壳聚糖衍生物的制备及对果蔬保鲜作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新鲜的果蔬营养价值高,食用方便,但其在室温下货架期短,较易腐烂。虽然我国果蔬产量居世界前列,但由于受到保鲜储备能力的限制,致使水果采摘后在流通过程中损失严重。而且由于我国是一个果蔬生产大国,每年需要大量的有机磷农药用于防治果蔬病虫害。虽然有机磷农药在果蔬的增产保质上的作用很大,但是其残留带来的危害却不容忽视。因此,如何延长果蔬的贮藏期并减少果蔬表面农药残留,一直是人们十分关心的问题。
     壳聚糖是一种天然多糖类生物大分子,具有成膜性和其它多种优良的功能性质,被广泛应用于果蔬保鲜领域。但是,壳聚糖由于分子结构的特点,对果蔬涂膜保鲜时存在保水率较低的缺点,果实易失水萎蔫;同时,抗菌防腐也达不到保鲜的要求。壳聚糖因活泼基团氨基和羟基的存在,可以引入不同基团进行化学改性,生成多种不同的衍生物,改善壳聚糖功能性。本文利用金属离子和没食子酸对壳聚糖进行改性,提高壳聚糖的成膜性和抗氧化、抑菌能力,赋予其对有机磷农药的降解作用,并将改性后的壳聚糖应用于果蔬采后保鲜中。主要研究内容和结论如下。
     1.壳聚糖金属配合物的制备。以壳聚糖为原料,制备得到壳聚糖金属配合物。研究壳聚糖脱乙酰度和分子量及不同金属离子添加量对配合物成膜性和果蔬保鲜效果的影响。当壳聚糖分子量7.2×10~5 D,脱乙酰度84%,浓度1%;锌离子起始浓度0.5mg/mL;铈离子起始浓度0.6mg/mL时,制备的壳聚糖金属配合物对果蔬有较好的保鲜效果,并且对果蔬表面有机磷农药降解率也较高。
     2.壳聚糖金属配合物的中试生产。中试生产的壳聚糖金属配合物为淡黄色粉末,不溶于有机溶剂,易溶于弱酸,不易溶解于强酸。分子结构主要是由壳聚糖分子上的-NH_2与Zn~(2+0离子,-OH与Ce~(4+)离子发生配位反应形成的。成膜性与实验室制备的壳聚糖金属配合物相比,膜的厚度、溶胀度基本没有太大变化;拉伸强度略有降低,断裂伸长百分率略有升高;水溶性和透光率明显提高;水蒸汽透过系数和氧气透过率显著下降。
     3.中试生产的壳聚糖金属配合物对果蔬的保鲜效果及对有机磷农药降解机理研究。壳聚糖金属配合物能很好的保持冬枣和苹果的外观、质地和营养成分,具有明显的保鲜效果;贮藏5天后,壳聚糖金属配合物对冬枣和苹果表面的有机磷农药降解率分别比空白高15%和20%以上。通过气相色谱-质谱联用、总有机碳含量分析和无机离子分析等手段对壳聚糖金属配合物降解有机磷农药的产物和机理进行了研究。结果表明,壳聚糖金属配合物对有机磷农药的降解途径主要是氧化和水解作用,包括将P=S键氧化为P=O键,将P-S、P-O键断裂等。最终的降解产物为CO_2、H_2O及一些无机离子。
     4.壳聚糖没食子酸衍生物的制备及对鲜切果蔬保鲜效果研究。壳聚糖没食子酸衍生物由没食子酸的羧基与壳聚糖分子上的氨基和羟基反应连接而成。在酸性、光照、低温条件下稳定,在强氧化剂、碱性和80℃以上高温条件下易分解。清除羟基自由基、DPPH自由基和超氧阴离子自由基的能力与没食子酸相当或略有提高;浓度为10 mg/mL时,对大肠杆菌抑菌圈大小达到11.44 cm。将其应用于鲜切苹果的保鲜实验中,能有效的抑制鲜切苹果酚类物质氧化,又可抑制多酚氧化酶的活性,从而达到延缓鲜切苹果褐变的效果;贮藏4天后,对鲜切苹果表面微生物生长的抑制率高于空白组30.56%。
     制备的壳聚糖衍生物具有安全、无毒、抑菌、可食用、可降解等多种特性,且来源广泛,能延缓果实采后衰老并降解果蔬表面的有机磷农药残留,在果蔬保鲜中具有广阔的应用前景。
Fresh fruits and vegetables are rich in nutrition and can be eaten conveniently. But they are highly perishable in normal ambient conditions. The annual yield of fruits and vegetables of our country is very large. But the loss of fruit and vegetable is large too because of the poor storage capability. And the residual organophosphorus pesticides of fruits and vegetables will be a potential risk to consumers. So it is a concerned problem that how to prolong the shelf-life of fruits and vegetables and degrade the organophosphorus pesticides.
