额尔古纳河河道冰水情自动监测系统的设计与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是在中-俄(NSFC-RFBR)国际(地区)合作与交流项目:“基于空气、冰与水的物理特性测量冰厚度与力学强度的理论与试验研究(课题编号:60811120556)”、高等学校博士学科点博导类专项科研基金项目:“基于空气、冰与水的物理特性差异检测方法在冰水情信息全天候自动监测领域的应用机理研究(课题编号:20091402110004)”、黄河水利委员会黄河水利科学研究院技术开发项目“黄河冰情自动监测系统研发与现场试验”的资助下并与中国水电工程顾问集团公司中南勘测设计研究院合作,开展的针对内蒙中俄边界额尔古纳河齐乾区冬季封冻后河道冰下水位定点连续自动监测的工程应用试验。
     在本文中,考虑到额尔古纳河高寒、交通不便、电能缺乏、工程难度大等特殊工作环境和对冰水情检测技术的需求,课题组利用基于空气、冰与水电阻特性差异的冰水情检测原理,设计了一种全新的适合额尔古纳河河道的冰下水位自动测报系统,整个系统由现场冰下水位数据采集和数据处理中心两部分组成,通过对冰水情信号的采集和传输实现了对河道冰下水位、冰厚值的定点连续自动测报。该系统主要包括:
     1、由于本系统应用场合地理位置处在内蒙东北部中俄边界额尔古纳河河道,不具备工业电网供电条件,在系统设计时采用太阳能蓄电池联合供电的方式。即,有阳光照射的情况下,太阳能板给系统供电与给蓄电池充电同时进行;在无光照的情况下,由蓄电池给系统供电。
     2、考虑到电能有限,为了保证系统长时间持续稳定工作,根据供电方式,下位机端选择在超低功耗方面具有较好表现的msp430主控芯片,通过特定程序控制冰层厚度传感器按序依次完成对各触点电压值及温度值的采集。达到超低功耗运行保证系统长时间持续稳定工作。
     3、通过基于空气、冰和水的物理特性差异所采集的各自区域的不同电阻值,确定不同介质分界面的垂直空间位置,对应编写相应冰水情数据算法,通过程序计算得到的冰层厚度及冰下水位值,将数据及计算结果发送到数据接收中心,同时并保存在现场智能数据处理仪的大容量SD卡中。
     4、传感器与下位机端采用航空插头连接,方便系统的现场安装,此外,传感器内部加入钢结构骨架,其强度和韧度可以承受开河期,冰凌流动时对传感器的巨大冲击应力,增强了传感器机身的抗恶劣环境的适应能力。
     5、额尔古纳河地处中俄边境,冬季最低温度在零下五十摄氏度以下。为了应对现场酷寒的工作环境,课题组为智能数据处理仪设计了专用的保温装置,以保证系统可以在极度严寒的气候条件下正常工作,在额尔古纳河的实际运行中验证了保温装置具有很好的抗低温保护性能。
     本系统在额尔古纳河齐乾监测点进行了长达一年的工程试验应用,结果证明该系统具有自动化程度高、信息传送准确和连续监测等优点。试验数据为相关部门提供了第一手的界河冰下水位的数据情况,填补了我国高纬度地区冰下水位测报技术的空白。
This topic is an application of basic research which is conducted in the support of China-Russia (NSFC-RFBR) international (regional) cooperation and exchange programs "Theory Test of Ice Thickness Measurements and Mechanical Strength Based on Physical Properties of Air, Ice and Water (Project Number:60811120556)", Specialized Research Fund for the Doctoral Program of Higher Education of2009called "The Research for Application and Mechanism Method Used in Hydrological Information All-weather Environmental Automatic Monitoring Based on the Physical Property Difference of Air, Ice and Water"(Project Number:20091402110004), Yellow River Institute of Hydraulic Research's technology development project "Research and Development of the Automatic Monitoring System of the Yellow River Ice Conditions" and China Hydropower Engineering Consulting Group Corporation Central South Design Institute of Automatic Hydrological Engineering Company's technology development project "R-T Hydrological Automatic Detection Sensor for Argun river".
     In this article, The research group differences based on the air ice and water resistance characteristics of the icehydrological detection principle which account the Argun alpine, inconvenient transportation, lack of electricity, the project is difficult, and other special work environment and the demand for ice water situation detection technology, So design an entirely new for the Argun river water levels under the ice automatic forecasting system which consists of two parts water level data acquisition and data processing. The center in the field under the ice by ice water situation signalcollection and transmission of the water level in the river under the ice and the ice thickness values at a continuous automatic forecasting. The system includes:
     1) Because the applications of this system in the Argun river which laying difficult to spread the area is located in the wilderness of power supply facilities and communication networks. The system power is the joint supply of solar batteries. If in the sunlight, the solar panels to power the system and to charge the battery,if no light the battery to power the system.
