医学RNA病毒属水平基因芯片筛查技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人类传染病中,70%以上都是由病毒引起的,即病毒性传染病。目前已知的病毒有5400多种,其中与人类疾病相关的约有400多种。而在人类致病病毒即医学病毒中,RNA病毒占总数的80%以上,大部分烈性病毒性传染病由RNA病毒引起,如丝状病毒属中的埃博拉病毒及马尔堡病毒、沙粒病毒属中的拉沙热病毒、甲病毒属中的委内瑞拉马脑炎病毒等。因此,建立高通量、快速筛查及鉴定未知RNA病毒的技术平台具有重要的意义。基因芯片技术是一种大规模集成的固相杂交技术,其基本原理是核酸分子杂交,即依据DNA双链碱基互补配对、变性和复性的原理,以大量已知序列的oligo、cDNA或基因片段作探针,检测样品中哪些核酸序列与其互补,然后经过一定的检测系统对杂交信号进行检测,并配以计算机系统对每一杂交信号数据进行定性、定量分析和处理,从而迅速得出待测品的基因序列及表达的信息。
     本研究的目的是建立能够在属水平对医学RNA病毒进行快速筛查的基因芯片技术,在出现新(突)发传染病疫情或公共卫生事件时,能利用该芯片,快速将病毒性病原体筛查到属水平,为进一步进行病原体的分离培养、鉴定及传染病疫情的防控提供有意义的参考。本研究的设计思路是在属水平设计医学RNA病毒的寡核苷酸(oligo)探针,针对每个病毒属设计10条左右探针,使探针序列能覆盖该病毒属中所有已知的病毒株,因此可将该芯片用于对目前已知的RNA病毒进行属水平的快速筛查。另外,由于同一病毒属内不同病毒株之间虽然碱基序列不完全相同,但存在相当程度的同源性,因此,通过采用较长的oligo探针(63mer),允许在杂交时模板与探针之间存在一定的碱基错配,而任何一种新发或未知病毒都必然与某个病毒属中的已知病毒存在一定的同源性,因此,利用该芯片也可对目前未知的新发病毒性病原体进行快速分类。
     本课题的主要研究结果如下:
     1.医学RNA病毒属水平oligo探针的设计及生物信息学验证
     依据国际病毒分类委员会2005年发布的第八次分类报告中的病毒分类数据库(http://phene.cpmc.columbia.edu/ICTV/index.htm)及NCBI的病毒分类数据库(http://www.ncbi.nlm.gov/Taxomomy/Browser/Viruses),挑选对人类致病的RNA病毒,选取14个病毒科、32个病毒属的RNA病毒作为本课题拟检测的医学RNA病毒。然后从GenBank病毒数据库中下载拟检测病毒的基因组序列。如果一个病毒属已测基因组全序列≧10条的,下载已登录的所有病毒基因组全序列。如果一个病毒属已测基因组全序列≦10条的,除下载已登录的全序列之外,同时下载其它部分测序的序列。对于分段RNA病毒,需要下载所有片段的序列。共获得各种序列约15万条,用于医学RNA病毒属水平oligo探针的设计。利用Arraydesigner 4.0等软件并参考国外已发表的病毒属及种的oligo探针序列,针对每个病毒属设计10~30条探针,使探针序列能覆盖该病毒属的所有已知病毒株。探针长度均为63mer,Tm值为75±5℃,使所有探针尽量具有相近的杂交动力学参数。同时遵循oligo探针的其它设计原则,共设计了314条病毒属水平oligo探针及314条互补序列探针。杂交系统阳性对照探针是针对丙型肝炎病毒(Hepatitis C virus,HCV)基因组而设计,探针长度为63mer,共设计10条阳性对照探针。本课题中共设计了oligo探针638条。利用生物信息学技术,通过与所有已测序的病毒序列进行BLAST比较,进行了探针的特异性验证,包括病毒属内序列同源性及属间序列的特异性。
     2.oligo探针的筛选与剔除及基因芯片杂交条件的优化
     由于影响基因芯片杂交结果的因素很多,因此,在利用生物信息学方法完成探针特异性的验证之后,进一步利用实验手段对探针的特异性进行了验证。具体方法是在各个病毒属中选择一种病毒,设计该病毒的特异PCR扩增引物,使扩增片段中包含至少一条针对该病毒属的oligo探针序列。然后通过分析特异PCR产物与基因芯片的杂交结果,考核所设计的探针的特异性,并对特异性差的探针予以剔除。结果证实大多数探针具有良好的杂交特异性,但也有一些探针出现非特异阳性杂交信号,表明其特异性较差,通过实验验证共剔除了18条特异性较差的探针。另外,以日本乙型脑炎病毒作为模拟未知标本,采用锚定随机引物PCR法从病毒的培养上清中扩增样本核酸,通过与基因芯片杂交,进行了芯片点样后封闭、芯片杂交条件及杂交液盐离子浓度的优化。结果显示,点样后经过NaBH4封闭的杂交效果更好,可有效降低背景荧光。通过比较杂交温度分别为36℃、39℃、42℃、45℃、48℃时的基因芯片杂交结果,证实42℃是本芯片的最适杂交温度。通过比较杂交时间分别为2 hr、6 hr、8 hr及过夜杂交的结果,证实过夜杂交是本芯片的最适杂交时间。通过比较杂交液中甲酰胺浓度分别为25%、33%、40%、50%和60%时的杂交效果,证实50%是本芯片的最适甲酰胺浓度。
