聚合物诱导下无机纳米材料的组装和晶化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪90年代纳米材料真正诞生以来,其成核、结晶、定向生长、稳定、组装和应用一直是众多自然科学范畴,如物理学、化学、材料学和生物医学等的研究热点。在各领域中,结构新颖、功能优越的各种纳米尺度和纳米结构材料展示了其优于块体材料的优良性能,具有广阔的市场和开发前景。其中,聚合物诱导下无机纳米的组装和晶化过程一直为科学界所关注。通过设计和考察聚合物在无机纳米材料组装和晶化中的作用机制,可制备不同结构和性能的组装体材料。该类型材料一方面保留有纳米材料本身的特性,如大外表面积、丰富的外表结构和活性位点;另一方面其较大的尺寸和可调节的组装过程,使得作为纳米材料的组装体,可以解决纳米尺度材料在特定应用领域的难以操控的不足。
     然而,目前由于各种组装方法的固有缺陷、方法种类有限、应用层面考虑不足和对合成和晶化过程的研究、生长机理不明确等一系列问题的存在,加之对于如何控制和设计组装过程和组装体,如何充分体现在相关应用领域的优势仍然存在空白,这些问题严重限制了无机物纳米材料的发展和应用开发。因此,通过设计聚合物的结构或其聚合过程,合成和研究聚合物诱导下无机纳米材料的组装和晶化过程,获得一定形貌和结构的组装体,探索或深化对聚合物结构和聚合过程的研究,对设计和开发更多特殊功能的纳米材料、提供更多的选择范围和对材料设计思想具有深远意义。
     本论文工作以“聚合诱导下无机纳米材料组装和晶化过程”为主线,针对上述所存在的一系列问题,从“聚合物结构、聚合过程设计和控制”、“无机纳米组装体的结构调控和形成机理研究”和“无机纳米材料的功能开发”三方面入手。采用未经过任何处理的纳米沸石合成原液,研究了改进的聚合诱导胶体凝聚中的脲醛树脂聚合过程,通过对微球形成规律的细致考察,调控了沸石微球组装体的合成过程;通过对合成条件的精确调控和对沸石微球结构和纳米沸石表面性能的研究,提出了新的“聚合速度匹配”组装机理;进一步通过对聚合过程的不断认识和深化,发现其聚合过程中不同结构的特点和性能,合成了不同表面结构和种类的微球材料;并通过四个不同的催化反应过程具体考察了沸石微球的优良性能。另外,通过对聚天冬氮酸分子结构的设计和合成,考察了磷酸钙的溶液相组装过程;进一步引入壳聚糖为界面高分子识别基底,考察了界面相磷酸钙的晶化过程,探索了聚天冬氨酸诱导下的晶化过程机理。在上述工作中,即拓展了材料的合成方法和新结构,又丰富了现有的合成理论和机理,这些材料在催化以及生物材料中都表现出突出的性能,为设计和合成新结构和功能的纳米材料提供新的思路。本论文针对上述研究工作分七个章节进行讨论:
     第三章讨论了聚合诱导胶体凝聚法制备β沸石微球。首次应用纳米沸石合成原液一步法合成沸石微球,其中的纳米沸石未经过任何处理、方法过程简单、操作便捷、成本低廉、具有量产的前景。通过对产品结构的系列表征可发现,随着酸加入量的不同,可以得到不同形貌和结构的纳米沸石组装体。在此过程中酸度的控制是至关重要的因素,经由zeta电势的变化可以指示该过程,通过“聚合速度匹配”组装机理可以解释其组装过程。该方法合成的β沸石微球,由于具有纳米沸石的己有属性,加之方法特有的堆积介孔特征,使之在催化领域,特别是受扩散控制的反应、副反应较多的反应、低温反应和大分子反应等的应用中具有广阔的前景。
     第四章研究了聚合诱导胶体凝聚法的体系拓展。首先采用不同硅铝比和不同结构的纳米沸石合成原液,考察了在此体系下的响应情况。通过系列的实验和结构表征进一步验证了“聚合速度匹配”机理。进而通过对合成体系的方法拓展,如通过碱性体系下脲醛树脂保护的方法,可以得到不同粒径和结构的去除模板剂的单分散纳米沸石;通过酸性体系下脲醛树脂浇筑的方法可以得到大孔/微孔复合沸石块体材料;在合成体系中引入金属盐溶液,可制备出沸石-金属复合微球材料。
     第五章介绍了沸石微球在催化反应中的应用。采用四个反应:(反应一)动态动力学拆分反应(液相低温反应);(反应二)果糖脱水合成羟甲基糠醛(液相低温反应);(反应三)碳四烯烃裂解反应(气相高温反应);和(反应四)丁烷丁烯的烷基化反应(气相低温反应)来表征沸石微球的独特优势。沸石微球保留有纳米沸石的大外表面、短孔道、活性位易达易离等特点,使得其反应物和产物的扩散限制大大降低,反应物快速接触活性位和产物快速脱离活性位,积炭过程缓慢,容炭能力强,催化剂寿命提高,而纳米沸石间的独特堆积介孔更有利于此过程。通过不同反应和条件表明,沸石微球催化剂与商品沸石相比有着更好的催化效果,优势明显。
     第六章阐述了聚天冬氨酸和壳聚糖诱导下磷酸钙的溶液相和界面相晶化过程。通过设计合成不同电荷密度的聚天冬氨酸,研究了其诱导下的溶液相磷酸钙纳米片层晶化组装过程,系统考察了不同条件下组装体的结构和表面性能,通过对晶化过程中的反应物浓度、温度、响应时间、有机物含量等的考察,成功的捕捉和观测了整个晶化过程,提出了两个相互竞争的反应过程,并验证了经典的聚合物诱导晶化组装机理。进一步通过荷正电荷的高分子-壳聚糖将晶化过程引入到界面相,研究了在两种聚合物共同诱导下磷酸钙的结晶过程,并考察了其形貌和结构的变化规律,发现了溶液和界面的竞争晶化过程。通过界面相过程所得到的不同结构的磷酸钙膜层在细胞黏附和增殖的生物相容性测试中得到不同的响应效果。
     综上所述,以“聚合物诱导下无机纳米材料组装和晶化”为主线,通过调控聚合物的聚合过程和电荷密度,研究了无机纳米组装体结构变化,合成了系列不同的组装体材料,研究了聚合物在组装和晶化过程中的作用并提出了“聚合速度匹配”组装机理、发现了两个相互竞争的晶化反应和溶液相界面相之间相互竞争的晶化过程。同时,研究了沸石微球材料在动态动力学拆分反应、果糖催化分解、碳四烯烃裂解和烷基化反应中的应用等。通过对聚合物在纳米材料的组装和晶化过程的研究和形成机理的阐述,为新材料开发与设计和催化反应的应用提供了借鉴和启发意义。
Since the birth of nanomaterial in the last 90s, lots of attention has been paid to its nucleation, crystallization, oriented growth, stability, assembly and applied into a number of areas, such as physics, chemistry, materials and biomedical science. In various fields, compared with bulk materials, nanoscale and nanostructured materials with new structure and superior functional properties have demonstrated theri excellent performance, and have a vast market and prospects. Among them, much concern has been paied to the polymer induced inorganic nanoscale assembly and crystallization process. Nanomaterials with different structures and properties can be prepared when familiar with the design and assembly procedure. The nanoscale and nanostructured materials on the one hand retain the characteristics of their parent nanoparticles, such as large external surface, rich structural properties and active sites, and on the other hand, can solve control deficiency and bring convenient in the specific application field because of their large size and adjustable assembly process.
     However, there are still lots of gaps due to a range of issues, such as the inherent defects for various assembly methods, lack consideration for application, insufficient understanding to the synthesis process, and vague crystallization mechanism. Together with little know about how to fully embody the advantages, these problems have severely impeded the further development into related areas. Thus, it will be meaningful to deepen polymerization process and obtain the nanoscale assembly with a certain shape and structure of polymer. Due to aspiring significance, this will favor for the design and provide more choice of nanomaterials with outstanding specific features.
