahai, Power scaling for cognitive radio, WirelesCom 05 Symposium on Emerging Networks, Technologies and Standards, June 2005.
    [44] XG Working Group. The XG Vision.RFC v2.0. [online]. Available at:http://www.ir.bbn.com/projects/xmac/rfc/rfc-vision.pdf.
    [45] XG Working Group. The XG Architecture Framewor. RFC V1.0. [Online]. Available at: http://www.ir.bbn.com/projects/xmac/rfc/rfc-af.pdf.
    [46] Akyildiz I. F., Lee W. Y., Vuran M. C., et al. Next generation dynamic spectrum access cognitive radio wireless networks: a survey. Computer networks journal (Elsevier), 2006, 1 (50): 2127-2159.
    [47] M.M.Buddhikot,P.Kolodzy, S.Miller, et a1.DIMSUMNet:New Directions in Wireless Networking Using Coordinated Dynamic Spectrum Access.IEEE International Symposium on a World ofWireless, Mobile and Multimedia Networks(ISWWMMN 05),2005,l:78-85.
    [48] M.M.Buddhikot, K Ryan.Spectrum Management in Coordinated Dynamic Spectrum Access Based Cellular Network.IEEE Intemational Symposium on New Frontiers in Dynamic Spectnun Access Networks(DySPAN 05),2005,l:299-307.
    [49] T.Kamakaris,M.M.Buddhikot, R.Iyer.A Case for Coordinated Dynamic Spectrum Access in Celluar Networks.IEEE International Symposium Oil New Frontiers in Dynamic Spectrum Access Networks(DySPAN 05),2005,l:289-298.
    [50] FCC,“Unlicensed operation in the tv broadcast bands, in et docket no. 04-18,”tech. rep., 2004..
    [51] IEEE 802.22 Working Group.IEEE 802.22 Functional Requirements.September 2005.[Online].Available at:http://www.ieee802.org/22/.
    [52] C.Cordeiro,IC Challapali,D.BirnJ,et a1.IEEE 802.22:The First Worldwide Wireless Standard Based on Cognitive-Radio.IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN 05),2005,l:328-337.
    [53] IEEE 802.16’s License-Exempt (LE) Task Group [EB/OL].http:// www.ieee802.org/ 16 / le/ [2004-01-01].
    [54] IEEE P1900 Working Group [EB/OL]. http://www.grouper.ieee.org/groups/emc/emc/1900/index.html [2005-01-01].
    [55] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks 50, 2006: 2127–2159.
    [56] Z. Li, F. Yu, M. Huang, A cooperative spectrum sensing consensus scheme in cognitive radios. Proc. of IEEE Unfocom 2009, 2009, pp. 2546-2550.
    [57]周小飞,张宏纲.认知无线电原理及应用.北京:北京邮电大学出版社,2007.
    [58] Ghasemi A, Sousa E S. Collaborative spectrum sensing for opportunistic access in fading environment. Proc. IEEE DySPAN 2005, November, 2005:131-136.
    [59]张辉,曹丽娜.现代通信原理与技术.西安:西安电子科技大学出版社,2002.
    [60] A. Gardner,“Statistical spectral analysis: a non probabilistic theory,”1986
    [61] U. Gardner, WA,“Exploitation of spectral redundancy in cyclostationary signals,”IEEE Signal Processing Mag., vol. 8, no. 2, pp. 14–36, 1991.
    [62] A. Fehske, J.D. Gaeddert, J.H. Reed, A new approach to signal classification using spectral correlation and neural networks, in: Proc. IEEE DySPAN 2005, November 2005, pp. 144–150.
    [63] H. Tang, Some physical layer issues of wide-band cognitive radio system, in: Proc. IEEE DySPAN 2005, November 2005, pp. 151–159.
    [64] M. Oner and F. Jondral, Cyclostationarity-based methods for the extraction of the channel allocation information in a spectrum pooling system, Proc. of IEEE Radio and Wireless Conference, pp. 279-282, Sept. 2004.
    [65] Ning Han, SungHwan Shon, Jae Hak Chung, and Jae Moung Kim,“Spectral correlation based signal detection method for spectrum sensing in IEEE 802.22 WRAN systems,”Proc. of the 8th International Conference on Advanced Communication Technology, vol.3, pp.1765-1770, Feb. 2006.