     3.标本前处理方法的探索及未知病毒靶核酸扩增方法的建立
     宿主细胞基因组成分的干扰及如何对未知病毒核酸进行有效扩增是制约高通量病毒基因芯片技术发展的主要因素。本研究对标本前处理方法及未知病毒核酸的扩增方法进行了探索与比较。结果表明,在提取病毒RNA之前,对标本进行离心、过滤及DNA酶I/RNA酶的双酶预处理等步骤可有效降低宿主细胞基因组成分对芯片杂交结果的干扰。而对于如何有效扩增未知病毒核酸,从RNA的逆转录及序列非依赖性扩增两个步骤进行了比较。针对RNA的逆转录步骤,比较了病毒偏性引物逆转录法、随机引物逆转录法及锚定随机引物逆转录法,结果表明病毒偏性引物逆转录法更能提高病毒RNA的逆转录水平。针对序列非依赖性扩增,比较了PVA引物扩增法、多重置换扩增法、锚定随机引物扩增法及限制性显示PCR扩增法,证实采用锚定随机引物法,并以多重置换扩增法作为补充进行病毒核酸的扩增,可实现对未知病毒核酸的有效及均衡扩增,提高基因芯片检测的敏感性及特异性。
     4.基因芯片筛查技术的建立
     综合以上的研究结果,初步建立了医学RNA病毒属水平筛查基因芯片技术,并对基因芯片的检测敏感性及特异性进行了考核与验证。以日本乙型脑炎病毒为模拟未知标本,证实本芯片对该病毒培养上清的检测敏感性约为100个病毒粒子。然后分别利用已知病毒的细胞培养上清、新分离未知标本的培养上清及模拟临床标本,对本芯片进行了检测特异性的考核。结果显示,对已知病毒的细胞培养上清、新分离未知标本的培养上清,本芯片均获得了特异性较好的筛查结果。对于模拟临床标本,虽然杂交结果中存在一些非特异信号,但阳性信号绝对值最高的是待检测标本,因此本芯片也能对模拟临床标本进行快速筛查。
     总之,本研究首先在医学RNA病毒属水平设计oligo探针,对探针的特异性进行了生物信息学及实验手段的验证,剔除了部分特异性差的探针。然后对基因芯片杂交条件进行了优化,选择了针对本芯片的最适杂交温度、杂交时间及盐离子浓度。在此基础上,进行了标本前处理方法的摸索及未知病毒核酸扩增方法的优化,初步建立了医学RNA病毒属水平筛查基因芯片技术。应用该技术,可对细胞培养上清中的未知病毒进行属水平的快速筛查。在出现传染病疫情时,多数时候通过观察病原体对抗生素的敏感性并结合临床症状等,可快速判定病原体是否为病毒。但即使是在敏感细胞中观察到了细胞病变,由于是未知病毒,对病原体的鉴定仍是一项非常困难的工作。本研究为解决该问题提供了一种高通量的快速筛查技术。将未知病毒快速筛查到属水平后,可能利用病毒属通用PCR并结合序列测定技术等,实现对未知病毒的最终鉴定。
More than 70%of human infectious diseases are caused by viruses,which are termed as viral infectious disease.Among 5400 known viruses,about 400 viruses are related with human diseases.And more than 80%of human pathogenic viruses are RNA viruses.Most of the high pathogenic viral diseases are infected by RNA viruses,such as Ebola and Marburg virus in Filovirus,Lassa virus in Arenavirus and Venezuelan equine encephalitis virus in Alphavirus.It is extremely important to establish methods for high throughput and parallel screening and identification of unknown RNA viruses. Microarray(genechip) is a large scale integrated solid-phase hybridization technique.Its fundamental principle is the hybridization of nucleic acid molecules.Based on the principle of complementarily match of double-strand DNA,oligonucleotides,cDNA or gene fragments with known sequences are printed on chip as probes,and hybridized with target nucleic acids in tested sample.The results could further be interpreted by computer program or software qualitatively and quantitively.