     This thesis is focus on "polymer induced nanoscale assembly, nanostructure transformation and crystallization". Based on this, three aspects have been put forward, i.e. "design and control of polymer structure and polymerization", "nanoscale assembly and its formation mechanism" and "functional inorganic nanomaterials". In detail, nanozeolite colloidal solution without any further purification and treatment has been used in the improved polymerization induced colloid aggregation (im-PICA). Through a full study of the reaction conditions and nanosurface properties, precise control and regulation have been paid into the urea-formaldehyde resin polymerization process. The morphology and composition of poducts were finely controlled through simply adjusting the acidity of the polymeric system. A polymerization-velocity-match (PVM) mechanism was proposed to explain the morphology variation of the samples under different polymerization conditions. Owing to their stacking secondary pores and large external surface inherited from nanozeolite, the as-prepared zeolite microspheres (ZMSs) displayed an improved catalytic performance to various catalysis reactions. Moreover, induced by polyaspartic acid with a changing charge density on its molecular structure, the assembly and crystallization process of calcium phosphate have been investigated in the solution. And combining with positive charged chitosan as matrix, further study has been paid to the interfacial deposition process. The above researches extend the synthesis methodology of nanoscale and nanostructured materials, and also enrich the existing theory and mechanism. All of these lighten the new structure materials with outstanding performance for catalytic and biological appication. The dissertation will be divided and discussed into seven chapters:
     Chapter III discussed the preparation of P-ZMS using im-PICA. It is the first time that using nanozeolite colloid solution just after hydrothermal process without any treatment in PICA method,β-60 was taken as the typical nano-unit in the one-step assembly and synthesis procedure. The method is a simple and convenient to attain ZMSs with a prospect of low cost and large scale. By the variation of components, ZMS with different morphologies and structures can be assemblied, and acidity in this synthetic system is viewed as a crucial control element. Through the probe to the changes of zeta potential, it may indicate how/what will take place in polymerrization process. And PVM mechanism can explain the assembly process and structure transformation. Retained with properties of nanozeolites and inherited mesopores after removing UF polymer, ZMS may show broad prospects in catalysis particularly in the reaction controlled by diffusion, interfered largely by side-reactions, and taken at low temperature.
     Chapter IV investigated the im-PICA assembly process further using nanozeolite with different Si/Al2 ratios and structures. Inspite of changes of the synthetic condition and nanosurface properties, the morphologies and structures evolution confirmed the correctness of PVM mechanism. Also, through the control of polymerization process, urea formaldehyde resin protecting (UFP) method can be used to synthesis template-free mono-dispersed nanozeolite with different sizes and structures. Using urea formaldehyde resin moulding (UFM) method can acquire zeolite monolith with macropores and micropores. Furthermore, combined with metal salts in the synthetic system, metal@ZMS can be prepared simply.
     ChapterⅤstudied four useful reactions catalyzed by ZMS. The two of them are liquid phase reactions under low-temperature, i.e. dynamic kinetic resolution and fructose dehydration into 5-hydroxymethyl furfural. The other two are gas phase reactions, i.e. C4-olefin cracking at high temperature and alkylation at low temperature. Compared to commercial zeolite, ZMS maintains unique advantages such as the retained larger external surface, short channel, accessible active sites, and characteristic mesopores. So, reactants and products have little diffusion limit, quick access and escape from the active sites. Thereby, due to slow carbon deposition and larger carbon capacity, catalyst life will increase. And based on the probe to the four different reactions at various conditions, ZMS catalyst showed a better catalytic effect than commercial zeolite.
     ChapterⅥdescribed polymer induced mesoscale assembly and transformation process for calcium phosphate crystallization. Firstly, polyaspartic acid with different charged density was used to study the assembly process in solution. The system with different conditions was applied to investigate the morphology and structure evolution, such as concentration, temperature, induction time, and organic compound content. Also, the successful capture and observation of the detailed process elucidated two competing reactions existing in the crystallization and further verified the classic "polymer induced mesoscale transformation". Moreover, through positive charged polymer matrix-chitosan, the crystallization process was introduced to interface. Induced by the two kinds of polymers, morphology and structure changes were investigated, and the competitive crystallization between solution and interface was put forward. The as-synthesized calcium phosphate membranes with different structures showed different response in the cell adhesion and proliferation in biocompatibility test.
     In summary, polymer induced nanoscale assembly and nanostructured crystallization were studied through the regulation of the charge density of polymer and polymerization process. Various inorganic materials with different nanoscales and nanostructures were attained and their polymer induced assembly crystallization was dicussed in elaboration. Through the proposed "polymerization-velocity-match" mechanism can explain the whole assembly procedure and structure variation. The two competing reactions and crystallization between solution and interface reaction further illustrated the mesoscale transformation. Besides the novel nanostructures with functional properties, several mechanism and synthetic strategies have been proposed in this work, which will open up opportunities for the synthesis and design of new nanomaterials and provide a reference and instructive sight for catalytic reactions.
引文
[1]R. P. Feynman. There's plenty of room at the bottom [J]. J. Microelectromech. S.,1992, 1(1):60-66.
    [2]Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures [J]. Nature,2004,430(6995):61-65.
    [3]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R Lomeda, A. Dimiev, B. K. Price, and J. M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-876.
    [4]Z. Y. Tang, Z. L. Zhang, Y. Wang, S. C. Glotzer, and N. A. Kotov. Self-assembly of CdTe nanocrystals into free-floating sheets [J]. Science,2006,314(5797):274-278.
    [5]王中林.纳米线和纳米带-材料性能和器件卷Ⅰ:金属和半导体纳米线[M].北京:清华大学出版社,2004.
    [6]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [7]倪星元,沈军,张志华.纳米材料的梨花性质与应用[M].北京:化学工业出版社,2006.
    [8]J. H. Ahn, H. S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. G. Sun, R. G. Nuzzo, and J. A. Rogers. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J]. Science,2006,314(5806):1754-1757.
    [9]J. A. Van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. De Franceschi, and L. P. Kouwenhoven. Supercurrent reversal in quantum dots [J]. Nature,2006,442(7103): 667-670.
    [10]G. A. Ozin, L. Cademartiri. Nanochemistry: what is next? [J]. Small,2009,5(11): 1240-1244.
    [11]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [12]林元华.纳米技术-人类的又一次产业革命[J].国外科技动态,2000,366(1):11-18.
    [13]谢毅.特殊纳米结构的化学自组装[J].无机化学学报,2002,18(1):1-7.
    [14]董安刚.多级有序分子筛材料的纳米组装研究[D].硕士学位论文,复旦大学化学系,2003.
    [15]Y. Wang, and N. Herron. Nanometer-sized semiconductor clusters-materials synthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem.,1991, 95(2):525-532.
    [16]A. Hagfelda, and M. Gratzel. Light-induced redox reactions in nanocrystalline systems [J]. Chem. Rev.,1995,95(1):49-68.
    [17]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan. One-dimensional nanostructures:Synthesis, characterization, and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [18]L. Tosheva, and V. P. Valtchev. Nanozeolites:synthesis, crystallization mechanism, and applications [J].Chem. Mater.,2005,17(10),2494-2513.
    [19]http://www.sinap.ac.cn/sns/kp/nano/chap2.htm.
    [20]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [21]E. Roduner, Nanoscopic materials: size-dependent phenomena [M]. The Royal Society of Chemistry, Cambridge,2006.
    [22]A. Kohn, F. Weigend and R. Ahlrichs, Theoretical study on clusters of magnesium [J]. Phys. Chem. Chem. Phys.,2001,3(5):711-719.
    [23]E. Roduner, Size matters:why nanomaterials are different [J]. Chem. Soc. Rev.,2006, 35(7):583-592.
    [24]A. Khaleel, W. F. Li, and K. J. Klabunde. Nanocrystals as stoichiometric reagents with unique surface chemistry. New adsorbents for air purification [J]. Nanostruct. Mater.,1999, 12(1-4):463-466.
    [25]高庆生.有机-无机杂化纳米线:从合成,表征到金属氧化物/碳化物纳米结构的设计[D].博士学位论文,复旦大学化学系,2010.
    [26]A. Henglein. Small-particle research-physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89(8):1861-1873.
    [27]P. P. Edwards, R. L. Johnston and C. N. R. Rao. On the Size-induced metal-insulator transition in clusters and small particles, in metal clusters in chemistry [M],.Vol.3, ed. Wiley, Weinheim,1999.
    [28]A. Eychmuller. Structure and photophysics of semiconductor nanocrystals [J]. J. Phys. Chem. B,2000,104(28):6514-6528.
    [29]许并社.纳米材料及应用技术[M].北京:化学工业出版社,2004.
    [30]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [31]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.
    [32]V. Polshettiwar and R. S. Varma. Green chemistry by nano-catalysis [J]. Green Chem., 2010,12(5):743-754.
    [33]D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin. Gold nanoparticles for biology and medicine [J]. Angew. Chem. Int. Ed.,2010, 49(19):3280-3294.
    [34]K. Midander, P. Cronholm, H. L. Karlsson, K. Elihn, L. Moller, C. Leygraf, and I. O. Wallinder. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles:A cross-disciplinary study [J]. Small,2009,5(3):389-399.
    [35]王亚军,多级孔道体系沸石材料的合成及功能化研究[D].博士学位论文,复旦大学化学系,2002.
    [36]A. P. Weber, M. Seipenbusch, and G. Kasper. Application of aerosol techniques to study the catalytic formation of methane on gasborne nickel nanoparticles [J]. J. Phys. Chem. A.,2001,105(39):8958-8963.
    [37]Y. J. Zhu, A. Schnieders, J. D. Alexander, and T. P. Beebe. Pit-templated synthesis and oxygen adsorption properties of gold nanostructures on highly oriented pyrolytic graphite [J]. Langmuir,2002,18(15):5728-5733.
