基于Stewart结构并联分载式六维大力传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨型重载操作装备、巨型重载制造装备以及大型掘进装备等重载装备具有大载荷、大惯量、多自由度、多维力位操控等特点。为提高生产效率和材料利用率,减少由于载荷突变或载荷偏置等因素所造成的突发事故,其末端执行机构必须具有力顺应性和位置顺应性,而实时六维大力测量是实现顺应控制和多自由度协调控制的基础。因此,研制用于重载装备实时六维大力测量的六维大力传感器具有十分重要的意义,但多维和大力之间的矛盾使得六维大力传感器的研制十分困难。本论文提出了一种六维大力分载测量方法,并基于该分载测量方法研制了基于Stewart结构的六维大力传感器,为多维大载荷测量的研究提供了一个新的途径和思路。
     论文针对多维大力测量中多维和大力之间的矛盾,提出了一种基于Stewart结构的六维大力分载测量方法及其传感器,结合Stewart结构力映射矩阵、Stewart结构位姿正解以及深梁单元刚度矩阵,提出了基于Stewart结构六维大力传感器的力映射矩阵。建立了基于Stewart结构六维大力传感器的有限元模型,并对传感器有限元模型进行了静力学分析和动力学分析,验证了该力映射矩阵的正确性。提出了六维大力分载比的概念,并综合分析了承载梁结构参数对各方向上分载比的影响,为六维大力传感器的性能指标分析和设计提供了理论基础。
     针对六维大力传感器的结构特点和设计要求,以力映射矩阵为基础,研究了六维大力传感器各向同性和灵敏度等性能指标,绘制了各性能指标随结构参数变化的功能图谱,为传感器结构参数的选择提供了重要的理论基础。
     针对巨型重载装备需要多维动态测量的特点,综合分析各转换元件优缺点,选择压电石英作为转换元件。针对六维大力分载后测量杆难于预紧的问题,提出了一种可调预紧力机构和六点局部预紧方法,通过调整预紧螺栓驱动预紧滑块,能够单独对每一根测量杆进行预紧,实现六点局部预紧,并能保证每个测量杆的预紧力值较接近。针对传感器的测量要求和实际安装条件,给出了传感器与被测梁的紧固方案,解决了六维力传感器承载梁上固定和力传递问题。
     针对六维大力传感器标定的难题,提出并研制了一种单力源六维大力标定装置;研制了30kN量程和200kN量程的六维大力传感器,在六维大力标定装置上对200kN量程六维大力传感器进行了标定,获得传感器的标定矩阵,标定得到传感器的重复性误差在1%以内,线性度在1.2%以内,向间干扰误差在5%以内,X轴力分载比为1.8%,Y轴力分载比为1.6%,Z轴力分载比为0.28%,X轴力矩分载比为17.2%,Y轴力矩分载比为19.1%,Z轴力矩分载比为11.5%,验证了基于Stewart结构并联分载式六维大力传感器的有效性和可行性;根据基于Stewart结构六维大力传感器的结构特点,重点分析了承载梁参数对各向同性和灵敏度性能指标的影响,改变传感器的承载梁直径和长度,并通过其标定矩阵求得各向同性和灵敏度随承载梁参数的变化规律,验证了理论分析曲线的正确性;通过冲击法研究了传感器的动态特性,得到了传感器各通道的固有频率。
     针对六维大力传感器在线标定的难题,结合重载装备末端执行机构工作时传感器的受力情况和“SFM”标定原理,提出了基于“SFM”标定原理的六维大力传感器在线标定方法,通过应用“SFM”标定方法对有限元模型进行二维、三维、六维的标定,并在六维大力标定装置上对二维力在线标定进行了模拟,验证了该方法应用于多维大力传感器标定的可行性。
     总之,本论文的基于Stewart结构六维大力传感器的力映射矩阵、传感器的静动力学分析、传感器的性能指标分析、传感器结构设计的关键技术、六维大力标定装置的研制以及传感器的动态特性和在线标定等研究成果为六维大力传感器的设计、开发和应用提供了重要的理论依据和实验基础。
Heavy equipments like huge manufacturing equipments, huge operation equipments and huge excavation equipment are characterized by heavy load, large inertia, multi-degree-of freedom, multi-dimensional control of forces and positions. In order to increase productivity and avoid accidents caused by sudden change and of heavy forces, terminus executive arms of heavy equipments should be in compliance with force and displacement. And compliance control and multi-degree harmonious control of terminus executive arms is premised on six-axis heavy force measurement in real time. Therefore, development of six-axis heavy force sensors is of vital importance for real-time measurement of six-axis heavy force. The contradiction of multi-axis and heavy force leads to the difficulty of six-axis heavy force research. In this paper, A six-axis load-sharing heavy force sensor based on Stewart structure is researched, which presents a novel method for multi-axis heavy force measurement.