     The purpose of this study was to establish a microarray method to screen human pathogenic RNA viruses on genus levels.By using this high throughput method, hopefully,the unknown RNA viral pathogen could be screened to a certain viral genus during the outbreak of viral infectious disease or other public health events.This would be helpful for latter isolation and identification of the pathogen and for further control of the epidemic.The principle of this study was to design the oligo probes on genus levels. For each viral genus,about 10 oligos should be designed to cover all the known viruses in this certain genus.By using these oligos,the known RNA viruses could be quickly identified to its belonged genus.In addition,due to the fact that different viral strains in a certain genus have different sequences but possessed certain amount of same conserved region,by employing long oligos(63mer),certain mismatch of base pairs are permitted.As any new viral strains must have some homology with the sequences in a certain genus,so this method could also be applied for the rapid classification of the novel virus.
     The chief results of this study are listed as following:
     1.The designing of oligo probes on genus levels and their validation by bioinformatics
     According to the database of the eighth report of ICTV submitted in 2005 (http://phene.cpmc.columbia.edu/ICTV/index.htm) and the taxonomy database of NCBI(http://www.ncbi.nlm.gov/Taxomomy/Browser/Viruses),32 RNA viral genus in 14 viral families were selected for this study.Viral genome sequences were downloaded from Genbank.For those genus more than 10 whole genomes were sequenced,all of the whole genome were downloaded.For those less than 10 whole genome were sequenced, apart from downloading the whole genome,other partial sequenced fragments were also downloaded.As for segmented RNA viruses,all of the segments were downloaded. Totally,more than 150000 sequences were obtained for oligo probe designing. Arraydesigner 4.0 and other softwares were employed for the designing.The probe sequenced published by other groups were also taken into consideration.10~30 63-mer oligos were designed for each genus and the Tm value of these oligos were 75±5℃.This was necessary to ensure all the oligos had similar hybridization dynamics.Totally,314 viral probes and 314 complementary probes were designed at the first step.10 positive control probes were designed specifically according to the sequence of Hepatitis C virus. Bioinformatics was employed for the BLAST validation of these oligos.The sequence homology inside the genus and the specificity among different genus were analyzed.
     2.Selection of oligo probes and the optimization of hybridization conditions Lots of factors could affect the microarray hybridization results.Due to the above reason,after validation of the oligos by bioinformatics,experiments were carried out to validate the specificity of the oligos.The method was to select a virus in a certain genus and to design the specific RT-PCR primers for this virus,and to ensure that the amplified PCR product must contain at least one sequence of the oligo in this genus. Then the PCR product was hybridized with the microarray.By analyzing the hybridization result,the specificity of the oligo probe was evaluated and the other probes hybridized with the PCR product non-specifically was deleted in later experiments.The validation results showed that most of the oligos tested had good specificity,whereas some of the probes continuously gave positive signals.Totally 18 of these probes were deleted by experimental validation.In addition,Japanese B encephalitis virus(JEV) was selected as simulated unknown virus for optimization of hybridization conditions.The nucleic acid was amplified by anchored random-PCR and hybridized with the microarray.Hybridization time,hybridization temperature and concentration of formamide were optimized.The results showed that after printing on chip,the probes were blocked with NaBH4 could decrease the background fluorescence.By comparing the hybridization results under different conditions,hybridization at 42℃for overnight and at 50%formamide in hybridization buffer were selected as the optimal conditions.