    [38]Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, and P. Y. Yang. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J]. Angew. Chem. Int. Ed.,2005,44(4):615-617.
    [39]Y H. Zhang, X. J. Yu, X. Y. Wang, W. Shan, P. Y. Yang and Y. Tang. Zeolite nanoparticles with immobilized metal ions:isolation and MALDI-TOF-MS/MS identification of phosphopeptides [J]. Chem. Commun.,2004,24,2882-2883.
    [40]J. Ji, Y. H. Zhang, X. Q. Zhou, J. L. Kong, Y. Tang, and B. H. Liu. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors [J]. Anal. Chem.,2008,80(7):2457-2463.
    [41]K. J. Klabunde, J. Stark, O. Koper, C. Mohs, D. G. Park, S. Decker, Y. Jiang, I. Lagadic, and D. J. Zhang. Nanocrystals as stoichiometric reagents with unique surface chemistry [J]. J. Phys. Chem.,1996,100(30):12142-12153.
    [42]N. J. Sun and K. J. Klabunde. High activity solid super base catalysts employing nanocrystals of metal oxides:isomerization and alkylation catalysis, including conversion of propylene-ethylene mixtures to pentenes and heptenes [J]. J. Catal.,1999,185(2): 506-512.
    [43]N. J. Sun and K. J. Klabunde. Nanocrystal metal oxide-chlorine adducts:selective catalysts for chlorination of alkanes [J]. J. Am. Chem. Soc.,1999,121(23):5587-5588.
    [44]H. Itoh, S. Utamapanya, J. V. Stark, K. J. Klabunde, and J. R. Schlup. Intrinsic Effects of particle size on hydroxyl content and on reactivity and acid/base properties of ultrafine magnesium oxide [J]. Chem. Mater.,1993,5(1):71-77.
    [45]徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社,2004.
    [46]Z. P. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli,O. Terasaki, R. W. Thompson, M. Tsapatsis, and D. G. Vlachos. Microstructural optimization of a zeolite membrane for organic vapor separation [J]. Science,2003,300(5618): 456-460.
    [47]吴庆银,柳云骐,唐瑜.现代无机合成与制备化学[M].北京,化学工业出版社,2010.
    [48]Y. W. Jiang, S. G. Yang, Z. H. Hua, and H. B. Huang. Sol-gel autocombustion synthesis of metals and metal alloys [J]. Angew. Chem. Int. Ed.,2009,48(45):8529-8531.
    [49]U. Jeong, X. W. Teng, Y. Wang, H. Yang, and Y. N. Xia. Superparamagnetic colloids: Controlled synthesis and niche applications [J]. Adv. Mater.,2007,19(1):33-60.
    [50]Z. X. Yang, Y. D. Xia, and R. Mokaya. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials [J]. J. Am. Chem. Soc.,2007,129(6):1673-1679.
    [51]G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, and Y Homma. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution [J].2005,127(23):8238-8239.
    [52]E. J. Menke, M. A. Thompson, C. Xiang, L. C. Yang, and R. M. Penner. Lithographically patterned nanowire elecrrodeposition [J]. Nat. Mater.,2006,5(11): 914-919.
    [53]M. Lai, and D. J. Riley, Templated electrosynthesis of zinc oxide nanorods [J]. Chem. Mater.,2006,18(9):2233-2237.
    [54]D. Shim, S. H. Jung, E. H. Kim, D. M. Yoon, K. H. Lee, and S. H. Jeong. Microwave synthesis of Cr nanowires on polymeric substrate [J]. Chem. Commun.,2009,9, 1052-1054.
    [55]崔福斋.生物矿化[M].北京:清华大学出版社,2007.
    [56]W. Zhang, D. Zhang, T. X. Fan, J. J. Gu, R. Ding, H. Wang, Q. X. Guo, and H. Ogawa. Novel photoanode structure templated from butterfly wing scales [J]. Chem. Mater.,2009, 21(1):33-40.
    [57]A. M. Higgins, and R. A. L. Jones. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces [J]. Nature,2000,404(6777):476-478.
    [58]J. D. Hartgerink, E. Beniash, and S. I. Stupp. Self-assembly and mineralization of peptide-amphiphile nanofibers [J]. Science,2001,294(5547):1684-1688.
    [59]张炜佳.多元醇制备五重孪晶银晶体的生长机理和应用[D].博士学位论文,复旦大学化学系,2009.
    [60]Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence [J]. Nano Lett., 2003,3(7):955-960.
    [61]B. Wiley, Y. G. Sun, and Y. N. Xia. Synthesis of silver nanostructures with controlled shapes and properties [J]. Acc. Chem. Res.,2007,40(10):1067-1076.
    [62]W. J. Zhang, Y. Liu, R. G Cao, Z. H. Li, Y. H. Zhang, Y. Tang, and K. N. Fan. Synergy between crystal strain and surface energy in morphological evolution of five-fold-twinned silver crystals [J]. J. Am. Chem. Soc.,2008,130(46):15581-15588.
    [63]S. Mann. The chemistry of form [J]. Angew. Chem. Int. Ed.,2000,39(19): 3393-3406.
    [64]H. Colfen and S. Mann. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures [J]. Angew. Chem. Int. Ed.,2003,42(21): 2350-2365.
    [65]H. A. Lowenstam, and S. Weiner, On Biomineralization [M]. Oxford University Press, New York,1989.
    [66]M. Li, H. Schnablegger, and S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature,1999,402(25): 393-395.
    [67]E. Dujardin, L. B. Hsin, C. R. C. Wang, and S. Mann. DNA-driven self-assembly of gold nanorods [J]. Chem. Commun.,2001,14,1264-1265.
    [68]M. Li, S. Mann. Emergence of morphological complexity in BaSO4 fibers synthesized in AOT microemulsions [J]. Langmuir,2000,16(17):7088-7094.
    [69]Y. X. Gao, S. H. Yu, H. P. Cong, J. Jiang, A. W. Xu, W. F. Dong, and H. Colfen. Block copolymer controlled growth of CaCO3 microrings [J]. J. Phys. Chem. B,2006,110(13): 6432-6436.
    [70]A. W. Xu, M. Antonietti, S. H. Yu, and H. Colfen. Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures [J]. Adv. Mater.,2008,20(7):1333-1338.
    [71]S. H. Yu, H. Colfen, and M. Antonietti. Control of the morphogenesis of barium chromate by using double-hydrophilic block copolymers (DHBCs) as crystal growth modifiers [J]. Chem. Eur. J.,2002,8(13):2937-2945.
    [72]M. Antonietti, M. Breulmann, C. Goltner, H. Colfen, K. K. Wong, D. Walsh and S. Mann. Inorganic/organic mesostructures with complex architectures:Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers [J]. Chem. Eur. J.,1998,4(12):2493-2500.
    [73]欧阳建明.生物矿化的基质调控及其仿生合成[M].北京:化学工业出版社,2006.
    [74]M. E. Davis, Zeolites and molecular sieves-not just ordinary catalysts [J]. Ind. Eng. Chem. Res.,1991,30(8):1675-1683.
    [75]R. M. Barrer. Synthesis of a zeolitic mineral with chabazite-like sorptive properties [J]. J. Chem. Soc.,1948,127.
    [76]A. E. Persson, B. J. Schoeman, J. Sterte, and J. E. Ottesstedt. The synthesis of discrete colloidal particles of TPA-silicalite-1 [J]. Zeolites,1994,14(7):557-567.
    [77]B. J. Schoeman, J. Sterte, and J. E. Otterstedt. Colloidal zeolite suspensions [J]. Zeolites,1994,14(2):110-116.
    [78]Q. Li, B. Mihailova, D. Creaser, and J. Sterte. The nucleation period for crystallization of colloidal TPA-silicalite-1 with varying silica source [J]. Micropor. Mesopor. Mater., 2000,40(1-3):53-62.
    [79]R. W. Corkery, and B. W. Ninham. Low-temperature synthesis and characterization of a stable colloidal TPA-silicalite-1 suspension [J]. Zeolites,1997,18(5-6):379-386.
    [80]M. Yamamura, K. Chaki, T. Wakatsuki, H. Okado, and K. Fujimoto. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization [J]. Zeolites,1994,14(8):643-649.
    [81]A. E. Persson, B. J. Schoeman, J. Sterte, and J. E. Otterstedt. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals [J]. Zeolites,1995, 15(7):611-619.
    [82]R. V. Grieken, J. L. Sotelo, J. M. Menendez, and J. A. Melero. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5 [J]. Micropor. Mesopor. Mater.,2000,39(1-2):135-147.
    [83]W. P. Zhang, X. H. Bao, X. W. Guo, and X. S. Wang. A high-resolution solid state NMR study on nano-structured HZSM-5 zeolites [J]. Catal. Lett.,1999,60(1-2):89-94.
    [84]王中南,殷行知,薛用芳.小晶粒ZSM-5沸石的合成及其晶形的研究[J].石油化工,1983,12(12):744-748.