     To solve the problem of multi-axis heavy force measurement, a six-axis heavy force measurement method and sensor is proposed. Furthermore, the decoupling algorithm of the six-axis heavy force sensor is deduced from the force mapping matrix of the Stewart structure, the forward kinematics of the Stewart structure and the element stiffness matrix of deep beam. A finite element modal of the six-axis heavy force sensor is established, and analysis of statics and dynamics of the modal is conducted, which verifies the decoupling algorithm. The defination of six-axis heavy force load sharing ratio is presented. The influence of the load bearing beam size on the load sharing ratio is analyzed. All the results above present a theoretical base for performance indice analysis and designment of the six-axis heavy force sensor.
     To satisfy the designing requirements, the isotropy and sensitivity performance indices of the six-axis heavy force sensor are analyzed according to the force mapping matrix. The performance atlases of the change law of performance indices with the structure parameters are drawn. The entire analysis presents an important theoretical base for the selection of structure parameters.
     Multi-axis dynamic measurement is necessary for huge operation equipments, so piezoelectric quartz is selected as the sensitive element of the sensor after comprehensive analysis of all sensitive elements. To apply the preload on each measurement rod, a preload structure with adjustable preload and six-site local preload method is presented. Preload of each rod can be applied by ajusting the preload screw bolt and slider, which ensures close preloads on each measurement rod. According to the requirement of measurement and the assembly condition, the wedge expansion technique is used to fasten the sensor on the load bearing beam, which solve the problem of the sensor fasten and force transmission.
     A six-axis heavy force calibration equipment with single force source is established. Six-axis heavy force sensors with 30kN and 200kN measurement ranges are developed. A six-axis heavy force sensor with measurement range of 200kN is calibrated on the calibration equipment, and the calibration matrix of the sensor is obtained. Results show that the repeatability errors are within 1%, the non-linearity errors are within 1.2% and the interference errors of each direction are within 5%. The load sharing ratio of force is 1.8%,1.6% and 0.28% in X, Y and Z axis respectively. The load sharing ratio of moment is 17.2%,19.1%, and 11.5% in X,Y and Z axis. The calibration results verify the validity and feasibility of the six-axis load-sharing heavy force sensor based on the Stewart structure. The change law of isotropy and sensitivity performance indices with the load bearing beam parameters is obtained by changing the length and radius of the load bearing beam. The change law in experiment is in accordance with the theory curve. The dynamic characteristis of the sensor is researched with force hammer impacting method. The natural frequencies of the sensor in each channel are obtained.
     Combining the force condition of the manipulator with the calibration principle of "SFM", the on-machine "SFM" calibration method for six-axis heavy force sensor is presented. Calibration of two-axis force, three-axis and six-axis force with "SFM" method is conducted to the finite element modal of the six-axis heavy force sensor, And the sensor is calibrated as two-axis force sensor, which verifies the feasibility of the "SFM" method for the calibration of multi-axis heavy force sensor.
     In general, the decoupling modal of the six-axis heavy force sensor, the static and dynamic force analysis, the analysis of performance indices, the structure design of the sensor, the calibration equipment, the dynamic character analysis and calibration on machine presented in this paper provide a significant theory and experiment basis for design, development and application of the six-axis heavy force sensor.
引文
[1]DIDDENS D, REYNAERTS D, Van Brussel H. Design of a ring-shaped three-axis microforce/torque sensor. Sensor and Actuator A:Physical,1995,46(1):225-232.
    [2]FOLCHI, G A, SHELTON G L, WANG S S, et al. Six degree of freedom force transducer for a manipulator system:US,3948093[P].1975,06,30.
    [3]WATSON P C, DRAKE S H, Pedestal and Wrist Force Sensors for Automatic Assembly [C]. Proceedings of Fifth International Symposium on Industrial Robots, Chicago, 1975:501-511.
    [4]BRUSSEL H V, BELIEN H, THIELEMANS H. Force Sensing for Advanced Robot Control. Robotics [J].1986,2(2):139-148.