     Chitosan, a kind of natural polysaccharide biological macromolecule, has many outstanding properties and potential application in various areas. Chitosan could be considered as an ideal preservative coating material for fresh fruits and vegetables because of its excellent film-forming and biochemical properties. But when the chitosan is used to coat on fruits and vegetables to prolong their storage life, it has been forced to be associated with some shortcomings, such as low moisture-holding rate, fruits and vegetables dehydration due to its typical molecular structural feature. Moreover, simultaneous maintenance of quality of fruit and vegetable cannot be achieved along with the desired antimicrobial properties. Different groups of chitosan could be introduced for chemical modification to generate various derivatives due to the existence of active amino and hydroxyl groups. Therefore, chitosan was modified using metal ions and gallic acid to enhance the antioxidant and antibacterial activities and degradation ability of organophosphorus pesticides in our research.
     The main contents and conclusions are described as follows:
     1. The preparation of complex of chitosan and metal ions (CTS-M). CTS-M was made from chitosan and some metal ions. The effects of deacetylation degree (DD) and viscosity average molecular weight (M.W) of chitosan and concentration of metal ions on film-forming property of CTS-M and the preservation quality of fruits and vegetables were investigated. The obtained results indicated that the CTS-M, which made from 1% chitosan with DD of 84%, M.W of 7.2×10~5 D, and 0.5 mg/mL Zn~(2+), 0.6 mg/mL Ce~(4+), had the best fruit and vegetable fresh-keeping and organophosphorus pesticides degradation ability.
     2. Pilot production of CTS-M. The CTS-M prepared in pilot production was straw yellow powder. It couldn’t dissolve in organic solvent, but prone to dissolve in acidic solution. The CTS-M formation could be described as Zn~(2+) bound to amino group, and Ce~(4+) bound to hydroxyl groups of chitosan. Compared with the complex of chitosan and metal ions prepared in lab, the thickness and swelling ratio of CTS-M film didn’t differ significantly, tensile strength and water vapor permeability decreased, meanwhile, the dissolution ratio, oxygen resistance and transmittance increased by 10.59%, 67.39% and 5.04%, respectively.
     3. Effect of CTS-M on the preservation quality of fruits and vegetables and degradation mechanism of organophosphorus pesticides. The CTS-M had quite beneficial effects on the physiological quality and degradation of organophosphorus pesticides compared to chitosan and control. It could prolong the shelf-life and decrease the potential risk of jujube and apple safety. After 5 days storage, the degradation rates of organophosphorus pesticides on jujube and apple treated by CTS-M were above 15% and 20% higher than the control, respectively. Gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and inorganic ions were used to analyze the degradation products and pathway of organophosphorus pesticides. Hydrolysis and oxidation were the main degradation pathway of organophosphorus pesticides by CTS-M, including the oxidation of P=S to P=O and the cleavage of P-S and P-O bonds. Complete mineralization was achieved in all cases and the final degradation products were CO_2、H_2O and some inorganic ions.
     4. The preparation of chitosan gallate (CTS-GA) and its effect on the preservation of fresh-cut apple. The conjugation of gallic acid (GA) on chitosan can be concluded that the gallate group of GA was successfully introduced onto chitosan via amino and hydroxyl groups. CTS-GA was stable under the conditions of acid, strong light and temperature below 80℃, whereas it was unstable under the conditions of basic, strong oxidation and high temperature. The studies on the free radical scavenging of CTS-GA clarified its significant antioxidant activity on free radicals, such as hydroxyl radical, DPPH radical and superoxide anion radical. CTS-GA showed antioxidant activity on free radicals close to or even higher than pure GA. The antibacterial ability of CTS-GA on Escherichia coli was studied. When the concentration of GTS-GA was 10 mg/mL, the antibacterial zone diameter against Escherichia coli was 11.44 cm. The effect of CTS-GA on preservation quality of fresh-cut apple was investigated. The results showed that CTS-GA had a quite beneficial effect on physicochemical and sensory quality of fresh-cut apple. And the antimicrobial activity of CTS-GA was higher than chitosan and GA. After 4 days storage of fresh-cut apple, the antimicrobial rate of CTS-GA was 30.56% higher than the control.