    [85]B. J. Schoeman, J. Sterte, and J. E. Otterstedt. Synthesis of colloidal suspensions of zeolite ZSM-2 [J]. J. Colloid. Inter. Sci.,1995,170(2) 449-456.
    [86]B. J. Schoeman, J. Sterte, and J. E. Otterstedt. The synthesis of colloidal zeolite hydroxysodalite sols by homogeneous nucleation [J]. Zeolites,1994,14(3):208-216.
    [87]M. A. Camblor, A. Corma, and S. Valencia. Synthesis in fluoride media and characterisation of aluminosilicate zeolite beta [J]. J. Mater. Chem.,1998,8(9): 2137-2145.
    [88]T. Blasco, M. A. Camblor, A. Corma, P. Esteve, A. Martinez, C. Prieto, and S. Valencia. Unseeded synthesis of Al-free Ti-beta zeolite in fluoride medium: A hydrophobic selective oxidation catalyst [J]. Chem. Commun.,1996,20,2367-2368.
    [89]B. J. Schoeman, E. Babouchkina, S. Mintova, V. P. Valtchev, and J. Sterte. The synthesis of discrete colloidal crystals of zeolite beta and their application in the preparation of thin microporous films [J]. J. Porous. Mater.,2001,8(1):13-22.
    [90]G Y. Zhang, J. Sterte, and B. J. Schoeman. Preparation of colloidal suspensions of discrete TS-1 crystals [J]. Chem. Mater.,1997,9(1):210-217.
    [91]G. Y. Zhang, J. Sterte, and B. J. Schoeman. Discrete colloidal crystals of titanium silicalite-1 [J]. Chem. Commun.,1995,22,2259-2260.
    [92]G. Cho, J. Lee, D. T. Glatzhofer, B. M. Fung, W. L. Yuan, and E. A. O'Rear. Ultra-thin zeolite films through simple self-assembled processes [J]. Adv. Mater.,1999, 11(6):497-499.
    [93]S. Mintova, N. H. Olson, V. Valtchev, and T. Bein. Mechanism of zeolite a nanocrystal growth from colloids at room temperature [J]. Science,1999,283(5404): 958-960.
    [94]N. B. Castagnola and P. K. Dutta. Nanometer-sized zeolite X crystals:Use as photochemical hosts [J]. J. Phys. Chem. B,1998,102(10):1696-1702.
    [95]晁自胜,林海强,陈国周.超微 NaY 分子筛的合成[J].高等化学学报,2000,21(9):1353-1358.
    [96]M. Fang, H. Du, W. Xu, X. P. Meng, and W. Q. Pang. Microwave preparation of molecular sieve AlPO4-5 with nanometer sizes [J]. Micropor. Mater.,1997,9(1-2):59-61.
    [97]V. Valtchev, S. Mintova, and M. Tsapatsis. Ordered porous solids:Recent advances and prospects [M]. Oxford,2009.
    [98]A. Corma. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev.1997,97(6):2373-2419.
    [99]Y. Ma, W. Tong, H. Zhou, and S. L. Sui. A review of zeolite-like porous materials [J]. Micropor. Mesopor. Mater.,2000,37(1-2):243-252.
    [100]F. Schuth. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed.2003,42(31):3604-3622
    [101]G. Calzaferri, S. Huber, H. Maas, and C. Minkowski. Host-guest antenna materials [J]. Angew. Chem. Int. Ed.2003,42(32):3732-3758
    [102]Y. S. Tao, H. Kanoh, L. Abrams, and K. Kaneko. Mesopore-modified zeolites: Preparation, characterization, and applications [J]. Chem. Rev.,2006,106(3):896-910.
    [103]Z. A. D. Lethbridge, J. J. Williams, R. I. Walton, K. E. Evans, and C. W. Smith. Methods for the synthesis of large crystals of silicate zeolites [J]. Micropor. Mesopor. Mater.,2005,79(1-3):339-352.
    [104]F. S. Xiao, S. L. Qiu, W. Q. Pang, and R. R. Xu. New developments in microporous materials [J]. Adv. Mater.,1999,11(13):1091-1099.
    [105]A. K. Cheetham, G. Ferey, and T. Loiseau. Open-framework inorganic materials [J]. Angew. Chem. Int. Ed.,1999,38(22):3268-3292.
    [106]M. E. Davis. Ordered porous materials for emerging applications [J]. Nature,2002, 417(20):813-821.
    [107]C. S. Cundy, and P. A. Cox. The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time [J]. Chem. Rev.,2003,103(3), 663-702.
    [108]K. Egeblad, C. H. Christensen, M. Kustova, and C. H. Christensen. Templating mesoporous zeolites [J]. Chem. Mater.,2008,20(3),946-960.
    [109]S. Inagaki, K. Nakatsuyama, Y. Saka, E. Kikuchi, S. Kohara, and M. Matsukata. Elucidation of medium-range structure in a dry gel-forming BEA-type zeolite [J]. J. Phys. Chem. C,2007,111(28):10285-10293.
    [110]R. F. Wadlinger, G. T. Kerr, and B. J. Rosinski, US Pat.3 308 069 [P],1967.
    [111]M. A. Camblor, A. Corma, A. Mifsud, J. Perez-Pariente, and S. Valencia, Synthesis of nanocrystalline zeolite Beta in the absence of alkali metal cations [J]. Stud. Surf. Sci. Catal.,1997,105,341-348.
    [112]M. A. Camblor, A. Corma, and S. Valencia. Characterization of nanocrystalline zeolite Beta [J]. Micropor. Mesopor. Mater.,1998,25(1-3):59-74.
    [113]M. V. Landau, D. Tavor, O. Regev, M. L. Kaliya, M. Herskowitz, V. Valtchev, and S. Mintova. Colloidal nanocrystals of zeolite beta stabilized in alumina matrix [J]. Chem. Mater.,1999,11(8):2030-2037.
    [114]P. R. H. P. Rao, and M. Matsukata. Dry-gel conversion technique for synthesis of zeolite BEA [J]. Chem. Commun.,1996,12,1441-1442.
    [115]I. Schmidt, C. Madsen, and C. J. H. Jacobsen. Confined space synthesis. A novel route to nanosized zeolites [J]. Inorg. Chem.,2000,39(11):2279-2283.
    [116]C. J. H. Jacobsen, C. Madsen, T. V. W. Janssens, H. J. Jakobsen, and J. Skibsted. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and Al-27/Si-29-MAS NMR spectroscopy [J]. Micropor. Mesopor. Mater.,2000,39(1-2):393-401.
    [117]C. Madsen and C. J. H. Jacobsen. Nanosized zeolite crystals-convenient control of crystal size distribution by confined space synthesis [J]. Chem. Commun.,1999,8, 673-674.
    [118]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson. Mesoporous zeolite single crystals [J]. J. Am. Chem. Soc.,2000,122(29):7116-7117.
    [119]I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson, and C. J. H. Jacobsen. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J]. Chem. Commun.,2000,21,2157-2758.
    [120]X. Yang, Y. Feng, G. Tian, Y. Du, X. Ge, Y. Di, Y. Zhang, B. Sun, and F. S. Xiao. Design and size control of uniform zeolite nanocrystals synthesized in adjustable confined voids formed by recyclable monodisperse polymer spheres [J]. Angew. Chem. Int. Ed., 2006,44(17):2563-2568.
    [121]G A. Tompsett, W. C. Conner, and K. S. Yngvesson. Microwave synthesis of nanoporous materials [J]. ChemPhysChem,2006,7(2):296-319.
    [122]Y. Y. Hu, C. Liu, Y. H. Zhang, N. Ren, and Y. Tang. Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size [J] Micropor. Mesopor. Mater.,2009,119(1-3):306-314.
    [123]H. T. Wang, B. A. Holmberg, and Y. S. Yan. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels [J]. J. Am. Chem. Soc., 2003,125(33):9928-9929.
    [124]Y. Y. Hu, Y. H. Zhang, and Y. Tang. One-step hydrothermal synthesis of surface organosilanized nanozeolite under microwave irradiation [J]. Chem. Commun.,2010, 46(22):3875-3877.
    [125]H. T. Wang, L. M. Huang, Z. B. Wang, A. Mitra and Y S. Yan. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions [J]. Chem. Commun.,2001,15,1364-1365.
    [126]L. M. Huang, Z. B. Wang, J. Y. Sun, L. Miao, Q. Z. Li, Y. S. Yan, and D. Y. Zhao. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals [J]. J. Am. Chem. Soc.,2000,122(14):3530-3531.
    [127]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(6397):710-712.
    [128]范杰,余承忠,屠波,赵东元.生物蛋清蛋白模板合成海绵状大孔无机氧化物[J].高等学校化学学报.2001,22,1459-1461.
    [129]M. W. Anderson, S. M. Holmes, N. Hanif, and.C. S. Cundy. Hierarchical pore structures through diatom zeolitization [J]. Angew. Chem. Int. Ed.,2000,39(15): 2707-2710.