    [66] W.A.Gardner,“Signal Interception: A Unifying Theoretical Framework for Future Detection,”IEEE Trans. on Communications, 1998.
    [67] A. Fehske, J. Gaeddert, and J. Reed,“A new approach to signal classification using spectral correlation and neural networks,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov. 2005, pp. 144–150.
    [68] J. Lund en, V. Koivunen, A. Huttunen, and H. V. Poor,“Spectrum sensing in cognitive radios based on multiple cyclic frequencies,”in Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Commun. (Crowncom), Orlando, Florida, USA, July/Aug. 2007.
    [69] K. Kim, I. A. Akbar, K. K. Bae, J.-S. Um, C. M. Spooner, and J. H. Reed,“Cyclostationary approaches to signal detection and classification in cognitive radio,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr. 2007, pp. 212–215.
    [70] D.Slepian,“Some comments on the detection of Gaussian signals in Gaussian noise,”Information Theory, IRE Transactions on, vol. 4, pp.65-68, June 1958.
    [71] H.Urkowitz,“Energy detection of unknown deterministic signals,”Proceedings of the IEEE, vol.55, pp.523-531, Apriil 1967.
    [72] D. Cabric, A. Tkachenko, and R. Brodersen,“Spectrum sensing measurements of pilot, energy, and collaborative detection,”in Proc. IEEE Military Commun. Conf., Washington, D.C., USA, Oct. 2006, pp. 1–7.
    [73] P. Pawe?czak, G. J. Janssen, and R. V. Prasad,“Performance measures of dynamic spectrum access networks,”in Proc. IEEE Global Telecomm. Conf. (Globecom), San Francisco, California, USA, Nov./Dec. 2006.
    [74] J. Lehtom aki,“Analysis of energy based signal detection,”Ph.D. dissertation, University of Oulu, Finland, Dec. 2005.
    [75] S.J. Shellhammer, S.S.N, R.Tandra, and J. Tomcik,“Performance of power detector sensors of dtv signals in ieee 802.22 wrans,”p.4, 2006..
    [76] R. Tandra and A.Sahai,“Fundamental limits on detection in low snr under noise uncertainty,”Wireless networks, Communications and Mobile Computing, 2005International Conference on, vol.1, pp.464-469 vol.1, June 2005.
    [77] R. Tandra and A.Sahai,“Snr walls for signal detection,”Selected Topics in Signal Processing, IEEE Journal of vol.2, pp.4-17, Feb. 2008.
    [78] Z. Quan, S. Cui, A. Sayed, H. Poor, Optimal multiband joint detection for spectrum sensing in cognitive radio networks, IEEE Transactions on Signal Processing 57 (3) (2009) 1128–1140.
    [79] Y. Yuan, P. Bahl, R. Chandra, P. A. Chou, J. I. Ferrell, T. Moscibroda, S. Narlanka, and Y. Wu,“KNOWS: Cognitive radio networks over white spaces,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr. 2007, pp. 416–427.
    [80] G Ganesan and Y. Li,“Agility improvement through cooperative diversity in cognitive radio,”in Proc. IEEE Global Telecomm. Conf. (Globecom), vol. 5, St. Louis, Missouri, USA, Nov./Dec. 2005, pp. 2505–2509.
    [81] D. Datla, R. Rajbanshi, A. M. Wyglinski, and G. J. Minden,“Parametric adaptive spectrum sensing framework for dynamic spectrum access networks,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr. 2007, pp. 482–485.
    [82] P. Qihang, Z. Kun, W. Jun, and L. Shaoqian,“A distributed spectrum sensing scheme based on credibility and evidence theory in cognitive radio context,”in Proc. IEEE Int. Symposium on Personal, Indoor and Mobile Radio Commun., Helsinki, Finland, Sept. 2006, pp. 1–5.
    [83] F. Weidling, D. Datla, V. Petty, P. Krishnan, and G. Minden,“A framework for RF spectrum measurements and analysis,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, vol. 1, Baltimore, Maryland, USA, Nov. 2005, pp. 573–576.
    [84] S. t. B. S. M. Mishra, R. Mahadevappa, and R. W. Brodersen,“Cognitive technology for ultra-wideband/WiMax coexistence,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, Apr. 2007, pp. 179–186.
    [85] FCC,“Spectrum policy task force, rep. et docket no. 02-135,”tech. rep., Nov. 2002.