     The chitosan derivatives not only have multiple characteristics, such as, safe, non-toxic, antibacterial, edible, degradable, and the source of a wide range of easy to extract, but also control the aging of post-harvest fruits and vegetables and degrade the organophosphorus pesticides. Therefore, they have a bright prospect of application in the fresh-keeping of fruits and vegetables.
引文
[1]蒋挺大.甲壳素.北京:化学工业出版社, 2003
    [2]林瑛.蟹壳中各组分的形态及其存在关系.化学通报, 1993(6): 37-38
    [3] Wan Ngah W.S., Engdud C.S., Mayanar E.R. Removal of copper (Ⅱ) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 2001, 50(2): 181-190
    [4] Xie Y.J., Liu X.F., Chen Q. Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity. Carbohydrate Polymers, 2007, 69(1): 142-147
    [5] Shaban M.A., Hesham M.H. Antibacterial activity of chitosan against Aeromonas hydrophila. Nahrung/Food, 2002, 46(5): 337-340
    [6] Yu D.G., Lin W.C., Lin C.H. et al. Cytocompatibility and antibacterial activity of a PHBV membrane with surface-immobilized water-soluble chitosan and chondroitin-6-sulfate. Macromolecular Bioscience, 2006, 6(5): 348-357
    [7] Chun H.K., So Y.K., Kyuuk C. Synthesis and antibacserial activity of water-soluble chitin derivatives. Polymers of Advanced Technologies, 1997, (8): 319-325.
    [8] Chien P.J., Sheu F., Huang W.T. et al. Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food chemistry, 2007,102 (4): 1192-1198
    [9] Park S.Y., Jun S.T., Marsh K.S. Physical properties of PVOH/chitosan-blended films cast from different solvents. Food Hydrocolloids, 2001, 15(4-6): 499-502
    [10] Márcio T., Teresa C., Mano F. et al. Green synthesis of a temperature sensitive hydrogel. Green Chemistry, 2007, 9(1): 75-79
    [11] Ueno H., Yamada H., Tanaka I., Kaba N., Matsuura M., Okumura M., Kadosawa T., Fujinaga T. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials, 1999, 20: 1407-1414
    [12] Boniaa P., Petrova, T., Manolova, N. et al. pH-senstive hydrogels composed of chitosan and polyacrylamide: enzymatice degradation. Journal of Bioactiveand Compatible Polymers, 2004, 19: 197-208
    [13] Zhang, H.N., S.H. In vitro degradation of chitosan by bacterial enzymes from rat cell and colonic contents. Biomaterials, 2002, 23, 2761-2766
    [14] Vanfrvord, P.J., Matthw, H.W., Desilva, S.P. et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 2002, 59: 585-590
    [15] Senkoylu, A., Simsek, A., Sahin, F.I. et al. Interaction of culrutred chondrocytes with chitosan scaffold. Journal of Bioactive and Compatible Polymer, 2001, 16: 136-144
    [16] Khor E., Lim L.Y. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24: 2339-2349
    [17]严瑞坦,水溶性高分子,化学工业出版社, 1998: 547-548
    [18] Suzuki K., Mikami T., Okawa Y, et al. Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydrate Research, 1986,151, 403-408
    [19] Qi L.F., Xu Z.R. In vivo antitumor activity of chitosan nanoparticles. Bioorganic & Medicinal Chemistry Letters, 2006, 16(16): 4243-4245
    [20] Zheng Y., Yi Y., Qi Y.P. et al. Preparation of chitosan-coper complexes and their antitumor activity. Bioorganic &Medicinal Chemistry Letters, 2006, 16 (1):4127-4129