     3.The exploring of sample pretreatment and target nucleic acids amplification of unknown virus
     The interference of host genome and effectively amplification of target nucleic acids from unknown virus were the main obstacles of developing high throughput virus microarray.In this study,the pretreatment of samples by differents ways and different non-sequence relyed amplification methods were explored and compared.The results showed that by sample centrifuge,filtration and treatment with DNaseI/RNaseT1 before RNA extraction,the interference of host genome could significantly be decreased.As for viral nucleic acid amplification,virus-bias primer,random primer and anchored random primer were employed during the reverse transcript of RNA,and random PVA primer PCR,anchored-random primer PCR,mutiple displacement amplification and modified restrict display PCR were compared for their amplification results.The results showed that by using virus-bias primer as reverse transcrip primer and anchored-random primer PCR combined with mutiple displacement amplification for latter amplification,viral nucleic acid could be effectively and balancedly amplified.These pretreatment and optimal amplification could significantly increase the sensitivity and specificity of this microarray.
     4.The establishment of microarray screening technique
     Taking all the above results together,the medical RNA viruses microarray on genus level was extablished.The testing sensitivity and specificity of the array were evaluated and validated.By testing the cultured supernatants of JEV,the sensitivity of this microarray to JEV was evaluated as about 100 virus copies.Then the cultured supernatants of known viruses and newly isolated sample and simulated clinical sample were used for validation of the microarray's specificity.The results showed that the microarray gave good hybridization results for both cultured cultured supernatants of known viruses and newly isolated sample.For simulated clinical sample,although there existed some non-specific positive singals,the positive singal density of detected virus was higher enough to determine the screening results.
     In summary,the oligo probes were designed on genus level for human pathogenic RNA viruses and the specificity of the probes was validated both by bioinformatics and experiments.Some of the poor specified probes were deleted.Hybridization conditions were optimized and optimal temperature,time and salt ion concentration were selected for this microarray to ensure the same hybridization dynamics of different oligos.Based on these results,the pretreatment of samples and optimal amplification of unknown virus were also explored.The microarray technique for parallel screening of human pathogenic RNA viruses was primarily established.By using this microarray,the viral pathogens in culture supertatants of both known virus and new isolated sample could be rapidly screened to genus level.Further epxeriments would be taken out to increase the specificity of the microarray and to validate the screen and detect effecicy of the microarray on clinical samples.
引文
[1]Fauquet CM,Mayo MA,Maniloff J,et al.Virus Taxonomy.Ⅷth Report of the International Committee on Taxonomy of Viruses[M].San Diego:Elsevier Academic Press.2005
    [2]洪健,周雪平.ICTV第八次报告的最新病毒分类系统.中国病毒学,2006,21(1):84-96
    [3]Dreier J,Stormer M,Kleesiek K,et al.Two novel real-time reverse transcriptase PCR assays for rapid detection of bacterial contamination in platelet concentrates.J Clin Microbiol,2004,2(10):4759-64.
    [4]Pas SD,Noppompanth S.Quantification of the newly detected lamivudine resistant YSDD variants of Hepatitis B vires using molecular beacons.J Clin Virol,2005,32(2):166-72.
    [5]Bustin SA.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.J Mol Endocrinol,2000,25:169-193.
    [6]Chamberlain JS,Gibbs RA,Ranier JE,et al.Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification.Nucleic Acids Res,1988,16(23):11141
    [7]Henegariu O,Heerema NA,Dlouhy SR,et al.Multiplex PCR:critical parameters and step-by-step protocol.Biotechniques,1997,23(3):504
    [8]Elnifro EM,Ashshi AM,.Cooper RJ,et al.Multiplex PCR:optimization and application in diagnostic virology.J Clin Microbiol,2000;13(4):559-70.
    [9]Dominguez SR,Briese T,Palacios G,et al.Multiplex MassTag-PCR for respiratory pathogens in pediatric nasopharyngeal washes negative by conventional diagnostic testing shows a high prevalence of viruses belonging to a newly recognized rhinovirus clade.J Clin Virol.,2008;43(2):219-22
    [10]Lamson D,Renwick N,Kapoor V,et al.MassTag polymerase-chain-reaction detection of respiratory pathogens,including a new rhinovirus genotype,that caused influenza-like illness in New York State during 2004-2005.J Infect Dis.2006,15;194(10):1398-402.