    [86] FCC, ET Docket NO. 03-237 Notice of inquiry and notice of proposed Rulemaking, November 2003.
    [87] J. Huang, R. Berry and M. L. Hong, Auction-based spectrum sensing [J], Mobile Networks and Application, 2006, 11(1): 405-418.
    [88] Y. Xing, C.Mathur and M.A.Haleem, et al. Dynamic spectrm access with QoS and interference temperature constraints [J]. IEEE Transactions on Mobile Computing, 2007, 6(4):423-432.
    [89] M. Sharma M, A.Sahoo, and K.Nayak. Channel selection under interference temperature model in multi-hop cognitive mesh networks [C]. // IEEE. in proceedings of IEEE DySPAN. USA: IEEE Press, 2007: 133-136.
    [90] D.Hatfield and P.Weiser,“Property rights in spectrum: taking the next step,”New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN’2005. 2005 First IEEE International Symposium on, pp. 43-55, Nov. 2005.
    [91] Wild B, Ramchandran K. Detecting primary recevers for cognitive radio applications. New frontiers in dynamic spectrum access networks, Baltimore, MA, USA, Nov., 2005.
    [92] E. Visotsky, S. Kuffner, R. Peterson, On collaborative detection of tv transmissions in support of dynamic spectrum sharing, Proc. of IEEE DySPAN 2005,2005, pp.338-345.
    [93] J.Unnikrishnan, V.V.Veeravalli, Cooperative sensing for primary detection in cognitive radio, IEEE Journal of Selected Topics in Signal Processing 2 (1) (2008) 18-27.
    [94] G. Ganesan, Y.G. Li, Cooperative spectrum sensing in cognitive radio networks, in: Proc. IEEE DySPAN 2005, November 2005, pp. 137–143.
    [95] M. Gandetto, A. F. Cattoni, and C. S. Regazzoni,“A distributed approach to mode identification and spectrum monitoring for cognitive radios,”in Proc. SDR ForumTechnical Conference, Orange County, California, USA, Nov. 2005.
    [96] M. Gandetto, A. F. Cattoni, M. Musso, and C. S. Regazzoni,“Distributed cooperative mode identification for cognitive radio applications,”in Proc. International Radio Science Union (URSI), New Delhi, India, Oct. 2005.
    [97] N. Ahmed, D. Hadaller, and S. Keshav,“GUESS: gossiping updates for efficient spectrum sensing,”in Proc. International workshop on Decentralized resource sharing in mobile computing and networking, Los Angeles, California, USA, 2006, pp. 12–17.
    [98] M. Gandetto and C. Regazzoni,“Spectrum sensing: A distributed approach for cognitive terminals,”IEEE J. Select. Areas Commun., vol. 25, no. 3, pp. 546–557, Apr. 2007.
    [99] J. Zhao, H. Zheng, G.-H. Yang, Distributed coordination in dynamic spectrum allocation networks, in: Proc. IEEE DySPAN 2005, November 2005, pp. 259–268.
    [100] G.. Ganesan, Y. G.. Li, Cooperative spectrum sensing in cognitive radio-part i: two user networks, IEEE Traansactions on Wireless Communications 6(6) (2007) 2204-2213.
    [101] G.. Ganesan, Y.G..Li, Cooperative spectrum sensing in cognitive radio-part ii: multiuser networks, IEEE Traansactions on Wireless Communications 6(6) (2007) 2204-2213.
    [102] W.Zhang, K.Letaief, Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks-[transaction letters], IEEE Transactions on Wireless Communications 7(12) (2008)4761-4766.
    [103] Ian F. Akyildiz, Brandon F. Lo, Ravikumar Balakrishnan, Cooperative Spectrum Sensing in Cognitive Radio Networks: A Survey. Physical Communication 4(1)(2011), March 2011: 40-62.
    [104] K.R.Chowdhury, I.F.Akyildiz, CRP: A routing protocol for cognitive radio ad hoc networks, to appear in IEEE Journal of SelectedTopics in Signal Processing, 2010
    [105] A. Tonmukayakul and M. B. H. Weiss,“Secondary use of radio spectrum: A feasibility analysis,”in Proc. Telecommunications Policy Research Conference,Arlington, VA, USA, Oct. 2005.