    [21] Sashiwa, H., Kawasaki, N., Nakayama, A. et al. Synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate. Carbohydrate Research, 2003, 338: 557-561
    [22] Qin, C.Q., Du, Y.M., Xiao, L. et al. Enzymic preparation of water-soluble chitosan and their antitumor activity. International Journal Biological Macromolecules, 2002, 31, 111-117
    [23] No, H.K., Park, Y.N., Lee, S.H., et al. Antibacterial activity of chitosan and chitosan oligomer with different molecular weights. International Journal of Food Microbiology, 2002, 74(1-2):65-72
    [24] Kim K.D., Nemec S., Musson G. Control of Phytophthora root and crown rot ofbell pepper with composts and soil amendments in the greenhouse. Applied Soil Ecology, 1997, 5(2):169-179
    [25] Kim K.D., Nemec S., Musson G. Effects of composts and soil amendments on soil microflora and phytophthora root and crown rot of bell pepper. Crop Protection, 1997, 16(2):165-172
    [26] Sweetie R.Kanatt, R.C., Arun S. Chitosan glucose complex-A novel food preservative. Food Chemistry, 2008, 106(2):521-528
    [27] Xie W., Xu P., Liu Q. Antioxidant activity of water soluble chitosan derivatives. Bioorganic Medicine and Chemistry Letters, 2001, 11: 1699-1701
    [28] Kim K.W., TAhomas R.L. Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 2007, 101(1):308-313
    [29] Bullock G., Blazer V., Tsukuda S. et al. Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture, 2000, 185(3-4):273-280
    [30] Muzzarelli, R.A.A. Chitin and its derivatives: New trends of applied research. Carbohydrate Polymer, 1983, 3 (1):53-57
    [31] Kurita, K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science, 2001, 26(9): 1921-1971
    [32] Majeti, N.V., Ravi K. A review of chitin and chitiosan applications. Reactive and Functional Polymers, 2000, 46(1):1-27
    [33] Tangpasuthadol, V., Pongchaisirikul, N., Hoven, V.P. Surface modification of chitosan films, effects of hydrophobicity on protein adsorption. Carbohydrate Research, 2003, 338, 937-942
    [34] Muzzarelli, C., Tosi, G., Francesangeli, O. et al. Alkaline chitosan solutions. Carbohydrate Research, 2003, 338, 2247-2255
    [35] Tien, L.T., Lacroix, M., Ispas-Szabo, P. et al. N-acylated chitosan hydrophobic matrices for controlled drug release. Journal Control Release, 2003, 93: 1-13
    [36] Suzuki, Y., Miyatake, K., Okamoto, Y. et al. Influence of the chain length of chitosan on complement activation. Carbohydrate Polymers, 2003, 54: 465-469
    [37] Kafedjiiski K., Krauland, A.H., Hoffer, M.H. et al. Synthesis and in vitroevaluation of a novel thiolated chitosan. Biomaterial, 2005, 26(7): 819-826
    [38]王军,何文,李荣波,等.氧氟沙星壳聚糖口腔溃疡膜的研究.中国医院药学杂志, 2003, 333-334
    [39] Francesca Maestrelli, Marcos Garcia-Fuentes, Paola Mura, Maria Jose Alonso. A new drug nanocarrier consisting of chitosan and hydroxypropylcyclodextrin. European journal of pharmaceutics and biopharmaceutics, 2006, 63, 79-86
    [40] Wenshui Xia, Ping Liu, Zhang Jiali and Jie Chen. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids, 2011, 25, 170-179
    [41] H.L. Chang, Y.C. Chen and F.J. Tan. Antioxidative properties of a chitosan-glucose Maillard reaction product and its effect on pork qualities during refrigerated storage. Food chemistry, 2011, 124, 589-595