    [130]Y. J. Wang, Y. Tang, A. G Dong, X. D. Wang, N. Ren, and Z. Gao. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process [J]. J. Mater. Chem.,2002,12(6):1812-1818.
    [131]Y. Liu, W. Z. Zhang, and T. J. Pinnavaia, Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds [J]. Angew. Chem. Int. Ed.,2001,40(7):1255-1258.
    [132]Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, Z. Zhang, B. S. Zou, Y. Q. Wang, H. P. Sun, D. Y. Zhao, and Y. Wei. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. J. Am. Chem. Soc.,2001,123(21):5014-5021.
    [133]Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao, and F. S. Xiao. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure [J]. Angew. Chem. Int. Ed.,2001,40(7): 1258-1262.
    [134]Y. J. Lee, J. S. Lee, Y. S. Park, and K. B. Yoon. Synthesis of large monolithic zeolite foams with variable macropore architectures [J]. Adv. Mater.,2001,13(16):1259-1263.
    [135]Y. J. Lee, Y. W. Kim, K. W. Jun, N. Viswanadham, J. W. Bae, and H. S. Park. Textural properties and catalytic applications of ZSM-5 monolith foam for methanol conversion [J]. Catal. Lett.,2009,129(3-4):408-415.
    [136]C. J. H. Jacobsen, C. Madsen, J. Houzvicka, I. Schmidt, and A. Carlsson. Mesoporous zeolite single crystals [J]. J. Am. Chem. Soc.2000,122(29):7116-7117.
    [137]B. Zhang, S. A. Davis, N. H. Mendelson, and S. Mann. Bacterial templating of zeolite fibres with hierarchical structure [J]. Chem. Commun.,2000,9,781-782.
    [138]G. Cho, J. Lee, D. T. Glatzhofer, B. M. Fung, W. L. Yuan, and E. A. O'Rear, Ultra-thin zeolite films through simple self-assembled processes [J]. Adv. Mater.1999, 11(6):497-499.
    [139]C. Ke, W. L. Yang, Z. Ni, Y. J. Wang, Y. Tang, Y. Gu, and Z. Gao. Electrophoretic assembly of nanozeolites:zeolite coated fibers and hollow zeolite fibers [J]. Chem. Commun.,2001,8,783-784.
    [140]G. S. Lee, Y. Lee, and K. B. Yoon. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers [J]. J. Am. Chem. Soc.,2001,123(40): 9769-9779.
    [141]S. Y. Choi, Y. Lee, Y. S. Park, K. Ha, and K. B. Yoon. Monolayer assembly of zeolite crystals on glass with fullerene as the covalent linker [J]. J. Am. Chem. Soc.,2000, 122(21):5201-5209.
    [142]K. Ha, Y. Lee, Y. Chun, Y. S. Park, G S. Lee, and K. B. Yoon. Photochemical pattern transfer and patterning of continuous zeolite films on glass by direct dipping in synthesis gel [J]. Adv. Mater.,2001,13(8):594-596.
    [143]K. Ha, Y. Lee, H. J. Lee, and K. B. Yoon. Facile assembly of zeolite monolayers on glass, silica, alumina, and other zeolites using 3-halopropylsilyl reagents as covalent linkers [J]. Adv. Mater.,2000,12(15):1114-1117.
    [144]G. S. Lee, Y. Lee, K. Ha, and K. B. Yoon. Preparation of flexible zeolite-tethering vegetable fibers [J]. Adv. Mater.,2001,13(19):1491-1495.
    [145]S. H. Um, G S. Lee, Y. Lee, K.Koo, C. Lee, and K. B. Yoon. Self-assembly of avidin and D-biotin-tethering zeolite microcrystals into fibrous aggregates [J]. Langmuir,2002, 18(11):4455-4459.
    [146]A. Kulak, Y. J. Lee, Y. S. Park, K. B. Yoon. Orientation-controlled monolayer assembly of zeolite crystals on glass and mica by covalent linkage of surface-bound epoxide and amine groups [J]. Angew. Chem., Int. Ed.,2000,39(5):950-953.
    [147]G. Decher. Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J]. Science,1997,277(5330):1232-1237.
    [148]F. Caruso, A. Caruso, and H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science,1998,282(5391):1111-1114.
    [149]F. Caruso. Nanoengineering of particle surfaces [J]. Adv. Mater.,2001,13(1):11-22.
    [149]X. D. Wang, W. L. Yang, Y. Tang, Y. J. Wang, S. K. Fu, and Z. Gao. Fabrication of hollow zeolite spheres [J]. Chem. Commun.,2000,21,2161-2162.
    [151]Y. J. Wang, Y. Tang, Z. Ni, W. M. Hua, W. L. Yang, X. D. Wang, W. C. Tao, and Z. Gao. Synthesis of macroporous materials with zeolitic microporous frameworks by self-assembly of colloidal zeolites [J]. Chem. Lett.,2000,5,510-511.
    [152]Y. J. Wang, Y. Tang, X. D. Wang, W. L. Yang, and Z. Gao. Fabrication of hollow zeolite fibers through layer-by-layer adsorption method [J]. Chem. Lett.,2000,11, 1344-1345.
    [153]F. Xu, Y. J. Wang, X. D. Wang, Y. H. Zhang, Y. Tang, and P. Y. Yang. A novel hierarchical nanozeolite composite as sorbent for protein separation in immobilized metal-ion affinity chromatography [J].2003,15(20):1751-1753.
    [154]王亚军,胡建华,唐颐,杨武利,柯琛,王星东.层叠层技术组装纳米沸石-沸石涂饰纤维和沸石空心纤维[J].化学学报.2001,59(7):1084-1088.
    [155]Y. J. Wang, Y. Tang, A. G. Dong, X. D. Wang, N. Ren, W Shan, and Z. Gao. Self-supporting porous zeolite membranes with sponge-like architecture and zeolitic microtubes [J]. Adv. Mater.,2002,14(13-14):994-997.
    [156]A. G. Dong, Y. J. Wang, Y. Tang, D. J. Wang, N. Ren, Y. H. Zhang, and Z. Gao. Hydrothermal conversion of solid silica beads to hollow silicalite-1 sphere [J]. Chem. Lett., 2003,32(9):790-791.
    [157]A. G. Dong, N. Ren, Y. Tang, Y. J. Wang, Y. H. Zhang, W. M. Hua, and Z. Gao. General synthesis of mesoporous spheres of metal oxides and phosphates [J]. J. Am. Chem. Soc.,2003,125(17):4976-4977.
    [158]A. G. Dong, Y. J. Wang, Y. Tang, N. Ren, Y. H. Zhang, and Z. Gao. Hollow zeolite capsules:A novel approach for fabrication and guest encapsulation [J]. Chem. Mater.,2002, 14(8):3217-3219.
    [159]A. G. Dong, Y. J. Wang, D. J. Wang, W. L. Yang, Y. H. Zhang, N. Ren, Z. Gao, and Y. Tang. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors [J]. Micropor. Mesopor. Mater.,2003,64(1-3):69-81.
    [160]K. H. Rhodes, S. A. Davis, F. Caruso, B. Zhang, and S. Mann. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks [J]. Chem. Mater.,2000,12(10):2832-2834.
    [161]O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff. Porous silica via colloidal crystallization [J]. Nature,1997,389(6650):447-448.
    [162]O. D. Velev, P. M. Tessier, A. M. Lenhoff, and E. W. Kaler. Materials-A class of porous metallic nanostructures [J]. Nature,1999,401(6753):548-548.
    [163]B. T. Holland, C. F. Blanford, and A. Stein. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J]. Science,1998,281(5376): 538-540.
    [164]A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. X. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G Ralchenko. Carbon structures with three-dimensional periodicity at optical wavelengths [J]. Science,1998,282(5390):897-901.
    [165]T. Cassagneau, and F. Caruso. Semiconducting polymer inverse opals prepared by electropolymerization [J]. Adv. Mater.,2002,14(1):34-38.
    [166]B. T. Holland, L. Abrams, and A. Stein. Dual templating of macroporous silicates with zeolitic microporous frameworks [J]. J. Am. Chem. Soc.,1999,121(17):4308-4309.
    [167]A. G. Dong, Y. J. Wang, Y. Tang, Y. H. Zhang, N. Ren, and Z. Gao. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres [J]. Adv. Mater.,2002,14(20):1506-1510.
    [168]A. G Dong, N. Ren, W. L. Yang, Y. J. Wang, Y. H. Zhang, D. J. Wang, J. H. Hu, Z. Gao, and Y. Tang. Preparation of hollow zeolite spheres and three-dimensionally ordered macroporous zeolite monoliths with functionalized interiors [J]. Adv. Funct. Mater.,2003, 13(12):943-948.
    [169]Z. T. Jiang, and Y. M. Zuo. Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA) [J]. Anal. Chem.,2001, 73(3),686-688.
    [170]Q. Y. Huai and Y. M. Zuo. Synthesis of porous titaniaspheres for HPLC by polymerization-induced colloid aggregation (PICA) using tert-n-butyl titanate [J]. J. Anal. Chem.,2009,64(2):176-180.