    [5]KROLL E, Decoupling Load Components an Improving Robot Interfacing with an Easy-to-Use 6-Axis Wrist Force Sensor [C]. In Theory of Machines and Mechanisms, Proceedings of the 7th World Congress, Seville,1986:327-331.
    [6]SCHOTT J. Tactile Sensor with Decentralized Signal Conditioning. The 9th IMEKO World Congress, Beilin,1982:138-143.
    [7]KEGON. Robot Technology [M]. London:page Ltd,1983.
    [8]YOSHIKAWA T, MIYAZAKI T. A Six-axis Force Sensor with Three-dimensional Cross-shape Structure [C]. IEEE International Conference on Robotics and Automation, Scottsdale, 1989:249-255.
    [9]UCHIYAMA M, BAYO E, PALMA-VILLALON E. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors [J]. Journal of Dynamic Systems Measurement and Control.1991,1(113):388-394.
    [10]BAYO E, STUBBE J R. Six-axis Force Sensor Evaluation and a new Type of Optimal Frame Truss Design for Robotic Applicatons [J]. Journal of Robotic Systems.1989,6(2): 191-208.
    [11]KANEKO M. Twin-Head Six-axis Force Sensors [C]. Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama,1993:146-154.
    [12]HIROSE S, YONEDA K. Development of Optical 6-Axial Force Sensor and Its Signal Calibration Considering Non-linear Interference [C]. International Conference on Robotics and Automation,1990:46-53.
    [13]GIOVINAZZO G,VARRONE P. Transducer with six degrees of freedom:US,4320392[P]. 1982,03,16.
    [14]JOO J W, NA K S, KANG D I. Design and evaluation of a six-component load cell [J]. Measurement,2002,32(2):125-133.
    [15]KIM J H, KANG D I, SHIN H H, et al. Design and analysis of a column type multi-component force/moment sensor [J]. Measurement,2003,33(3); 213-219.
    [16]陈雄标,姚英学,袁哲俊.六维力/力矩传感器干扰及其标定方法[J].传感器技术,1995,(2):37-40.
    [17]陈雄标,袁哲俊,姚英学.机器人用六维腕力传感器标定研究[J].机器人,1997,19(1):7-12.
    [18]陈雄标,袁哲俊,姚英学.多维力传感器设计的评价准则与优化设计研究[J].哈尔滨工业大学学报,1997,29(4):88-92.
    [19]黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计[J].机器人,1992,14(5):1-7.
    [20]刘正士,王勇,陈恩伟,等.一种水下机器人用多轴力传感器的结构设计[J].中国机械工程,2007,18(20):2481-2485.
    [21]张为公.一种六维力传感器的新型布片和解耦方法[J].南京航空航天大学学报,1999,31(2):219-222.
    [22]黄惟一,王玉生.机器人腕力传感器传递矩阵的研究[J].东南大学学报,1988,24(3):45-4.
    [23]STEWART D. A Platform with six degrees of freedom [J]. Proceedings of the Institute of Mechanical Engineering,1965,180(1):371-386.
    [24]GAILLET A, REBOULET C. An isostatic six component force and torque sensor [C]. Proceedings of the 13th International Symposium on Industrial Robotics,1983:102-111.
    [25]DWARAKANATH T A, DASGUPTA B, MRUTHYUNJAYA T S. Design and Development of a Stewart Platform based Force-Torque Sensor [J]. Mechatronics,2001, (11):793-809
    [26]KANG C G. Closed-form force sensing of a 6-axis force transducer based on the Stewart platform [J]. Sensors and Actuators A,'2001,90(1):31-37.
    [27]RANGANATH R, NAIR P S, MRUTHYUNJAYA T S, et al. A Force-torque Sensor Based on a Stewart Platform in a Near-singular Configuration [J]. Mechanism and Machine Theory,2004, 39(9):971-99.
    [28]KERR D R. Analysis, Properties and Design of a Stewart-Platform Transducer [J]. J Mech Transm Automn Des,1989,111(1):25-28.
    [29]NGUYEN C C, ANTRAZI S S, ZHOU Z. Analysis and Implementation of a 6 DOF Stewart Platform-based Force Sensor for Passive Compliant Robotic Assembly [C]. IEEE Proceedings of Southeastcon, Williamsburg,1991:880-884.
    [30]FERRARESI C. Static and Dynamic Behavior of a High Stiffness Stewart Platform-based Force/Torque Sensor [J]. Journal of Robotics Systems,1995,12(12):883-893.