    [42] Tolaimate A., Desbrieres J., Rhazi M. et al. On the influence of deacetylation process on the physicochemical characteristics of chitosan from squid chitin. Polymer, 2000, 41: 2463-3469
    [43]王爱勤,俞贤达.烷基化壳聚糖衍生物的制备与性能研究.功能高分子学报,1998,11(1):83
    [44] Naggi A., Torri G. Syntheses and physico-chemical properties of the polyampholyte chitosan 6-sulfate. New York, 1986: 371-375
    [45] G.Cardenas, J.D.Cuellar, K. Neira. Synthesis and characterization of carboxymethyl chitosan-arg and carboxymethyl chitosan-lys derivatives. Journal of the Chilean Chemical Society, 2004, 49(3):237
    [46]连玉晶,唐晓珍,赵海田,等.羧甲基壳聚糖可食用膜在油豆角保鲜中的应用.食品工业科技, 2006, 27(1): 189-190
    [47] Jin Y., Yang D.Z., Zhou Y.S. et al. Photocrosslinked electrospun chitosan-based biocompatible nanofibers. Journal of Applied Polymer Science, 2008, 109(5): 3337-3343
    [48] Zhou Y.S., Yang D.Z., Nie J. Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. Journal of Applied Polymer Science, 2006, 102(6):5692-5697
    [49] Muzzarelli R. A. A. Chitin. New York: Pergam on press, 1977.134
    [50] Peniche-Coves C J, Jimenel M S, Nunez A,et al.Characterization of silver-binding chitosan by thermal analysis and electron impact mass spectrometry.Carbohydr Polym, 1988, 9(4): 249-256
    [51] Adel A.A. Emara, Mohamed A. Tawab, M.A. El-ghamry and Maher Z. Elsabee. Metal uptake by chitosan derivatives and structure studies of the polymer metal complexes. Carbohydrate Polymers, 2011, 83, 192-202
    [52] A Domard. pH and c.d. measurements on a fully deacetylated chitosan: application to Cu (Ⅱ)- polymer interactions. International Journal of Biological Macromolecules, 1987, 9: 98
    [53] G A F Roberts. Chitin Chemistry. London: The Macmillan Press Ltd., 1992. 212
    [54] K Ogawa, K Oka. X-ray study of chitosan-transition metal complexes. Chemistry of Materials, 1993, 5: 726
    [55] F Yaku, E Muraki, K Tsuchiya, et al. The preparation of glucosamine oligosaccharide and its copper(Ⅱ). Cellulose Chemistry and Technology, 1977, 11, 421
    [56]刘振南.壳聚糖对重金属离子吸附的研究.广西化工,1996, 25(2):8-11
    [57]于广利,李八方,梁平方,等.水溶性甲壳胺制备及其对铅离子的螯合作用.中国海洋药物,1996, 60(4): 13-17
    [58]刘振南.壳聚糖对重金属离子吸附的研究.广西化工.1996, 25(2):8-11
    [59]李春芳,李邦良.甲壳素吸附金属阳离子的研究.化学世界,1990,31(2):69-70
    [60] Dongwei Wei, Yongzhong Ye, Xueping Jia, Chao Yuan and Weiping Qian. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydrate Research, 2010, 345, 74-81
    [61] Jinhui Tong, Zhen Li and Chungu Xia. Highly efficient catalysts of chitosan-Schiff base Co (II) and Pd (II) complexes for aerobic oxidation of cyclohexane in the absence of reductants and solvents. Journal of Molecular Catalysis A: Chemical.
    [62]关怀民,童跃进.镧(Ⅲ)与壳聚糖配位聚合物的形成及其催化作用.稀土, 1997, 18(5):20
    [63] Mark A Ritenour, Carlos H Crisosto, David T Garner, Guiwen W Cheng, Juan Pablo Zoffoli. Temperature, length of cold storage and maturity influence the ripening rate of ethylene-preconditioned kiwifruit. Postharvest Biology and Technology, 1999, 15:107–115