    [171]左育民,许晓文,包覆聚合物高效液相色谱柱填料的研究进展[J].分析化学.1998,26(5):593-596.
    [172]郭瑞,余家国,赵丽,赵修建.单分散脲醛/SiO2复合微球的制备及其形成机理研究[J].化学学报.2004,62(5):493-497.
    [173]杨俊佼,王晖,左育民.碳十八键合锆胶固定相的制备与色谱性能评价[J].高等学校化学学报.2000,23(5):835-838.
    [174]C. F. Lorenzano-Porras, D. H. Reeder, M. J. Annen, P. W. Carr, and A. V. McCormick. Unusual sintering behavior of porous chromatographic zirconia produced by polymerization-induced colloid aggregation [J]. Ind. Eng. Chem. Res.,1995,34 (8): 2719-2727.
    [175]W. R. Li, D. H. Chen, Z. Li, Y. F. Shi, Y. Wan, G. Wang, Z. Y. Jiang, and D. Y. Zhao. Nitrogen-containing carbon spheres with very large uniform mesopores:The superior electrode materials for EDLC in organic electrolyte [J]. Carbon,2007,45(9):1757-1763.
    [176]W. R. Li, D. H. Chen, Z. Li, Y. F. Shi, Y. Wan, J. J. Huang, J. J. Yang, D. Y. Zhao, and Z. Y. Jiang. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor [J]. Electrochem.Commun.,2007,9(4): 569-573.
    [177]C. J. Dunlap, and P. W. Carr. Synthesis and chromatographic characterization of dextran-coated zirconia high-performance liquid chromatographic stationary phases [J]. J. Chromatogr. A,1996,746(2):199-210.
    [178]M. K. Seo, S. Yang, I. J. Kim, and S. J. Park. Preparation and electrochemical characteristics of mesoporous carbon spheres for supercapacitors [J]. Mater. Res. Bull., 2010,45(1):10-14.
    [179]L. Han, Z. Shan, D. H. Chen, X. J. Yu, P. Y. Yang, B. Tu, and D. Y. Zhao. Mesoporous Fe2O3 microspheres:Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis [J]. J. Colloid Interface Sci.,2008,318(2):315-321.
    [180]Y. J. Kang, W. Shan, J. Y. Wu, Y. H. Zhang, X. Y. Wang, W. L. Yang, and Y. Tang. Uniform nanozeolite microspheres with large secondary pore architecture [J]. Chem. Mater.,2006,18(7):1861-1866.
    [1]徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社,2004.
    [2]Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, and P. Y. Yang. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J]. Angew. Chem. Int. Ed.,2005,44(4):615-617.
    [3]王亚军,多级孔道体系沸石材料的合成及功能化研究[D].博士学位论文,复旦大学化学系,2002.
    [4]L. Tosheva, and V. P. Valtchev. Nanozeolites:synthesis, crystallization mechanism, and applications [J].Chem. Mater.,2005,17(10),2494-2513.
    [5]S. Mintova, N. H. Olson, V. Valtchev, and T. Bein. Mechanism of zeolite a nanocrystal growth from colloids at room temperature [J]. Science,1999,283(5404):958-960.
    [6]Y. Ma, W. Tong, H. Zhou, and S. L. Sui. A review of zeolite-like porous materials [J]. Micropor. Mesopor. Mater.,2000,37(1-2):243-252.
    [7]F. Schuth. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed.2003,42(31):3604-3622
    [8]G. Calzaferri, S. Huber, H. Maas, and C. Minkowski. Host-guest antenna materials [J]. Angew. Chem. Int. Ed.2003,42(32):3732-3758
    [9]Y. S. Tao, H. Kanoh, L. Abrams, and K. Kaneko. Mesopore-modified zeolites: Preparation, characterization, and applications [J]. Chem. Rev.,2006,106(3); 896-910.
    [10]Y. J. Lee, J. S. Lee, Y. S. Park, and K. B. Yoon. Synthesis of large monolithic zeolite foams with variable macropore architectures [J]. Adv. Mater.,2001,13(16):1259-1263.
    [11]F. Caruso, A. Caruso,'and H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science,1998,282(5391):1111-1114.
    [12]A. G Dong, Y. J. Wang, Y. Tang, Y. H. Zhang, N. Ren, and Z. Gao. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres [J]. Adv. Mater.,2002,14(20):1506-1510.
    [13]V. Valtchev, S. Mintova, and M. Tsapatsis. Ordered porous solids:Recent advances and prospects [M]. Oxford,2009.
    [14]I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, M. Brorson, and C. J. H. Jacobsen. Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J]. Chem. Commun.,2000,21,2157-2758.
    [15]X. Yang, Y. Feng, G. Tian, Y. Du, X. Ge, Y. Di, Y. Zhang, B. Sun, and F. S. Xiao. Design and size control of uniform zeolite nanocrystals synthesized in adjustable confined voids formed by recyclable monodisperse polymer spheres [J]. Angew. Chem. Int. Ed., 2006,44(17):2563-2568.
    [16]H. T. Wang, L. M. Huang, Z. B. Wang, A. Mitra and Y. S. Yan. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions [J]. Chem. Commun.,2001,15,1364-1365.
    [17]范杰,余承忠,屠波,赵东元.生物蛋清蛋白模板合成海绵状大孔无机氧化物[J].高等学校化学学报.2001,22,1459-1461.
    [18]M.W. Anderson, S. M. Holmes, N. Hanif, and C. S. Cundy. Hierarchical pore structures through diatom zeolitization [J]. Angew. Chemie.Int. Ed.,2000,39(15): 2707-2710.
    [19]Y. J. Wang, Y. Tang, A. G Dong, X. D. Wang, N. Ren, and Z. Gao. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process [J]. J. Mater. Chem.,2002,12(6):1812-1818.
    [20]C. Ke, W. L. Yang, Z. Ni, Y. J. Wang, Y. Tang, Y Gu, and Z. Gao. Electrophoretic assembly of nanozeolites:zeolite coated fibers and hollow zeolite fibers [J]. Chem. Commun.,2001,8,783-784.
    [21]G S. Lee, Y. Lee, and K. B. Yoon. Layer-by-layer assembly of zeolite crystals on glass with polyelectrolytes as ionic linkers [J]. J. Am. Chem. Soc.,2001,123(40): 9769-9779.
    [22]P. H. Qiu, C. Jensen, N. Charity, R. Towner, and C. B. Mao. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-Water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles [J]. J. Am. Chem. Soc.,2010, 132(50):17724-17732.
    [23]W. Shan, T. Yu, B. Wang, J. K. Hu, Y. H. Zhang, X. Y. Wang, and Y. Tang. Magnetically separable nanozeolites:Promising candidates for bio-applications [J]. Chem. Mater.,2006,18(14):3169-3172.
    [24]Y. J. Kang, W. Shan, J. Y. Wu, Y. H. Zhang, X. Y Wang, W. L. Yang, and Y. Tang. Uniform nanozeolite microspheres with large secondary pore architecture [J]. Chem. Mater.,2006,18(7):1861-1866.
    [25]H. K. Park, D. K. Kim, and C. H. Kim. Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4 [J].1997,80(3):743-749.
    [26]R. J. Hunter. Foundation of Colloid Science. Vol.1; p.443. Clarendon Press, Oxford, UK,1987.
    [27]I. S. Chuang and G. E. Maciel. 13C CP/MAS NMR study of the structural dependence of urea-formaldehyde resins on formaldehyde-to-urea molar ratios at dlifferent urea concentrations and pH values [J]. Macromolecules,1992,25(12):3204-3226.
    [28]I. S. Chuang and G E. Maciel. C-13 cross-polarization magic-angle-spinning nuclear-magnetic-resonance investigation of urea-formaldehyde resins made from N,N'-dimethylolurea or from paraformaldehyde [J]. Polymer,1994,35(8):1602-1620.
    [29]B. Meyer. Urea-formaldehyde resins. Addison-Wesley: Reading. MA,1979. [30] G. Widmer. In encyclopedia of polymer science and technology. H. F. Mark, N. G Gaylord, and N. M. Bikales. Eds.; Interscience,1965, Vol.2.
    [31]郭瑞,余家国,赵丽,赵修建.单分散脲醛/SiO2复合微球的制备及其形成机理研究[J],化学学报.2004,62(5):493-497.
    [32]L. Han, Z. Shan, D. H. Chen, X. J. Yu, P. Y. Yang, B. Tu, and D. Y. Zhao. Mesoporous Fe2O3 microspheres:Rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis [J]. J. Colloid Interface Sci.,2008,318(2):315-321.
    [1]V. Valtchev, S. Mintova, and M. Tsapatsis. Ordered porous solids:Recent advances and prospects [M]. Oxford,2009.
    [2]L. Tosheva, and V. P. Valtchev. Nanozeolites:synthesis, crystallization mechanism, and applications [J].Chem. Mater.,2005,17(10),2494-2513.