    [31]DITHER D. Measurement sensor for a linking wrench between two mechanical parts, as well as its manufacturing process:US,5821431[P].1998,10,13.
    [32]熊有伦.机器人力传感器的各向同性[J].自动化学报,1996,22(1):6-9.
    [33]陈滨.机器人的手腕测力装置[J].机械工程学报,1988,24(2):63-7.
    [34]WANG H G, ZHAO M Y, FANG L J, et al. Identification of Parameters for a Stewart Platform-based Force/Torque Sensor [C]. Proceedings of 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang,2004:46-50.
    [35]高峰,陈玉龙,彭斌彬,等.新型解耦和各向同性五维力传感器性能分析[J].机械工程学报,2004,40(9):71-74.
    [36]高峰,金振林,刘辛军,等.并联结构六维力与力矩传感器:中国,ZL9911932.2[P].2000,9,27.
    [37]WANG H R, GAO F, HUANG Z. Design of 6-axis force/torque sensor based on Stewart platform related to isotropy[J]. Chinese Journal of Mechanical Engineering,1998,11(3):217-222.
    [38]刘丽欢.大量程柔性铰并联六维力传感器结构设计[D]:(硕士学位论文).燕山:燕山大学,2009.
    [39]YAO J T, HOU Y L, CHEN J, et al. Theoretical analysis and experiment research of a statically indeterminate pre-stressed six-axis force sensor [J]. Sensors and Actuators A,2009,150(1):1-11.
    [40]赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D]:(硕士学位论文).燕山:燕山大学,2008.
    [41]沈久珩.大力测量技术的新进展:附着式超轻型大力传感器[J].中国工程科学,2001,3(10):22-27.
    [42]张隆安,胡先举.大吨位预应力圆筒式测力传感计的研制和应用[J].长江科学院院报,1991(3):43-51.
    [43]朱晔,周伯伟,顾荣,等.关于轮辐式剪切力传感器的研制与设计[J].机械设计与制造工程,2002(4):87-89.
    [44]沈久珩.附着式大力传感技术的研制[J].冶金设备,2002,6(3):48-51.
    [45]沈久珩.附着式测力传感器:中国,CN86105879[P].1987,3,25.
    [46]黄贤武.传感器原理及应用[M].成都:电子科技大学出版社,1999.
    [47]余瑞芳.传感器原理[M].北京:航空工业出版社,1995.
    [48]UCHIYAMA M, BAYO E, PALMA-VILLALON, E. A systematic design procedure to minimize a performance index for robot force sensors [J]. Journal of Dynamic Systems, Measurement, and Control,1991,113(3):388-394.
    [49]KANG, C G. Performance improvement of a 6-axis force torque sensor via novel electronics and cross-shaped double-hole structure [J]. International Journal. of Control, Automation, and Systems,2005,3(3):469-476.
    [50]KOSUGE K, OKUDA M, KAWAMATA H, et al. Input/output force analysis of parallel link manipulators [C].In Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent robots and systems, Yokohama,1993:26-30.
    [51]SU Y X, DUAN B Y, PENG B, et al. Singularity analysis of fine-tuning Stewart platform for large radio telescope using genetic algorithm[J]. Mechatronics,2003,13(5): 413-425.
    [52]DWARAKANATH T A, DASGUPTA B, MRUTHYUNJAYA T S. Design and development of a Stewart platform based force-torque sensor [J]. Mechatronics,2001,11(7):793-809.
    [53]CHAO L P, CHEN K T. Shape optimal design and force sensitivity evaluation of six-axis force sensors [J]. Sensors and Actuators A,1997,63(2):105-112.
    [54]BICCHI A. A Criterion for Opetimal Design of Multi-axis Force Sensor [J]. Robotics and Autonomous Systems,1992,10(4):269-286.
    [55]WANG H R, GAO F. Design of 6-axis Force/Torque Sensor based on Platform Related to Isotropy [J]. Chinese Journal of Mechanical Engineering,1997, (3):138-143.
    [56]HOU Y, YAO J, LU L, et al. Performance analysis and comprehensive index optimization of a new configuration of Stewart six-component force sensor [J]. Mechanism and Machine Theory,2009,44(2):359-368.
    [57]JIN Z L, GAO F, ZHANG X H. Design and analysis of a novel isotropic six-component force/torque sensor[J]. Sensors and Actuators A,2003,109(1-2):17-20.
