四旋翼飞行器控制系统构建及控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型四旋翼飞行器是一种通过对四个旋翼联合驱动而实现垂直起降的无人飞行器,其主要特点有机构新颖简单,易于实现定点悬停,飞行平稳可靠,起飞重量大,操控简便,在侦查和探测领域具有广阔的应用前景。本文以自制小型电动四旋翼飞行器作为研究平台,实现对其空中运动姿态的数学描述,建立完整的动力学模型,并针对姿态解算方法和飞行控制算法展开研究,最终完成飞行器的稳定悬停和远程操控等研究目标。
     首先,本文对国内外现有的四旋翼飞行器研究以及相关技术做出叙述和比较,并总结其中的优缺点,得出了本课题研究中四旋翼飞行器所要实现的性能和设计指标。综合考虑操作和价格等因素,设计出一种简便的小型四旋翼飞行器方案,选取常见的工程材料以及电子器件,搭建出相应的实体平台和硬件控制系统。测试结果表明该实物平台能够实现四旋翼飞行器的研究特性。
     其次,针对小型四旋翼飞行器姿态解算问题,本文对比常见的捷联姿态表示方法,选用方向余弦法表示飞行器姿态演化,结合搭建的航姿参考系统的特点,基于互补滤波器算法设计出一种优化的姿态求解器,该方法创新地将陀螺仪、加速度传感器和数字罗盘的数据进行融合分析,实现了四旋翼飞行器姿态的快速准确解算。
     再次,对四旋翼飞行器进行动力学分析,利用牛顿-欧拉方程建立六自由度动力学简化模型,从而推导出适用系统的实时控制策略,基于经典的PID控制技术设计出稳定可靠的控制器,以实现四旋翼飞行器的稳定悬停和遥控飞行。
     最后,对设计的姿态求解器和控制器展开实验测试,结果表明这些方法满足对四旋翼飞行器的精确和快速控制,能够达到预期的研究目标。
Small quadrotor, an unmanned aerial vehicle who can achieve vertical take-off and landing (VTOL) by combined control of the four rotors, has many advantages such as simple body structure, easy to achieve hover, smooth and reliable, with large takeoff weight, simple manipulation, having broad application prospects in the investigation and detection fields. The research objects of this thesis is to describe flight attitude of the aircraft, create kinetic model, research on attitude estimation method and flight control algorithm, achieve stable hover and remote control using the self-made quadrotor as research platform.
     Firstly, this thesis describes and compares the research status and related technical of the quadrotor, summarizes advantages and disadvantages of the researches, then proposes the function and technical indicators of the self-made quadrotor. To design the mechanical platform and the control circuit meeting the technical requirements proved by experiment, choosing common engineering materials and electronic components according to prices and processing performance.
     Secondly, this thesis compares the common strapdown attitude representations, then chooses the direction cosine to describe attitudes of the quadrotor. A solver which can fuse data of gyroscope, acceleration sensor and compass and realize attitude estimation is designed based on complementary filter algorithm.
     Thirdly, the kinetic model with six degrees of freedom of the quadrotor is built using Newton-Euler equations after kinetic analysis, then a reliable controller which can achieve hover and remote operation of the quadrotor is designed based on PID technology.
     Finally, to carry out experiments on the solver and the controller, results show they can achieve accurate and real-time control for the quad-rotor and reach the research targets.
引文
[1]刘焕晔.小型四旋翼飞行器飞行控制系统研究与设计[D].上海:上海交通大学软件学院,2009.
    [2]庞庆霈.四旋翼飞行器设计与稳定控制研究[D].合肥:中国科学技术大学工程科学学院,2011.
    [3]单海燕.四旋翼无人直升机飞行控制技术研究[D].南京:南京航天航空大学自动化学院,2008.
    [4]Professor J. Gordon Leishman. The Breguet-Richet Quad-Rotor Helicopter of 1907[J]. Vertiflite,2002,47(3):58-60.
    [5]Michael N, Mellinger D, Lindsey Q. The GRASP Multiple Micro-UAV Test Bed[J].IEEE Robotics & Automation Magazine,2010,101109:56-65.
    [6]Valenti M, Bethke B, How J, et al. Embedding Health Management into Mission Tasking for UAV Teams[C]. Aerospace Controls Conference, New York,2007:5777-5783.