    [64] Sara Remón, Ana Ferrer, Pedro Marquina, etc. Use of modified atmospheres to prolong the postharvest life of Burlat cherries at two different degrees of ripeness. Journal of the Science of Food and Agriculture, 2000, 80: 1545-1552
    [65] Mustafa Erkan, Chien Yi Wang, Donald T Krizek. UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environmental and Experimental Botany, 2001, 45: 1-9
    [66] R M Beaudry. Effect of O_2 and CO_2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biology and Technology, 1999, 15: 293-303
    [67] K A Taiwo, A Angersbach, D Knorr. Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. Journal of Food Engineering, 2002, 52: 185-192
    [68]伊藤均.非热杀菌技术.日本食品工业学会志. 1991, 38(1): 74-77
    [69]李里特. 21世纪初我国果蔬保鲜与加工的发展方向.中国食品工业, 2000, (7):38-39
    [70]傅宏,左春柽,于建群,等.自然冷资源库中果蔬冷却过程的有限元分析.农业工程学报, 2000, 16(3): 97-99
    [71] B Krebbers, A M Matser, M Koets, etc. Quality and storage-stability of high-pressure preserved green beans. Journal of Food Engineering, 2002, 54, (1): 27-33
    [72]周山涛.果蔬贮运学.北京:化学工业出版社,1998. 51-99,162
    [73] Tomonori Ishigaki, Yasunori Kawagoshi, Michihiko Ike, etc. Biodegradation of a polyvinyl alcohol-starch blend plastic film. World Journal of Microbiology &Biotechnology, 1999, 15: 321-327
    [74] M L Rooney. Active Food Packaging. Blackie Academic & Professional, 1995: Chapman & Hall
    [75]黄光荣.切割果蔬保鲜.食品科技, 2000(3):29-30
    [76] Trias R., Badosa E.,Montesinos E.,et al. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. International Journal of Food Microbiology, 2008, 127(1/2): 91-98
    [77] Du J., Fu Y., Wang N. Effects of aqueous chlorine dioxide treatment on browning of fresh-cut lotus root. LWT-Food Science and Technology, 2009, 42(2):654-659
    [78] Hodges D. M., Toivonen P.M.A. Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress.Postharvest Biology and Technology, 2008, 48(2): 155-162
    [79] Omsoliu G., Soliva Fortuny R., Martin Belloso O. Physiological and microbiological changes in fresh-cut pears stored in high oxygen active packages compared with low oxygen active and passive modified atmosphere packaging. Postharvest Biology and Technology, 2007, 48(2):295-301
    [80] Roura S.I., Pereyra L., Valle C.E. Phenylalanine ammonialyase activity in fresh cut lettuce subjected to the combined action of heat mild shocks and chemical additives. LWT-Food Science and Technology, 2008, 41(5):919-924
    [81] Rico D., Martin Diana A.B., Barry Ryan C., et al. Optimisation of steamer jet-injection to extend the shelflife of fresh-cut lettuce. Postharvest Biology and Technology, 2008, 48(3):431-442
    [82] Saltveit M.e., Qin L. Heating the ends of leaves cut during coring of whole heads of lettuce reduces subsequent phenolic accumulation and tissue browning. Postharvest Biology and Technology, 2008, 47(2): 255-259
    [83] Raybaudi Massilia R.M., Mosqueda Melgar J.,Sobrino Lopez A., et al. Shelf-life extension of fresh-cut "Fuji" apples at different ripeness stages using natural substances.Postharvest Biology and Technology, 2007, 45(2): 265-275
    [84]陈茹玉,刘纶祖.有机磷农药化学.上海:上海科学技术出版社, 1995.69
    [85]唐除痴,李煜昶,陈彬,等.农药化学.天津:南开大学出版社,1998.75
    [86] Irene Horne, et al. Applied and environmental microbiology, 2002, 68(7):3371-3376