    [11]Renwick N,Schweiger B,Kapoor V,et al.A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany.J Infect Dis.2007;196(12):1754-60.
    [12]Tokarz R,Kapoor V,Samuel JE,et al.Detection of Tick-Borne Pathogens by MassTag Polymerase Chain Reaction.Vector Borne Zoonotic Dis.2008,Sep 18.[Epub ahead of print]
    [13]Palacios G,Briese T,Kapoor V,et al.MassTag polymerase chain reaction for differential diagnosis of viral hemorrhagic fever.Emerg Infect Dis.2006;12(4):692-5
    [14]Holt KE,Parkhill J,Mazzoni CJ,et al.High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi.Nat Genet.2008;40(8):987-93.
    [15]Morozova O,Marra MA.Applications of next-generation sequencing technologies in functional genomics.Genomics.2008;92(5):255-64.
    [16]Kaller M,Lundeburg J,Ahmadian A,et al.Arrayed identification of DNA signatures.Expert Rev Mol Diagn,2007,7(1):65-76
    [17]Huang W,Marth G,EagleView:A genome assembly viewer for next-generation sequencing technologies.Genome Res.2008,18:1538-1543
    [18]Chen TC,Chen GW,Hsiung CA,et al.Combining Multiplex Reverse Transcription-PCR and a Diagnostic Microarray To Detect and Differentiate Enterovirus 71 and Coxsackievirus A16.J Clin Microbiol,2006,44(6):2212-2219
    [19]Korimbocus J,Scaramozzino N,Lacroix B,et al.DNA Probe Array for the Simultaneous Identification of Herpesviruses,Enteroviruses,and Flaviviruses.J Clin Microbiol,2005.43(8):3779-3787
    [20]Lin BC,Wang Z,Gary JV,et al.Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays.Genome Res,2006,16:527-535
    [21]Boriskin YS,Rice PS,Stabler RA,et al.DNA Microarrays for Virus Detection in Cases of Central Nervous System Infection.J Clin Microbiol,2004,42(12):5811-5818.
    [22]Anne JJ,Piiparinen H,Lappalainen M,et al.Multiplex-PCR and oligonucleotide microarray for detection of eighit different herpesviruses from clinical specimens.J Clin Virol,2006,37:83-90
    [23]Wang D,Coscoy L,Zylberberg M,et al.Microarray-based detection and genotyping of viral pathogens.Proc Natl Acad Sci USA.2002;99:15687-15692.
    [24]Wang D,Urisman A,Liu Y,et al.Viral Discovery and Sequence Recovery using DNA Microarrays.PLoS Biol,2003;1(2):257-260.
    [25]Palacios G,Quan PL,Jabado OJ,et al.Panmicrobial Oligonucleotide Array for Diagnosis of Infectious Diseases.Emerg Infect Dis,2007,13(1):73-81
    [26]Chua KB,Bellini WJ,Rota PA,et al.Nipah virus:a recently emergent deadly paramyxovirus.Science,2000,288(5470):1432-1435.
    [27]Rota PA,Oberste MS,Monroe SS,et al.Characterization of a novel coronavirus associated with severe acute respiratory syndrome.Science 2003,300(5624):1394-1399.
    [28]Yauk CL,Berndt ML,Williams A,et al.Comprehensive comparison of six microarray technologies.Nucleic Acids Res,2004,32:e124.
    [29]Shippy R,Sendera TJ,Lockner R,et al.Performance evaluation of commercial short-oligonucleotide microarrays and the impact of noise in making cross-platform correlations.BMC Genomics,2004,5:61.
    [30]Bodrossy L,Sessitsch A.Oligonucleotide microarrays in microbial diagnostics.Current Opin in Microbiol,2004,7:245-254
    [31]Evertsz EM,Au-Young J,Ruvolo MV,et al.Hybridization cross-reactivity within homologous gene families on glass cDNA microarrays.Biotechniques 2001,31(5):1182—1186
    [32]Chou CC,Lee TT,Chen CH,et al.Design of microarray probes for virus identification and detection of emerging viruses at the genus level.BMC Bioinformatics 2006,7:232-243
    [33]Chou CC,Chen CH,Lee TT,ET AL.Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression.Nucleic Acids Res 2004,32(12):e99.