    [3]S. Mintova, N. H. Olson, V. Valtchev, and T. Bein. Mechanism of zeolite a nanocrystal growth from colloids at room temperature [J]. Science,1999,283(5404):958-960.
    [4]Y. H. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y Tang, and P. Y Yang. Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis [J]. Angew. Chem. Int. Ed.,2005,44(4):615-617.
    [5]Y Y Hu, C. Liu, Y H. Zhang, N. Ren, and Y. Tang. Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size [J] Micropor. Mesopor. Mater.,2009, 119(1-3):306-314.
    [6]H. T. Wang, B. A. Holmberg, and Y S. Yan. Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels [J]. J. Am. Chem. Soc., 2003,125(33):9928-9929.
    [7]Y Y. Hu, Y H. Zhang, and Y Tang. One-step hydrothermal synthesis of surface organosilanized nanozeolite under microwave irradiation [J]. Chem. Commun.,2010, 46(22):3875-3877.
    [8]A. G. Dong, Y J. Wang, Y. Tang, Y H. Zhang, N. Ren, and Z. Gao. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres [J]. Adv. Mater.,2002,14(20):1506-1510.
    [9]董安刚.多级有序分子筛材料的纳米组装研究[D].硕士学位论文,复旦大学化学系,2003.
    [10]Y J. Wang, Y Tang, A. G. Dong, X. D. Wang, N. Ren, and Z. Gao. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process [J]. J. Mater. Chem.,2002,12(6):1812-1818.
    [11]H. T. Wang, L. M. Huang, Z, B. Wang, A. Mitra and Y. S. Yan. Hierarchical zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions [J]. Chem. Commun.,2001,15,1364-1365.
    [12]Y. S. Tao, H. Kanoh, L. Abrams, and K. Kaneko. Mesopore-modified zeolites: Preparation, characterization, and applications [J]. Chem. Rev.,2006,106(3):896-910.
    [13]F. Caruso, A. Caruso, and H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templaring [J]. Science,1998,282(5391):1111-1114.
    [14]G. Calzaferri, S. Huber, H. Maas, and C. Minkowski. Host-guest antenna materials [J]. Angew. Chem. Int. Ed.,2003,42(32):3732-3758
    [15]F. Schuth. Endo- and exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed.2003,42(31):3604-3622
    [16]Y. J. Lee, J. S. Lee, Y. S. Park, and K. B. Yoon. Synthesis of large monolithic zeolite foams with variable macropore architectures [J]. Adv. Mater.,2001,13(16):1259-1263.
    [17]M.W. Anderson, S. M. Holmes, N. Hanif, and C. S. Cundy. Hierarchical pore structures through diatom zeolitization [J]. Angew. Chem. Int. Ed.,2000,39(15): 2707-2710.
    [18]G. S. Lee, Y. J. Lee, S. Y. Choi, Y S. Park, and K. B. Yoon. Self-assembly of beta-glucosidase and D-glucose-tethering zeolite crystals into fibrous aggregates [J]. J. Am. Chem. Soc.2000,122(49):12151-12157.
    [19]S. H. Um, G. S. Lee, Y Lee, K.Koo, C. Lee, and K. B. Yoon. Self-assembly of avidin and D-biotin-tethering zeolite microcrystals into fibrous aggregates [J]. Langmuir,2002, 18(11):4455-4459.
    [20]I. Melian-Cabrera, F. Kapteijn and J. A. Moulijn. Room temperature detemplation of zeolites through H2O2-mediated oxidation [J]. Chem. Commun,2005,21,2744-2746.
    [21]M. Haruta, N. Yamada, and T. Kobayashi. Gold Catalysts Prepared by Co-precipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide [J]. J. Catal.,1989,115:301-309.
    [22]M. Haruta, S. Tsubota, and T. Kobayshi. Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 [J]. J. Catal.,1993,144:175-192.
    [23]宋海岩,李钢,王祥生.多孔材料负载金催化剂的制备与应用[J].化学进展.2010,22(4):573-579.
    [24]J. C. Fierro-Gonzaleza and B. C. Gates. Catalysis by gold dispersed on supports: the importance of cationic gold [J]. Chem. Soc. Rev.,2008,37(9):2127-2134.
    [1]C. Baerlocher, L. B. McCusker, and D. H. Olson. Atlas of zeolites strucutre type. Elsevier, Amsterdam,2007.
    [2]G. Sartori, and R. Maggi. Use of solid catalysts in Friedel-Crafts acylation reactions [J], Chem. Rev.,2006,106(3):1077-1104.
    [3]徐如人,庞文琴.分子筛与多孔材料化学[M].科学出版社,2004.
    [4]A. Koskinen. Asymmetric synthesis of natural products [M]. John Wiley, Chichester, 1993.
    [5]R. Noyori, T. Ikeda, T. Ohkuma, M. Widhalm, M. Kitamura, H. Takaya, S. Akutagawa, N. Sayo, T. Saito, T. Taketomi, and H. Kumobayashi. Stereoselective hydrogenation via dynamic kinetic resolution [J]. J. Am. Chem. Soc.,1989,111(25):9134-9135;
    [6]M. Kitamura, M. Tokunaga, and R. Noyori. Quantitative expression of dynamic kinetic resolution of chirally labile enantiomers-stereoselective hydrogenation of 2-substituted 3-oxo carboxylic esters catalyzed by binap-ruthenium(ii) complexes [J]. J. Am. Chem. Soc.,1993,115(1),144-152.
    [7]K. S. A. Vallin, D. W. Posaric, Z. Hamersak, M. A. Svensson, and A. B. E. Minidis. Efficient chemoenzymatic dynamic kinetic resolution of 1-heteroaryl ethanols [J]. J. Org. Chem.,2009,74(24):9328-9336.
    [8]S. Wuyts, K. De Temmerman, D. E. De Vos, P. A. Jacobs. Acid zeolites as alcohol racemization catalysts:Screening and application in biphasic dynamic kinetic resolution [J].2005,11(1):386-397.
    [9]Y. Z. Zhu, K. L. Fow, G. K. Chuah, and S. Jaenicke. Dynamic kinetic resolution of secondary alcohols combining enzyme-catalyzed transesterification and zeolite-catalyzed racemization [J]. Chem. Eur. J.,2007,13():541-547.
    [10]K. J. Zeitsch. The chemistry and technology of furfural and its many by-products. Elsevier, Koln, Germany,2000.
    [11]K. Kohse-Hoinghaus, P. Oβwald, T. A. Cool, T. Kasper, N. Hansen, F. Qi, C. K. Westbrook, and P. R. Westmoreland. Biofuel combustion chemistry:from ethanol to biodiesel [J]. Angew. Chem. Int. Ed.,2010,49(21):3572-3597.
    [12]E. S. Lipinsky. Fuels from biomass:Integration with food and materials systems [J]. Science,1978,199(4329):644-651.
    [13]B. F. M. Kuster.5-hydroxymethylfurfural (HMF). A review focusing on its manufacture. Starch-Starke,1990,42(8):314-321.
    [14]M. J. Antal, W. S. L. Mok, G. N. Richards. Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature.1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose [J]. Carbohydr. Res.,1990, 199(1):91-109.
    [15]刘欣颖.固体酸催化果糖选择性合成5-羟甲基糠醛[D].大连理工大学,硕士学位论文,2007.
    [16]Y. Roman-Leshkov, J. N. Chheda, and J. A. Dumesic. Phase modifiers promote efficient production of hydroxymethylfurfural from fructose [J]. Science,2006,312(5782): 1933-1937.
    [17]H. B. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural [J]. Science,2007,316(5831): 1597-1600.
    [18]J. N. Chheda, Y. Roman-Leshkov and J. A. Dumesic. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides [J]. Green Chem.,2007,9(4):342-350.
    [19]X. H. Qi, M. Watanabe, T. M. Aidaa and R. L. Smith. Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids [J]. Green Chem.,2009,11(9): 1327-1331.
    [20]C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, and G Avignon. Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites [J]. Appl. Catal. A-Gen.,1996,145(12):211-224.
    [21]J. Y. G Chan, and Y. Zhang. Selective conversion of fructose to 5-hydroxymethylfurfural catalyzed by tungsten salts at low temperatures [J]. ChemSusChem,2009,2(8):731-734.
    [22]K. Shimizu, R. Uozumi, and A. Satsuma. Enhanced production of hydroxymethylfurfural from fructose with solid acid catalysts by simple water removal methods [J]. Catal. Commun.,2009,10(14):1849-1853.
    [23]R. O'Neill, M. N. Ahmad, L. Vanoye, and F. Aiouache. Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite [J]. Ind. Eng. Chem. Res.,2009,48(9):4300-4306.
    [24]S. Lima, M. Pillinger, and A. A. Valente. Dehydration of D-xylose into furfural catalysed by solid acids derived from the layered zeolite Nu-6(1) [J]. Catal. Commun., 2008,9(11-12):2144-2148.