    [87]瘐莉萍.我国农药市场发展综述.吉林农业. 2007(4):27
    [88]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应.北京:科学出版社,1998.81
    [89]黎燕,刘建强,谢淑娟,等.农产品市场准入势在必行.中国标准化,2004,7:81
    [90]倪艳华,李忠阳.食品农药污染现状及监督管理对策.中国卫生监督杂志, 2005(12): 58-60
    [91]虞云龙.农药微生物降解性与农药疏水性参数间的相关性.环境科学学报, 1998,18(2):208-211
    [92]王永杰.有机磷农药光谱活性降解菌的分离及其生理特性研究.南京农业大学学报,1999,22(2):42-45
    [93]古国榜,武志锋,李芳柏,等.纳米TiO2光催化降解有机磷农药的研究.土壤与环境,2001,10(3):173-175
    [94] Xiao Jian Xia, Yun Zhang, Jing Xue Wu, Ji Tao Wang, Yan Hong Zhou, Kai Shi, Yun Long Yu and Jing Quan Yu. Brassinosteroids promote metabolism of pesticides in cucumber. Journal of agricultural and food chemistry, 2009, 57, 8406-8413
    [95]李铁民,马溪平,刘宏生.环境微生物资源原理与应用.北京:化学工业出版社, 2005. 111-118
    [96] Wang Dongfeng, Sun Jipeng, Du Dehong,etc. Degradation of Extraction from Seaweed and Its Complex with Rare Earths for Organophosphorous Pesticides. Journal of Rare Earths,2007,25:93-99
    [97]蒋挺大.甲克素.北京:化学工业出版社, 2003
    [98]汪东风.一种多功能果蔬保鲜剂.中国专利, 200610125844.4, 2009-10-14
    [99]徐回祥,上条正义.关于混纺织物中棉、苎麻纤维识别的图像处理研究.苏州丝绸工学院学报, 2000, 20(4): 14-20
    [100] Pierro P.D.,Chico B.,Villalonga R.,et al. Transglutaminase-catalyzedpreparation of chitosan–ovalbumin films. Enzyme and Microbial Technology, 2007,40, 437-441
    [101] ASTM. Standard test methods for tensile properties of thin plastic sheeting. In Annual book of American standard testing methods. Philadelphia: American Society for Testing Materials. 1995
    [102] Gontard N., Duchez C., Cuq J.L.,et al. Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology, 1994, 29, 39-43
    [103]赵梅,赵立慧,程瑞,李蔚文,高冬梅.分光光度法测定油脂氧化物的过氧化值.中国皮革, 2006,35(11):39-40
    [104]姚晓敏,丁全锋.涂膜保鲜在黄瓜上的应用.食品工业科技,2000,21(3):8-10
    [105]宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998:753-754
    [106]宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998:306
    [107] Andrews P K., Shulin Li. Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry fruit. Journal of Horticultural Science, 1995, 70(4): 561-567
    [108]杜德红,汪东风,孙继鹏,等.茶叶多糖及其铈配合物对质粒DNA及有机磷农药的降解作用.中国稀土学报,2005,23(1):118-121
    [109] Amakok, Chen G-X, Asada K.Separate assays specific for ascorbate peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants.Plant Cell Physiol, 1994, 35:497-504
    [110]华南农学院主编.果品贮藏加工学.北京:中国农业出版社,1981
    [111]汪东风.一种多功能果蔬保鲜剂.中国专利, 200610125844.4, 2009-10-14
    [112]江祖成,蔡汝秀,张华山.稀土元素分析化学,第2版.北京:科学出版社, 2000
    [113]况伟.低聚水溶性壳聚糖与锌的络合.食品与机械, 2006, 22(1):15-17
    [114]雷永亮,孙伟,王海玉.低分子量水溶性壳聚糖与Cu(Ⅱ)、Zn(Ⅱ)配合物的光谱分析.青岛科技大学学报, 2003, 24(1): 31-32
    [115]蔡健,郎惠云,王振军,等. Zn(II)脱乙酰壳聚糖配合物的动力学研究.西北大学学报, 2004, 34(1): 52-55
    [116]李敏,魏弟.冬枣保鲜技术研究现状.保鲜与加工, 2003, 5: 14-16
    [117]赵佳.中国苹果产品国际竞争力的经济分析.农业经济, 2005, 5: 40-41
    [118]廖小军,胡小松.我国苹果生产加工现状与发展对策.中国农业科技导报, 2001, 3(6):13-16
    [119]杨克钦,俞宏,张劲强,等.苹果农药残留限量国际标准和国家标准的比较分析.中国苹果, 2001, 3: 9-10
    [120]李建科.国际食品安全动态与中国入世后的形势与对策,食品工业科技, 2002, 23(l): 78-80
    [121]李建科,陈锦屏.我国食品安全现状与入世后的形势与对策,食品科学, 2003, 24(8): 272-276
    [122]许长城,等.植物膜脂过氧化水平硫代巴比妥酸测定法中的干扰因素.植物生理学通讯, 1993, 29(5):361-363
    [123]汪东风.食品科学技术实验.中国轻工业出版社,2006年
    [124]陈海生,田房不二男. N, O, O′-三(对甲苯磺酰基)-双(2-羟乙基)胺的合成.化学试剂, 1995, 17(3): 141-142