    [7]Valenti M. Approximate Dynamic Programming with Applications in Multi-Agent Systems [D]. Cambridge:Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science,2007.
    [8]Bethke B. Persistent Vision-Based Search and Track Using Multiple UAVs[D]. Cambridge:Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,2007.
    [9]Tournier G. Six Degree of Freedom Estimation Using Monocular Vision and Moire Patterns[D]. Cambridge:Massachusetts Institute of Technology, Department of Aeronautics and Astronautics,2006.
    [10]Hoffmann G, Rajnarayan D, Waslander S, et al.The Standard Testbed of Autonomous Rotorcraft for Multi Agent Control (STARMAC) [C]. In Proceedings of the 23rd Digital Avionics Systems Conference,2004.
    [11]王俊生.四旋翼碟形飞行器控制系统设计及控制方法研究[D].长沙:国防科技大学机电工程与自动化学院,2007.
    [12]杨明志.四旋翼飞行器自动驾驶仪设计[D].南京:南京航空航天大学自动化学院,2008.
    [13]魏丽文.四旋翼飞行器控制系统设计[D].哈尔滨:哈尔滨工业大学电气工程系,2010.
    [14]刘晓杰.基于视觉的微小型四旋翼飞行器位姿估计研究与实现[D].氏春:吉林大学通信工程学院,2009.
    [15]李航.小型四旋翼飞行器实时控制系统研究[D].大连:大连理工大学电信学院,2010.
    [16]王晓明,王玲,等.电动机的DSP控制——TI公司的DSP应用[M].北京:北京航天航空大学出版社,2004.
    [17]陶桂林.大功率永磁无刷直流电机及其系统研究[D].武汉:华中科技大学电气与电子工程学院,2004.
    [18]丁祥.永磁无刷直流电机直接转矩控制系统的设计研究[D].长沙:湖南大学电气与信息工程学院,2009.
    [19]张磊,肖伟,瞿文龙.直接检测无刷直流电机转子位置信号的方法[J].清华大学学报(自然科学版),2006,46(4):453-456.
    [20]吕德刚,李铁才,杨贵杰.高性能磁编码器设计[J].仪器仪表学报,2006,27(6增刊):1347-1350.
    [21]韩喜春,吴东艳,张鹏.AS5040在角度测量中的应用[J].传感器与微系统,2006,25(6):75-77.
    [22]David H. Titterton, John L. Weston捷联惯性导航技术[M].北京:国防工业出版社,2007.
    [23]袁信,郑愕.捷联式惯性导航原理[M].北京:航空工业出版社,1985.
    [24]Robert M, Tarek H, Jean M P. Complimentary Filter Design on the Special Orthogonal Group S0(3)[C].44th IEEE Conference on Decision and Control and European Control Conference ECC 2005, Seville, Spain,2005.1477-1484.
    [25]Euston M, Coote P, Mahony R, et al. Hamel. A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV[C]. IEEE/RSJ 2008 International Conference on Intelligent Robots and Systems, Nice, France,2008.340-345.
    [26]维滕伯格.多刚体系统动力学[M].北京:北京航空学院出版社,1986.
    [27]刘延柱.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [28]Jinhyun Kim, Min-Sung Kang, Sangdeok Park. Accurate Modeling and Robust Hovering Control for a Quad-rotor VTOL Aircraft[J]. Journal of Intelligent & Robotic Systems,2010,57:9-26.
    [29]Watanabe K, Okamura K, Tanaka K, et al. A Discontinuous Control of VTOL Aerial Robots with Four Rotors Through a Chained Form Transformation[J]. International Conference on Control, Automation and Systems, Seoul, Korea,2008.804-809.
    [30]Castillo P, Dzul A, Lozano R. Real-Time Stabilization and Tracking of a Four-Rotor Mini Rotorcraft[J]. IEEE Transactions on Control Systems Technology, 2004,12(4):510-516.
    [31]Bresciani T. Modelling Identification and Control of a Quadrotor Helicopter[M]. Sweden:Department of Automatic Control of Lund University,2008.
    [32]黄友锐,曲立国.PID控制器参数整定与实现[M].北京:科学出版社,2010.
    [33]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700