     According to electrical energy, in order to ensure the system for a long time steady work, the msp430main chip has better performance in the ultra-low power which specific process control RT ice thickness sensorin sequence complete the acquisition of the contact voltage for achieve ultra-low power operation to ensure that the system is reliable and achieved the intended design function.
     Through based on differences in the physical properties of air, ice and water collected in their respective regions to determine the vertical spatial location of the different media interface. The corresponding algorithm to prepare the corresponding logic program to calculate the ice thickness and icelower water level in the value of data and calculation results will be sent to the data receiving centers and save the high-capacity SD card.
     Sensor and the lower-side aviation plug connection system-friendly on-site installation, in addition, the sensor inside a steel frame which strength and toughness to withstand kaihe of ice flow sensor huge impact stress that enhance the body of the sensorthe harsh environment adaptability.
     In order to respond to the scene depth of the work environment that the research group design reliable thermal insulation devices for intelligent data processing device. The system can withstand the harsh cold weather test this point in the Argun operation of the equipment has been fully validated.
     The results show that the system has the advantages of the high degree of automation accurate and continuous monitoring of this system in Argun homogeneous dry year-long engineering test applications. Test data for the relevant departments to provide first-hand border of ice under the water level data that Fill the blank of China's high latitudes ice under the water level forecast.
引文
[1]轩玮,李翀等.额尔古纳河流域近50年水文气象要素变化分析[M].中国水文出版社,2011.05,80-87.
    [2]孙冬,肖迪芳等.额尔古纳河坝凌汛[J].黑龙江水专学报,2006.6第33卷第2期,53-55
    [3]张志栋.全天候流域河道水情现场采集系统的设计与研制[D],太原理工大学2009
    [4]李霞.利用空气、冰与水的电阻、温度特性差异进行冰情检测的应用研究[D],2008
    [5]秦建敏,基于电容感应技术的定点冰层厚度检测方法机理与应用研究[D],2010
    [6]汤越强.内蒙古额尔古纳河短波全自动水位遥测系统[J].当代通信,2000/19,51-53
    [7]Garcia E etc. A comparison of sea ice field observations in the Barents Sea marginal ice zone with satellite SAR data[C]. Geoscience and Remote Sensing Symposium, IGARSS '02.2002 IEEE International,2002,Vol.5:3035-3037.
    [8]秦建敏,程鹏,秦明琪.冰层厚度传感器及其检测方法[J].水科学进展,2008/03,418-421.
    [9]陈哲.黄河河道断面冰水情自动测报系统的设计与应用[D].太原理工大学,2011
    [10]秦建敏,刘笑达,李学春.基于空气、冰与水物理特性的冰情检测系统[J].信息与电子工程,2011,(05),646-650
    [11]杜宇.基于CPLD的冰层厚度传感器的设计[D].太原理工大学,2008.
    [12]刘宇峰.基于PLC的河道水情监测系统设计[D].太原理工大学,2010
    [13]秦建敏,沈冰.基于冰和水导电特性的新型冰层厚度传感器[J].传感器技术,2004,(09),55-58
    [14]H. Sodemann,Th. Foken. Special characteristics of the temperature structure near the surface[J]. Theoretical and Applied Climatology,2005,80(2-4).
    [15]耿娇,基于现场总线的水环境多参数智能监控系统的研究[D].江苏大学,2009
    [16]窦银科,李阳,秦建敏.基于电场感应的冰层厚度检测传感器及其系统的研究[J].传感技术学报,2010,(09)
    [17]高帆.基于CPLD+nRF24E1的无线传感探测系统的研究与实现[D].南京理工大学,2007.
    [18]刘夫江.基于单片机和CPLD的等精度数字频率计设计[D].山东大学,2007.
    [19]沈建华,杨艳琴,翟曙.MSP430系列16位超低功耗单片机原理与应用[M].北京:清华大学出版社,2004.
    [20]Qin Jian-min etc. Research on a New Measurement Method of Ice Thickness[J].19th IAHR International Symposium on Ice, Canada,2008.7.
    [21]QIN Jianmin,CHENG Peng,ZHAO Baofen,et al. Research on a New Measurement Method of Ice Thickness[C].Proceedingsof the 19th IAHR International Symposium on Ice. Canada:2008,:361-368.