    [25]K. Lourvanij, and G. L. Rorrer. Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders [J]. J. Chem. Tech. Biotechnol.,1997,69(1):35-44.
    [26]K. Lourvanij and G. L. Rorrer. Reactions of aqueous glucose solutions over solid-acid Y-zeolite catalyst at 110-160 ℃ [J]. Ind. Eng. Chem. Res.,1993,32(1):11-19.
    [27]X. X Zhu, S. L. Liu, Y. Q Song, and L. Y. Xu. Catalytic cracking of C4 alkenes to propene and ethene:Influences of zeolites pore structures and Si/Al2 ratios [J]. Appl. Catal. A-Gen.,2005,288(1-2):134-142.
    [28]周宏中.国内外丙烯市场现状及发展趋势[J].化工技术经济.2004,22(9):28-31.
    [29]赵国良,滕加伟,许宁,唐颐,谢在库,杨为民,陈庆龄.高硅MCM-22分子筛的合成及其C4烯烃裂解性能[J].高等学校化学学报,2005,26(6):1140-1142.
    [30]赵国良,滕加伟,谢在库,唐颐,杨为民,陈庆龄.氟硅酸铵改性的HZSM-5催化剂的表征及其碳四烯烃裂解催化性能[J].催化学报,2005,26(12):1083-1087.
    [31]O. Bortnovsky, P. Sazama, and B. Wichterlova. Cracking of pentenes to C2-C4 light olefins over zeolites and zeotypes-Role of topology and acid site strength and concentration [J]. Appl. Catal. A-Gen.,2005,287(2):203-213.
    [32]G. L. Zhao, J. W. Teng, Z. K. Xie, W. Q. Jin, W. M. Yang, Q. L. Chen, Y. Tang. Effect of phosphorus on HZSM-5 catalyst for C-4-olefin cracking reactions to produce propylene [J]. J. Catal.,2007,248(1):29-37.
    [33]X. H. Meng, C. M. Xu, L. Li, and J. S. Gao. Kinetic Study of Catalytic Pyrolysis of C4 Hydrocarbons on a Modified ZSM-5 Zeolite Catalyst [J]. Energy Fuels,2010,24, 6233-6238.
    [34]N. H. Xue, X. K. Chen, L. Nie, X. F. Guo, W. P. Ding, Y. Chen, M. Gu, and Z. K. Xie. Understanding the enhancement of catalytic performance for olefin cracking: Hydrothermally stable acids in P/HZSM-5 [J]. J. Catal.,2007,248(1):20-28.
    [35]V. N. Ipatieff, and A. V. Grosse. Reaction of paraffins with Olefins [J]. J. Am. Chem. Soc.,1935,57:1616-1621.
    [36]E. Furimsky. Spent refinery catalysts:Environment, safety and utilization [J]. Catal. Today,1996,30(4):223-286.
    [37]顾宜.强酸功能化介观结构催化剂的合成及其在烷基化和酰基化反应中的应用[D].硕士学位论文,复旦大学化学系,2010.
    [38]W. E. Garwood, and P. B. Venuto. Paraffin-olefin alkylation over a crystalline aluminosilicate [J], J. Catal.,1968,11(2):175-177.
    [39]Y. F. Chu, and A. W. Chester. Reactions of isobutane with butene over zeolite catalysts [J]. Zeolites,1986,6(3):195-200.
    [40]A. Corma, A. Martinez, and C. Martinez. Isobutane 2-butene alkylation on ultrastable Y-zeolites-influence of zeolite unit-cell size[J]. J. Catal.,1994,146(1):185-192.
    [41]A. de Angelis, P. Ingallina, D. Berti, L. Montanari, and M. G. Clerici. Solid acid catalysts for alkylation of hydrocarbons [J]. Catal. Lett.,1999,61(1-2):45-49.
    [42]Z. B. Zhao, W. D. Sun, X. G Yang, X. K. Ye, and Y. E. Wu. Study of the catalytic behaviors of concentrated heteropolyacid solution. I. A novel catalyst for isobutane alkylation with butenes [J]. Catal. Lett.,2000,65(1-3):115-121.
    [43]G. S. Nivarthy, K. Seshan, and J. A. Lercher. The influence of acidity on zeolite H-BEA catalyzed isobutane/n-butene alkylation [J]. Micropor. Mesopor. Mater.,1998, 22(1-3):379-388.
    [1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [2]阎子峰.纳米催化技术[M].北京:化学工业出版社,2003.
    [3]刘吉平,廖莉玲.无机纳米材料[M].北京:科学出版社,2003.
    [4]欧阳建明.生物矿化的基质调控及其仿生合成[M].北京:化学工业出版社,2006.
    [5]H. A. Lowenstam, and S. Weiner, On Biomineralization [M]. Oxford University Press, New York,1989.
    [6]L. Addadi, S. Weiner. Control and design principles in biological mineralization [J]. Angew. Chem. Int. Ed.,1992,31(2):153-169.
    [7]G. A. Ozin. Morphogenesis of biomineral and morphosynthesis of biomimetic forms [J]. Acc. Chem. Res.,1997,30(1):17-27.
    [8]S. Mann. The chemistry of form [J]. Angew. Chem. Int. Ed.,2000,39(19):3393-3406.
    [9]S. Mann. Biomineralization: Principles and concepts in bioinorganic materials chemistry [M]. Oxford,2001.
    [10]H. Colfen and S. Mann. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures [J]. Angew. Chem. Int. Ed.,2003,42(21): 2350-2365.
    [11]J. Aizenberg. Crystallization in patterns:A bio-inspired approach [J]. Adv. Mater., 2004,16(15):1295-1302.
    [12]A. W. Xu, M. Antonietti, S. H. Yu, and H. Colfen. Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures [J]. Adv. Mater.,2008,20(7):1333-1338.
    [13]K. J. C. van Bommel, A. Friggeri, and S. Shinkai. Organic templates for the generation of inorganic materials [J]. Angew. Chem. Int. Ed.,2003,42(9):980-999.
    [14]S. H. Yu, H. Colfen, and M. Antonietti. Control of the morphogenesis of barium chromate by using double-hydrophilic block copolymers (DHBCs) as crystal growth modifiers [J]. Chem. Eur. J.,2002,8(13):2937-2945.
    [15]M. Antonietti, M. Breulmann, C. Goltner, H. Colfen, K. K. Wong, D. Walsh and S. Mann. Inorganic/organic mesostructures with complex architectures: Precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers [J]. Chem. Eur. J.,1998,4(12):2493-2500.
    [16]M. Li, H. Schnablegger, and S. Mann. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature,1999,402(25): 393-395.
    [17]Y. X. Gao, S. H. Yu, H. P. Cong, J. Jiang, A. W. Xu, W. F. Dong, and H. Colfen. Block copolymer controlled growth of CaCO3 microrings [J]. J. Phys. Chem. B,2006,110(13): 6432-6436.
    [18]A. Dey, G. de With and N. A. J. M. Sommerdijk. In situ techniques in biomimetic mineralization studies of calcium carbonate [J]. Chem. Soc. Rev.,2010,39(2):397-409.
    [19]M. M. Stevens, and J. H. George. Exploring and engineering the cell surface interface [J]. Science,2005,310(5751):1135-1138.
    [20]S. V. Dorozhkin and M. Epple, Biological and Medical Significance of Calcium Phosphates [J]. Angew. Chem. Int. Ed.,2002,41(17):3130-3146.
    [21]Cuisinier FJG. Bone mineralization [J]. Curr. Opin. Solid. State. Mater. Sci.,1996, 1(3):436-439.
    [22]池澄,不同聚氨基酸对磷酸钙生物矿化过程及其生物相容性的调制[D].硕士学位论文,复旦大学化学系,2007.
    [23]T. K. Anee, N. M. Sundarama, D. Arivuoli, P. Ramasamy, and S. N. Kalkura. Influence of an organic and an inorganic additive on the crystallization of dicalcium phosphate dihydrate [J]. J. Cryst. Growth,2005,285(3):380-387.
    [24]P. F. Schofield, K. S. Knight, J. A. M. van Der Houwen, and E. Valsami-Jones. The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate [J]. Phys. Chem. Miner.,2004,31(9):606-624.
    [25]M. N. V. Ravi Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb. Chitosan Chemistry and Pharmaceutical Perspectives [J]. Chem. Rev.,2004, 104(12):6017-6084.
    [26]K. Rezwana, Q. Z. Chena, J. J. Blakera, and A. R. Boccaccinia. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials,2006,27(18):3413-3431.
    [27]C. G. Simon, N. Eidelman, S. B. Kennedy, A. Sehgal, C. A. Khatri, and N. R. Washburn. Combinatorial screening of cell proliferation on poly(D, L-lactic acid)/poly(D, L-lactic acid) blends [J]. Biomaterials,2005,26(34):6906-6915.
    [28]S. B. Kennedy, N. R. Washburn, C. G. Simon, and E. J. Amis. Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation [J]. Biomaterials,2006,27(20):3817-3824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700