    [34]Binder,HT.Kirsten I,Hofacker,P et al.Interactions in oligonucleotide duplexes upon hybridisation of microarrays.J Phys Chem B.2004,108:18015-18025.
    [35]Binder H,Kirsten T,Loeffler M,et al.The sensitivity of microarray oligonucleotide probes—variability and the effect of base composition.J.Phys.Chem.B.2004,108:18003-18014.
    [36]Binder H,Preibisch S,Kirsten T.2005.Basepair interactions and hybridization isotherms of matched and mismatched oligonucleotide probes on microarrays.http://www.arvix.org/abs/q-bio.BM/0501008.
    [37]Binder HT,Kirsten M,Loeffler P,et al.Sequence specific sensitivity of oligonucleotide probes.Proc.German Bioinf.Conf.2003,2:145-147.
    [38]Mei RE,Hubbell S,Bekiranov M.et al.Probe selection for high-density oligonucleotide arrays.Proc.Natl.Acad.Sci.USA.2003,100:11237-11242.
    [39][美]谢纳著,张亮等译。生物芯片分析。科学出版社,2004年,第一版,p97-106
    [40]Charles PT,Vora G.J,Andreadis JD,et al.Fabrication and surface characterization of DNA microarrays using amine-and thiol-terminated oligonucleotide probes.Langmuir 2003,19:1586-1591.
    [41]Wrobel G,Schlingemann J,Hummerich L,et al.Optimization of high-density cDNA-microarray protocols by 'design of experiments'.Nucleic Acids Res,2003,31:e67
    [42]Eads B,Cash A,Bogart K,et al.Troubleshooting Microarray Hybridizations.Methods in enzymology 411:34-49
    [43]McConaughy BL,Laird CD,McCarthy BL.Nucleic acid reassociation in formamide.Biochemistry,1969,8(8):3289-95
    [44]Kennell DE.Principles and practices of nucleic acid hybridization.Proc Nucleic Acid Res Mol Biol,1971;11:259-301
    [45]Froussard P.A random-PCR method (rPCR)to construct whole cDNA library from low amounts of RNA.Nucleic Acid Res,1992;20(11):2900
    [46]Grothues D,Cantor CR,Smith CL.PCR amplification of megabase DNA with tagged random primers(T-PCR).Nucleic Acid Res,1993;21(5):1321-2
    [47]Clem AL,Sims J,Sucheta T,et al.Virus detection and identification using random multiplex(RT)-PCR with 3'-locked random primers.Virol J 2007,4:65-75
    [48]Nie X,Singh RP:A novel usage of random primers for multiplex RT-PCR detection of virus and viroid in aphids,leaves,and tubers.J Virol Methods 2001,91(1):37-49.
    [49]Allander T,Emerson SU,Engle RE,et al.A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species.Proc Natl Acad Sci USA 2001,98(20):11609-11614.
    [50]Vora GJ,Meador CE,David A et al.Nucleic Acid Amplification Strategies for DNA Microarray-Based Pathogen Detection.Appl Environ Microbiol.2004,70(5):3047-3054
    [51]Detter JC,Jett JM,Lucas SM,et al.Isothermal strand-displacement amplification applications for high-throughput genomics.Genomics 2002,80:691-698.
    [52]Dean FB,Nelson JR,Giesler TL.et al.Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification.Genome Res.2001,11:1095-1099
    [53]Rector A,Tachezy R,Ranst MV.A Sequence-Independent Strategy for Detection and Cloning of Circular DNA Virus Genomes by Using Multiply Primed Rolling-Circle Amplification.J.Virol.2004,78(10):4993-4998
    [54]Cline J,Braman JC,Hogrefe HH.PCR fidelity of Pfu DNA polymerase and other thermo-stable DNA polymerases.Nucleic Acids Res.1996,24:3546-3551.
    [55]Dean FB,Hosono S,Fang L,et al.Comprehensive human genome amplification using multiple displacement amplification.Proc.Natl.Acad.Sci.USA,2002,99:5261-5266.
    [56]Dean FB,Nelson J R,Gesler TL,et al.Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification.Genome Res.2001,11:1095-1099.