    [106] W. D. Horne,“Adaptive spectrum access: Using the full spectrum space,”in Proc. Annual Telecommunications Policy Research Conf., Arlington, Virginia, Oct. 2003.
    [107] E. Visotsky, S. Kuffner, and R. Peterson,“On collaborative detection of TV transmissions in support of dynamic spectrum sharing,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov. 2005, pp. 338–345.
    [108] M. Gandetto, A. F. Cattoni, M. Musso, and C. S. Regazzoni,“Distributed cooperative mode identification for cognitive radio applications,”in Proc. International Radio Science Union (URSI), New Delhi, India, Oct. 2005.
    [109] Ghasemi A, Sousa E S. Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs [J]. IEEE Communications Magazine, 2008, 46(4):32– 39.
    [110] Mishra S M, Shahai A, Brodenson R W. Cooperative Sensing among Cognitive Radios [C] // Proc. IEEE ICC. Istanbul, Turkey: IEEE, 2006: 1658-1663.
    [111] Jun Ma, Ye Li. Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks [J]. IEEE Trans. on Wireless Communications, 2008, 7(11): 4502-4507.
    [112] E. Peh and Y.-C. Liang,“Optimization for cooperative sensing in cognitive radio networks,”in Proc. IEEE Wireless Commun. and Networking Conf., Hong Kong, Mar. 2007, pp. 27–32.
    [113] E. Visotsky, S. Kuffner, and R. Peterson,“On collaborative detection of TV transmissions in support of dynamic spectrum sharing,”in Proc. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA, Nov. 2005, pp. 338–345.
    [114] T. Weiss, J. Hillenbrand, and F. Jondral,“A diversity approach for the detection of idle spectral resources in spectrum pooling systems,”in Proc. of the 48th Int. Scientific Colloquium, Ilmenau, Germany, Sept. 2003, pp. 37–38.
    [115] Amir Ghasemi, Elvino S. Sousa, Spectrum Sensing in Cognitive Radio Networks: the Cooperation-Processing Tradeoff, Wiley Wireless Commun. and Mobile Comp. Special Issue on Cognitive Radio, Software-Defined Radio, and Addaptive Wireless Systems, vol. 7, no. 9, Nov. 2007, pp. 1049-1060.
    [116] FCC, Notice of Proposed Rulemaking, in the matter of unlicensed operation in the TV broadcast bands (ET Docket No. 04-186) and additional spectrum for unlicensed devices below 900 MHz and in the 3 GHz band (ET Docket No. 02-380), FCC 04-113, May 2004.
    [117] National Telecommunications and Information Administration. Interference protection criteria, phase 1: compilation from existing sources, Tech. Report 05-432, 2005, available online at: http://www.ntia.doc.gov/osmhome/reports/ntia05-432/IPC Phase 1 Report. pdf..
    [118] F. Digham, M. Alouini, M. Simon, On the energy detection of unknown signals over fading channels, in: Proc. IEEE ICC 2003, vol. 5, May 2003, pp. 3575–3579.
    [119] W. Zhang, R. Mallik, K. Letaief, Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks, IEEE Transaction on Wireless Communications 8 (12) (2009) 5761-5766.
    [120]朱华,黄辉宁,李永庆,梅文博,随机信号分析.北京:北京理工大学出版社,2003年8月.
    [121] Proakis J G. Digital Communications [M]. 4th ed. New York: McGraw-Hill, 2003.
    [122] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, S. Mohanty, NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks 50 (13) (2006) 2127–2159.
    [123] B. F. Lo, I. F. Akyildiz, A. M. Al-Dhelaan, Ecient recovery control channel design in cognitive radio ad hoc networks, Vehicular Technology, IEEE Transactions on 59 (9) (2010) 4513–4526.
    [124] X. Zhou, G. Y. Li, D. Li, D. Wang, A. C. K. Soong, Bandwidth efficient combination for cooperative spectrum sensing in cognitive radio networks, in: Proc. of IEEE ICASSP 2010, 2010, pp. 3126–3129.
    [125] Sun Chun-hua, Zhang Wei, Letaief K B. Cooperative spectrum sensing for cognitive radios under bandwidth constraints [C]// Proc. of Wireless Communications and Networking Conference, Hong Kong, China: IEEE, 2007:1-5.
    [126] E. Visotsky, S. Kuner, R. Peterson, On collaborative detection of tv transmissions in support of dynamic spectrum sharing, in: Proc. of IEEE DySPAN 2005, 2005, pp. 338–345.