    [125]蒋福宾,黄忠,曾宪诚,等.在CTAB胶束中羟乙基-双胺类Zn(II), Ni(II)配合物催化PNPP水解反应.化学研究与应用, 2003, 15(4): 483-486
    [126]靳爱仙,王亚萍,梁丽松,等.减压贮藏对冬枣果实呼吸及软化相关指标的影响.西北林学院学报, 2006, 21(5): 143-146
    [127] Leshem Y Y, Halevy A H, Frenkel C. Processes and control of plant senescence. Amsterdam: Elsevier Press, 1986: 171-178
    [128] Yinrong Lu, L Yeap Foo. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chemisty, 1999, 64: 511-518
    [129]彭世清,李华.葡萄贮藏过程中的褐变初探.食品科学,1995,16(7):54-56
    [130] Rocha A., Morais A. Shelf life of minimally processed apple (cv.Jonagold) determined by color changes. Food Control, 2003, 14:13-20
    [131] Burke, A., Yilmaz, E., Hasirci, N. Evaluation of chitosan as a potential medical iron (III) ion adsorbent. Turk Journal of Medical Sciences, 2000, 30:623-624
    [132] Lu, Z., Nie, G., Belton, P. S., Tang, H., Zhao, B. Structure activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International, 2006, 48: 63-274
    [133] Ji, H. F., Zhang, H. Y., Shen, L. Proton dissociation is important to understanding structure– activity relationships of gallic acid antioxidants. Bioorganic and Medical Chemistry Letters, 2006, 16: 4095-4098
    [134]武汉大学化学系.仪器分析.北京:高等教育出版社, 2001, 359
    [135]吕海鹏,林智,谷记平,等.普洱茶中的没食子酸研究.茶叶科学, 2007, 27(2): 104-110
    [136] Robak J, Gryglewski R J. Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 1988, 37(5): 837-841
    [137] Ghiselli A, Nardini M, Baldi A, et al. Antioxidant activity of different phenolic fractions separated from an Italian red wine. Journal of Agricultural and Food Chemistry, 1998, 46(2): 361-367
    [138] Braca A, De Tommasi N, Di Bari L, et al. Antioxidant principles from Bauhinia tarapotensis. Journal of Natural Products, 2001, 64(7): 892-895
    [139] Zhang L K, Lu Z X, Wang H X. Effect of gamma irradiation on microbial growth and sensory quality of fresh-cut lettuce Inter. Journal of Food Microbiology, 2006, 106: 348-351
    [140] Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences, 1993, 90(17): 7915
    [141]王广娟,赵文.树脂提纯五倍子中没食子酸的研究.食品工业科技, 2010, 5, 234-237
    [142]庞坤,胡文忠,姜爱丽,等.鲜切苹果贮藏期间生理生化变化的影响.食品与机械, 2008, 24(1): 50-54
    [143]南海娟,高愿军,郝亚勤.鲜切苹果抗褐变研究.食品与机械,2006,22(3): 90-93
    [144]郁志芳.鲜切芦蒿的品质和酶促褐变机理研究:博士学位论文.南京:南京农业大学, 2005年
    [145]林河通,席玙芳,陈绍军.果实贮藏期间的酶促褐变.福州大学学报, 2002, 30, 696-703
    [146]胡文忠,姜爱丽,庞坤,等.鲜切苹果的呼吸强度及乙烯生成量变化的研究.大连民族大学学报, 2007, 1: 37-40
    [147]陈伟,叶明志,周洁.植物酚类物质研究进展.福建农业大学学报, 1997, 26(4): 502-508
    [148]陈秀芳,王坤范.果实发育中褐变因子变化规律的研究.园艺学报,1995,22(3): 230-234
    [149] Mayén M, Barón R, Mérida J, Medina M. Change in phenolic compounds during accelerated browning in white wines from CV. Pedro ximenez and CV Baladi grapes. Food Chemistry, 1997, 58(1):89-95
    [150] Srinivasa P, Revathy B, Ramesh M, et al. Storage studies of mango packed using biodegradable chitosan film. European Food Research and Technology, 2002(15):504-508
    [151] Fereidoons, Janakk, Vidana Ai. Food applications of chitin and chitosans. Trendsin Food Science & Techology, 1999(10):37-51
    [152]南海娟,高愿军.鲜切水果保鲜研究进展.食品与机械, 2005, 22(4): 66-68
    [153]张立奎,陆兆新,汪宏喜.鲜切生菜在贮藏期间的微生物生长模型.食品与发酵工业, 2004, 30(2):107-110
    [154]关新强.鲜切果蔬的微生物控制.新疆化工, 2004(3): 51-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700