    [57]Nelson JR,Cai YC,Giesler TL,et al.TempliPhi,phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing.BioTechniques 2002(Suppl.):44-47.
    [58]Esteban JA,Salas M,Blanco L.Fidelity of Phi29 DNA polymerase.Comparison between protein-primed initiation and DNA polymerization.J.Biol.Chem.1993,268:2719-2726.
    [59]李凌,马文丽,甄莉,等。限制性显示技术制备HIV—1B亚型基因片段的研究,病毒学报,2002,18(2):177-179
    [60]Chou CC,Chen CH,Lee TT,et al.Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression.Nucleic Acids Res,2004,32(12):e99.
    [61]Holloway AJ,van Laar RK,Tothill RW,et al.Options available-from start to finish-for obtaining data from DNA microarrays Ⅱ.Nat Genet,2002:481-489.
    [62]Urisman A,Fischer KF,Chiu CY,et al.E-Predict:a computational strategy for species identification based on observed DNA microarray hybridization patterns.Genome Biol 2005,6(9):R78.
    [63]Chang PC,Peck K:Design and assessment of a fast algorithm for identifying specific probes for human and mouse genes.Bioinformatics 2003,19(11):1311-1317.
    [1]Wang D,Coscoy L,Zylberberg M,et al.Microarray-based detection and genotyping of viral pathogens[J].Proc Natl Acad Sci USA,2002,99(24):15687-15692.
    [2]Wang D,Udsman A,Liu YT,et al.Viral discovery and sequence recovery using DNA microarrays[J].PLoS Biol,2003,1(2):257-260.
    [3]Sengupta S,Onodera K,Lai A,et al.Molecular detection and identification of influenza viruses by oligonucleotide microarray hybridization[J].J Clin Microbiol,2003,41(10):4542-4550.
    [4]Kessler N,Ferraris O,Palmer K,et al.Use of the DNA flow-thru chip,a three-dimensional biochip,for typing and subtyping of influenza viruses[J].J Clin Microbiol,2004,42(5):2173-2185.
    [5]Bodrossy L,Sessitsch A.Oligonucleotide microarrays in microbial diagnostics[J].Current Opinion in Microbiology,2004,7:245-254
    [6]Ivshina AV,Vodeiko GM,Kuznetsov VA,et al.Mapping of Genomic Segments of Influenza B Virus Strains by an Oligonucleotide Microarray Method[J].J Clin Microbiol,2004,42(12):5793.
    [7]Li J,Chen S,Evans DH.Typing and Subtyping Influenza Virus Using DNA Microarrays and Multiplex Reverse Transcriptase PCR[J].J Clin Microbiol,2001,39(2):696-704.
    [8]van Doom LJ,Quint W,Kleter B,et al.Genotyping of human papillomavirus in liquid cytology cervical specimens by the PGMY line blot assay and theSPF10 line probe assay[J].J Clin Microbiol.2002,40:979-83.
    [9]Chizhikov V,Wagner M,Ivshina A,et al.Detection and genotyping of human group A rotaviruses by oligonucleotide microarray hybridization[J].Clin Microbiol,2002,40(7):2398-2407.
    [10]李宁,毛红菊,祁自柏.基因芯片法特异性检测丙型肝炎病毒的基因分型[J].中国免疫学杂志,2005,21(9):687-689.
    [11]Chua KB,Bellini WJ,Rota PA,et al.Nipah virus:a recently emergent deadly paramyxovirus[J].Science,2000,288(5470):1432-1435.
    [12]Rota PA,Oberste MS,Monroe SS,et al.Characterization of a novel coronavirus associated with severe acute respiratory syndrome[J].Science,2003,300(5624):1394-1399.
    [13]Urisman A,Fischer KF,Chiu CY,et al.E-Predict:a computational strategy for species identification based on observed DNA microarray hybridization patterns[J].Genome Biol,2005,6(9):R78.
    [14]Evertsz EM,Au-Young J,Ruvolo MV,et al.Hybridization cross-reactivity within homologous gene families on glass cDNA microarrays[J].Biotechniques,2001,31(5):1182
    [15]Hughes TR,Mao M,Jones AR,et al.Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer[J].Nat Biotechnol,2001,19(4):342-347.
    [16]Kane MD,Jatkoe TA,Stumpf CR,et al.Assessment of the sensitivity and specificity of oligonucleotide(50 met) microarrays[J].Nucleic Acids Res,2000,28(22):4552-4557.