    [58]LIU.S A, TZO H L. A novel six-component force sensor of good measurement isotropy and sensitivities [J]. Sensors and Actuators A,2002,100(2-3):223-230.
    [59]Kim G S.The development of a six-component force/moment sensor testing machine and evaluation of its uncertainty [J]. Measurement Science and Technology. 2000,11 (9):1377-1382.
    [60]王宣银,尹瑞多,李潇潇,等. 无级升降式六维力传感器标定装置:中国,200510050834.4[P].2005,7,25.
    [61]尹瑞多,王宣银,刘荣,等.基于并联六自由度的广义力标定装置[J].机床与液压,2006(8):1-2
    [62]吴仲城,申飞,吴宝元,等.六维力传感器标定装置:中国,200810020512.9[P].2008,07,23.
    [63]赵延治.大量程柔性铰并联六维力传感器基础理论与系统研制[D]:(博士学位论文).燕山:燕山大学,2010.
    [64]徐科军.传感器动态特性的实用研究方法[M].合肥:中国科学技术大学出版社,1999.
    [65]VOYLES R M, MORROW J D, KHOSIA P K. The SFM approach to rapid and precise force/torque sensor calibration[J]. Journal of Dynamic Systems, Measurement, and Control, 1997,119(2):229-235.
    [66]VOYLES R M, MORROW J D, KHOSLA P K. SFM Decomposition as a Learning Approach for Autonomous Agents[C]. In Proceedings of the 1995 IEEE Conference on Systems, Man, and Cybernetics, Vancouver,1995:407-412.
    [67]SUN Y, KIM K K, VOYLES R M, ET AL. Calibration of Multi-Axis MEMS Force Sensors. Using the SFM Method[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Florida,2006:269-274.
    [68]王嘉力.微型六维力/力矩传感器及其自动标定的研究[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [69]李海滨,隋春平,王洪光,等.基于Stewart平台六维力传感器的分区静态标定方法[J].传感技术学报.2006,19(1):132-136.
    [70]王国泰,易秀芳,王理丽.六维力传感器发展中的几个关键问题[J].机器人.1997,19(6):474-478.
    [71]徐科军,李成.多维腕力传感器静态解耦的研究[J].合肥工业大学学报(自然科学版)1999,22(2):1-6.
    [72]姜力,刘宏,蔡鹤皋等.基于神经网络的多维力传感器静态解耦的研究[J].中国机械工程,2002,13(24):2100-2103.
    [73]姜力,刘宏,蔡鹤皋等.多维力/力矩传感器静态解耦的研究[J].仪器仪表学报,2004,25(3):284-287.
    [74]黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997.
    [75]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006.
    [76]苟文选.材料力学(Ⅰ)[M].北京:科学出版社,2005.
    [77]夏桂云,李传习.考虑剪切变形影响的杆系结构理论与应用[M].北京:人民交通出版社,2008.
    [78]胡海昌.弹性力学的变分原理及应用[M].北京:科学出版社,1981.
    [79]刘树堂.杆系结构有限元分析与MATLAB应用[M].北京:中国水利水电出版社,2007.
    [80]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [81]SONG S K, KWON D S. Efficient Formulation Approach for the Forward Kinematics of the 3-6 Stewart-Gough Platform[C]. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hawaii,2001:1688-1693.
    [82]SONG S K, KWON D S. Geometric Formulation Approach for Determining the Actual Solution of the Forward Kinematics of 6-dof Parallel Manipulators[C]. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, 2002:1930-1935.
    [83]KOSUGE K, OKUDA M, KAWAMATA H, et al. Input/output force analysis of parallel link manipulators [J]. IEEE Journal of Robotics and Automation,1993,1:714-719.
    [84]傅志方,华宏星.模态分析理论及应用[M].上海:上海交通大学出版社,2000.
    [85]李晓蕾,俞德孚,孙逢春.机械振动基础[M].北京:北京理工大学出版社,2002.
    [86]傅志方.振动模态分析与参数辨识[M].北京:机械工业出版社,1990.
    [87]李金泉,付铁,染振兴.BKX-Ⅰ型并联机床动力学分析[J].北京邮电大学学报,2008,31(5):40-43.
    [88]李金泉,陈恳,丁洪生.基于有限元法6-UPS并联机床模态分析[J].设计与研究,2006,(3):1-3.
    [89]董旭,高铁红,靳迎波,等.基于有限元方法的并联机床模态分析[J].北华航天工业学院学报,2008,18(5):11-14.