    [22]A.Barker etc.Satellite Detection and Monitoring of Sea Ice Rubble Fields[C]. Proceedings of the 19Th IAHR International Symposium on Ice:419-430, Canada,2008.7
    [23]窦银科.基于冰的微弱直流导电性的冰层厚度自动化观测系统[D].太原理工大学,2004.
    [24]马福昌,秦建敏,王才,感应式数字水位传感器及其系统[J],水利学报,2001(增刊),35-37.
    [25]Kjetil Melvold etc. Monitoring Lake Ice in Norway using Remote Sensing (MODIS,RADARSAT)[C]. Proceedings of the 19Th IAHR International Symposium on Ice:469-470, Canada,2008.7.
    [26]卢瑛.基于MSP430电能表的设计研究与应用[D].浙江大学,2010
    [27]秦建敏,尉鹏翔,胡德生.冰-水情检测新技术在太原市水资源环境监测领域的应用[J].太原科技,2008,(05),55-57.
    [28]Worby, A.P,Griffin, P.W,Lytle, V.I,Massom, R.A. On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic.Cold Regions Science and Technology,1999,29 (1):49-58.
    [29]郭志勇.基于ADS1100的高精度电子称设计与实现[J].安徽工业大学学报(自然科学版),2010(10),Vol.27,No.4:385-392.
    [30]Advanced Video Coding.Final Committee Draft,Document JVT-E022.ITU-T Rec. H.264 /ISO/IEC 11496-10.2002
    [31]涛.基于RS485网络的远程集中抄表系统设计与实现[D].山东科技大学,2004
    [32]翁根春.LWG炉自动控制系统及智能控制策略的研究[D].西安建筑科技大学,2003
    [33]罗轶峰.基于Modbus协议的可通信智能断路器设计与实现[D].湖南大学,2010
    [34]陈德仙.基于Modbus现场总线的智能配电控制系统研究与实现[D].浙江工业大学,2009
    [35]张平泽.RS-485总线的过电压防护[J].高电压技术,2004,(S1),43-45.
    [36]F.H.Ramirez Leyva. Wireless System for Electrical Networks Testing Based on MODBUS Protocol.Proceedings of the 14th International Conference on Electronics,Communications and Computers(CONIELECOMP'04).
    [37]李芳芳.基于MODBUS协议的人机接口通信研究[D].长安大学,2009
    [38]Strous M. et a. Ammonia removal from concentrated waste streams with the ANAMMOX process in different reactor configuratio.Water Researc.199,17
    [39]MODBUS Slave Source Code Library User Manual version2.4. www.sunlux- index.com.
    [40]Shi Wenxing, Wang Baolong, Li Xianting. A measurement method of ice layer thickness based on resistancc-capacitance circuit for closed loop external melt ice storage tank.Applied Thermal Engineering,2005, (25):1697-1707
    [41]A New-type Water Level Measured Device Based on MSP430 Series Chip Micro Controller [A]. Proceedings of 6th International Symposium on Test and Measurement(Volume 4)[C],2005.
    [42]陶莉.基于RS485总线的智能家居系统的实现[D].上海交通大学,2008.
    [43]陈哲,秦建敏等.黄河河道冰水情定点连续自动检测及数据分析[J].数学的认识与实践,2010.11,Vol.40,No.22:115-119.
    [44]Li Zhijun, Sui Jixue, Yan Decheng, Meng Guanglin.Temperature, salinity, and density profiles in a fast ice sheet in Liao Dong Bay[J].POAC'89,1989,218-224.
    [45]Qin jianmin,Huang Yue,Qin Mingqi. Research on automation measurement for the circumstance of Ice and water based on the physics characteristic difference of air,Ice and water.Chinese Journal of Scientific Instrument,2007, (3):414-419.
    [46]Qin Jianmin. The research on the digital automatic measure of the ice layer thickness by making use of the conductivity of water.Proceedings of the International Symposium on Test and Measurement.2003,:2853-2857.
    [47]陈宁,秦建敏,刘永强等.“最小二乘法变点冰水情数据处理算法”的研究与应用[J].2012(01),Vol.42,No.1:108-114.
    [48]陈希孺.变点统计分析简介[J].数理统计与管理,1991,(01),55-58..
    [49]张红磊,董运保,韩文礼,刘晓建.大口径玻璃钢外护直埋保温管制作过程中的质量控制[J].石油工程建设,2008,(01),53-55.
    [50]李伟华,吴黎明,王桂棠.高级温控器智能自动化装配机器[J].机械设计与制造,2011,(04).158-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700