    [17]Lin BC,Wang Z,Gary JV,et al.Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays[J].Genome Research,2006,16:527-535;
    [18]Chen TC,Chen GW,Hsiung CA,et al.Combining Multiplex Reverse Transcription-PCR and a Diagnostic Microarray To Detect and Differentiate Enterovirus 71 and Coxsackievirus A16[J].J Clin Microbiol,2006,44(6):2212-2219
    [19]Boriskin YS,Rice PS,Stabler RA,et al.DNA Microarrays for Virus Detection in Cases of Central Nervous System Infection[J].J Clin Microbiol,2004,42(12):5811-5818.
    [20]Anne JJ,Piiparinen H,Lappalainen M,et al.Multiplex-PCR and oligonucleotide microarray for detection of eighit different herpesviruses from clinical specimens[J].Journal of Clinical Virology,2006,37:83-90
    [21]杨银辉、杨瑞馥、常国辉,等.基因芯片技术检测10种烈性RNA病毒[J],解放军医学杂志,2006,31(3):203-206.
    [22]黄岩山,陈峰,周林福.基因芯片技术在呼吸道病毒检测中的应用[J],中国感染控制杂志,2005,10(4):298-300.
    [23]Chou CC,Lee TT,Chen CH,et al.Design of microarray probes for virus identification and detection of emerging viruses at the genus level[J].BMC Bioinformatics,2006,7:232
    [24]杨银辉,韩伟国,胡玉洋,等.人类致病病毒属水平基因筛查芯片的制备及其在黄病毒属检测中的初步应用[J].军事医学科学院院刊,2006,30(5):401-405
    [25]Binder H,Preibisch S.Specific and Nonspecific Hybridization of Oligonucleotide Probes on Microarrays[J].Biophysical Journal,2005,89(1) 337-352
    [26]Chou CC,Chen CH,Lee TT,et al.Optimization of probe length and the number of probes per gene for optimal microarray analysis ofgene expression[J].Nucleic Acids Res,2004,32(12):e99.
    [27]Holloway AJ,van Laar RK,Tothill RW,et al.Options available-from start to finish-for obtaining data from DNA microarrays Ⅱ[J].Nat Genet,2002:481-489.
    [28]Ravi Kothapalli,Sean J Yoder,Shrikant Manel et al.Microarray results:how accurate are they?[J].BMC Bioinformatics,2002,3:22
    [29]Check E:Powerful new database pins down emerging infections[J].Nat Med,2006,12(2):155.
    [30]Bao Y,Federhen S,Leipe D,et al.National center for biotechnology information viral genomes project[J].J Virol,2004,78(14):7291-7298.
    [31]Buchen-Osmond C:Further progress in ICTVdB,a universal virus database[J].Arch Virol,1997,142(8):1734-1739.
    1.Wang D,Coscoy L,Zylberberg M,et al.Microarray-based detection and genotyping of viral pathogens.Proc Natl Acad Sci USA.2002;99:15687-15692.
    2.Wang D,Urisman A,Liu YT,et al.Viral discovery and sequence recovery using DNA microarrays.PLoS Biol.2003;1(2):17.
    3.李钟铎:生物战剂检验鉴定手册(专著)。军事医学科学出版社,2002.P80-85.
    4.Storch,G.A.(2000) Essentials of Diagnostic Virology(Churchill Livingstone,New York).
    5.Elnifro,E.M.,Ashshi,A.M.,Cooper,R.J.& Klapper,P.E.(2000) Clin.Microbiol.Rev.13,559-570.
    6.Boriskin Y S,Rice P S,Stabler R A,et al.DNA Microarrays for Virus Detection in Cases of Central Nervous System Infection.J.Clin.Microbiol.2004;42(12):5811-5818
    7.Coiras MT,Lopez-Huertas MR,Lopez-Campos G,et al.Oligonucleotide array for simultaneous detection of respiratory viruses using a reverse-line blot hybridization assay.J Med Virol.2005;76(2):256-64
    8.Dean,F.B.,Hosono,S.,Fang,L.,et al.Comprehensive human genome amplification using multiple displacement amplification.Proc.Natl.Acad.Sci.2002:99:5261-5266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700