    [127] Z. Quan, S. Cui, A. Sayed, Optimal linear cooperation for spectrum sensing in cognitive radio networks, IEEE Journal of Selected Topics in Signal Processing 2 (1) (2008) 28–40.
    [128] W. Zhang, K. Letaief, Cooperative spectrum sensing with transmit and relay diversity in cognitive radio networks - [transaction letters], IEEE Transactions on Wireless Communications 7 (12) (2008) 4761–4766.
    [129] M. Di Renzo, L. Imbriglio, F. Graziosi, F. Santucci, Distributed data fusion over correlated log-normal sensing and reporting channels: Application to cognitive radio networks, IEEE Transactions on Wireless Communications 8 (12) (2009) 5813–5821.
    [130] M. Di Renzo, L. Imbriglio, F. Graziosi, F. Santucci, Cooperative spectrum sensing over correlated log-normal sensing and reporting channels, in: Proc. of IEEE GLOBECOM 2009, 2009, pp. 1–8.
    [131] Sun Chun-hua, Zhang Wei, and Letaief K B. Cluster-based cooperative spectrum sensing in cognitive radio systems [C]// IEEE International Conference on Communications (ICC 07), Glasgow, UK: IEEE, 2007: 2511-2515.
    [132]樊昌信,张甫翊,徐炳祥,吴成柯,通信原理.北京:国防工业出版社,2003年9月.
    [133] A. Malady, C. da Silva, Clustering methods for distributed spectrum sensing in cognitive radio systems, in: Proc. of IEEE MILCOM 2008, 2008, pp. 1–5.
    [134] C. Guo, T. Peng, S. Xu, H.Wang, W.Wang, Cooperative spectrum sensing with cluster-based architecture in cognitive radio networks, in: IEEE 69th VehicularTechnology Conference (VTC2009-Spring), 2009, 2009, pp. 1–5.
    [135] J.Wei, X. Zhang, Energy-efficient distributed spectrum sensing for wireless cognitive radio networks, in: INFOCOM IEEE Conference on Computer Communications Workshops, 2010, 2010, pp. 1–6.
    [136] HUR Y, PARK J, WOO W, WLC05-1: A Cognitive Radio (CR) System Employing a Dual-Stage Spectrum Sensing Technique: A Multi-Resolution Spectrum Sensing (MRSS) and a Temporal Signature Detection (TSD) Technique [C] // Global Telecommunications Conference, San Jose, CA, USA: IEEE Press, 2006:1-5.
    [137] NEIHART N M, ROY S, ALLSTOT D J, A Parallel, Multi-Resolution Sensing Technique for Multiple Antenna Cognitive Radios [C] // Circuits and Systems , New Orleans, Louisiana, USA: IEEE Press, 2007: 2530-2533.
    [138] TIAN ZHI, GIANNAKIS GEORGIOS B, A Wavelet Approach to Wideband Spectrum Sensing for Cognitive Radios [C] // Cignitive Radio Oriented Wireless Networks and Communications, Mykonos Island, Greece: IEEE Press, 2006: 1-5.
    [139] WILD B, RAMCHANDRAN K, Detecting Primary Receivers for Cognitive Radio Applications [C] // New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA: IEEE Press, 2005: 124-130.
    [140] ZENG Yong-hong, LIANG Ying-chang, Covariance Based Signal Detections for Cognitive Radio 2007 [C] // New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland: IEEE Press, 2007: 202-207.
    [141]“Ieee p802.22TM/d0.1 draft standard for wireless regional area networks patrt 22: Cognitive wireless ran medium access control (mac) and physical layer (phy) specifications: Policies and procedures for operation in the tv bands,”2006.
    [142] Peng Wang, Limin Xiao, Shidong Zhou, et al. Optimization of Detection Time for Channel Efficiency in Cognitive radio systems [C]// IEEE communications society subject matter experts for publication in the WCNC 2007 proceedings. Hong kong, China: IEEE, 2007: 111-115.
    [143] Papoulis A. Probability, Random variables, and Stochastic processes [M]. 3rd Ed.New York: McGraw-Hill, 1991.
    [144] D. R. Cox, Renewal Theory. Butler and Tanner, 1967.
    [145] S. M. Ross, Stochastic Processes. John Wiley & Sons, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700