    [90]EL-KHASAWNEH B S, FERREIRA P M. Computation of stiffness and stiffness bounds for parallel link manipulators [J]. International Journal of Machine Tools & Manufacture,1999, 39(2):321-342.
    [91]WANG X Y, MILLS J K. FEM dynamic model for active vibration control of flexible linkages and its application to a planar parallel manipulator [J]. Applied Acoustics,2005, 66(10):1151-1161.
    [92]LI Y M, XU Q S. Stiffness analysis for a 3-PUU parallel kinematic machine [J]. Mechanism and Machine Theory,2008,43(2),186-200.
    [93]WU J, WANG J S, WANG L P. Study on the stiffness of a 5-DOF hybrid machine tool with actuation redundancy [J]. Mechanism and Machine Theory,2009,44(2):289-305.
    [94]白志富,陈五一.球铰刚度计算模型及靠冗余支链实现并联机床刚度的改善[J].机械工程学报,2006,42(10):142-145.
    [95]赵现朝.Stewart结构六维力传感器设计理论与应用研究[D]:(博士学位论文).燕山:燕山大学,2002.
    [96]HOU Y L, ZENG D X, YAO J T, et al. Optimal design of a hyperstatic Stewart platform-based force/torque sensor with genetic algorithms [J]. Mechatronics,2009,19(2):199-204.
    [97]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996
    [98]金振林,高峰.新型机器人6维力/力矩传感器结构的刚度性能指标分析[J].中国机械工程,2001(10):1092-1094.
    [99]杨基厚,高峰著.四杆机构的空间模型和性能图谱[M].北京:机械工业出版社,1989.
    [100]BAUDENDISTEL T A, TURNER M L. A novel inverse-magnetostrictive force sensor [J]. IEEE sensors Journal,2007,7(2):245-50.
    [101]KLEINKE D K, URAS H M. A magnetostrictive force sensor [J]. Review of Scientific Instruments,1994,65 (5):1699-1710.
    [102]BERBYUK V, SODHANI J. Towards modeling and design of magnetostrictive electric generators [J]. Computers and Structures,2008,86(3-5):307-313.
    [103]郭沛飞,贾振元,杨兴,等.压磁效应及其在传感器中的应用[J].压电与声光,2001,23(1):26-29.
    [104]YANG Q X, RONGGE Y, FAN C, et al. A Magneto-Mechanical Strongly Coupled Model for Giant Magnetostrictive Force Sensor [J]. IEEE Transactions on Magnetics,2007,43(4): 1437-1440.
    [105]KUO C W, SHIH J S. Cryptand/metal ion coated piezoelectric quartz crystal sensors with artificial back propagation neural network analysis for nitrogen dioxide and carbon monoxide [J]. Sensors and Actuators B,2005,106(1):468-476.
    [106]GIORDANO C, INGROSSO I, TODAROM T, et al. AlN on polysilicon piezoelectric cantilevers for sensors/actuators[J]. Microelectronic Engineering,2009,86(4-6):1204-1207.
    [107]YOO J Y, HONG J, LEE H. Piezoelectric and dielectric properties of La203 added Bi(Na, K)TiO3-SrTiO3 ceramics for pressure sensor application[J]. Sensors and Actuators A,2006,126(1):41-47.
    [108]PATNAIK B R, HEPPLER G R, WILSON W J. Effectiveness coefficient measures for piezoelectric sensors[J]. Sensors and Actuators A,1996,56(3):255-258.
    [109]孙宝元.切削状态智能监控技术[M].大连:大连理工大学出版社,1999.
    [110]高长银.压电石英晶片扭转效应研究及新型扭矩传感器的研制[D]:(博士学位论文).大连:大连理工大学,2004.
    [111]吴涧彤.压电晶体扭转效应的研究[D](博士学位论文).大连:大连理工大学,2001.
    [112]翟怡.火箭发动机推力矢量测试平台动态特性的研究[D]:(硕士学位论文).大连:大连理工大学,2006.
    [113]孙宝元等.现代执行器技术[M].长春:吉林大学出版社,2003.
    [114]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].北京:计量出版社,1985.
    [115]赵永生.整体预紧平台式六维力传感器:中国,99102526.1[P].2000,08,16.
    [116]黄长艺,严普强.机械工程测试技术基础.北京:机械工业出版社.1984.
    [117]胡广书.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2003.
    [118]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700