激光冲击法合成纳米金刚石的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高激光冲击法合成纳米金刚石的效率,本文首次提出激光照射循环水介质中石墨颗粒合成纳米金刚石的新工艺,并对激光冲击法合成纳米金刚石的工艺和理论进行了研究。采用高分辨透射电镜、扫描电镜、能谱仪、X射线衍射仪和显微激光拉曼光谱仪等手段进行分析,发现本实验条件下合成的纳米金刚石颗粒尺寸约为5nm,具有球形单晶体结构或五重孪晶结构。本课题进行了以下研究:
     (1)从粒度、石墨化程度以及各种原料中六方石墨和菱方石墨的相对含量方面对原料组织结构进行了详细的分析;
     (2)研究不同激光器对合成纳米金刚石的影响。试验中,以石墨为原料,分别采用Nd:YAG毫秒脉冲激光器、红宝石Q开关纳秒脉冲激光器和CO2连续激光器三种不同模式、不同功率密度激光器,成功地合成了纳米金刚石;
     (3)根据实验结果和前人的工作基础,认为功率密度≥109 W·cm~(-2)的激光照射石墨悬浮液时,其相变机理为:在石墨颗粒表面产生高温高压高密度的碳等离子体,在随后的冷却过程中形成纳米金刚石;
     (4)根据透射电镜对纳米金刚石的组织结构分析结果,认为功率密度在10~5~10~6W·cm~(-2)范围的激光照射石墨悬浮液时,不能产生等离子体,其相变机理为:石墨颗粒吸收激光能量时快速升温并达到熔融状态,激光脉冲过后,碳液滴迅速冷却,金刚石形核并长大;
     (4)实验研究发现,纳米金刚石粉末的热稳定性低于石墨和炭黑粉末,在相同温度下,纳米金刚石比石墨和炭黑粉末更容易氧化,因此不能用这种简单的热氧化方法来提纯纳米金刚石;
     (5)根据实验结果,讨论了不同石墨原料、不同激光对合成纳米金刚石的影响,认为在高功率密度(≥109 W·cm~(-2))激光情况下,粗颗粒石墨原料对合成纳米金刚石有利;而对功率密度在10~5~10~6W·cm~(-2)范围,细颗粒石墨原料对合成纳米金刚石有利;
     (6)开展理论研究,包括激光与材料相互作用物理学、纳米金刚石颗粒尺寸限制的机制、碳的状态方程以及金刚石临界形核半径的估算等。本课题的主要创新点为:(1)首次提出激光照射循环的石墨悬浮液合成纳米金刚石的新工艺;(2)首次在较低功率密度(10~5~10~6W·cm~(-2))激光用石墨成功合成出纳米金刚石;(3)首次提出了低功率密度激光合成纳米金刚石的转变模型;(4)首次研究不同石墨原料对合成纳米金刚石的影响。
In order to improve the transformation ratio of nanodiamond synthesized by laser irradiation, in this research, we proposed the process that the graphite particles suspended in water was irradiated by laser beam for the first time. The mechanism of phase transformation in the synthesis was investigated from the aspects of experimental process and theoretical analysis.
     High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) X-ray diffract meter (XRD) and micro-Raman spectroscopy were used to invetigate the synthesis of nanodiamonds. The results suggest that diamond particles with monocrystal structure or multiple twins’structure be synthesized and the particles size be about 5 nm in the samples. The details are shown as follows:
     (1) The raw materials’particle size, degree of graphitization and the ratio of hexagonal and rhombohedral graphite were analyzed.
     (2) Nanodiamonds are synthesized sucessfully when the graphite powders were irradiated by pulsed Nd:YAG laser, pulsed ruby laser or continuous CO2 .
     (3) The mechanism of the phase transformation in the process was presented. For the laser beam with high power density (≥109 W·cm~(-2)), high temperature, high pressure and high density carbon plasma was generated when laser irradiated the graphite powders, then nanodimonds formed during the cooling process.
     (4) For the laser beam with power density (10~5~10~6W·cm~(-2)) which can not generate plasma, the raw graphite was molten, and nanodiamond nucleated and grew up from liquid carbon cooled quickly.
     (5)According to the experimental results, the raw material with samller particle size is favorable to the synthesis of nanodiamond for the laser beam with power density(10~5~10~6W·cm~(-2)) and the coarser particle for the laser beam with high power density(≥109 W·cm~(-2)).
     (6)The physics of laser beam interacting with materials and several equation for carbon at different structure and state, such as graphite, diamond and liquid carbon, have been introduced. An evaluation of equilibrium state and critical size of nanodiamond is also presented.
     The novelties of the research: 1) The process that the graphite particles suspended in water was irradiated by laser beam was proposed for the first time. 2) Nanodiamonds are synthesized under the power density as low as 105 W·cm~(-2) for the first time. 3)The suspending liquid is circulated to attain continuous synthesis; 4) The graphite particles are used as the target to improve the conversion ratio of nanodiamond;
引文
[1] 廖宗廷,周祖翼,宝石级原生金刚石的形成条件及成因,同济大学学报,1993, Vol.24( 2): 178~181
    [2] 苟清泉,固体物理学简明教程,北京:人民教育出版社, 1978, 55~ 61
    [3] 时志强,王成扬,樊丽萍,周小野, 含菱形相的天然石墨用做锂离子电池负极材料,2005, Vol.38(2) :154~158
    [4] 牟瑛琳,金刚石及金刚石结构氮化硼的爆轰波合成方法研究,博士论文,北京理工大学,1993
    [5] 邹芹,王明智,王艳辉, 纳米金刚石的性能与应用前景, 金刚石与磨料磨具工程, 2OO3,Vol.134(2):54~58
    [6] 王光祖,汪静,陶 刚, 不断发展的金刚石合成与应用技术,超硬材料与宝石, 2002,Vol.14(3):1~4
    [7] 王光祖,张运生,纳米金刚石应用的潜在发展前景,工 业 金 刚 石,2002,6:68~71
    [8] 朱永伟, 王柏春, 陈立舫, 许向阳, 沈湘黔, 纳米金刚石的应用现状及发展前景, 材料导报, 2002,Vol.16(12):27~30
    [9] 李玉宝,高志栋等,巴基管涂层条件下金刚石薄膜生长的研究,人工晶体学报,1996,Vol.25(4):308~309
    [10] 阎逢元,张须寿等,一种新型减摩耐摩复合电镀层,材料研究学报,1994,Vol.8(6):573~576
    [11] R.E.斯莫尔曼,现代物理冶金学(张人信译),北京:冶金工业出版社,1980,167~171
    [12] 曲建俊,罗云霞,韩超细金刚石石墨粉润滑油摩擦磨损特性研究,润滑与密封,1995,2:29~32
    [13] Q. Ouyang,K. Okada,Nano-ball bearing effect of ultrfine particles of cluster diamond, Applied Surface Science,1994,Vol.78(2):309~ 313
    [14] 苟清泉,金属原子团簇与碳原子团簇的电子能谱与吸收能谱,原子与分子物理学报,1994,Vol.11(4):123~134
    [15] 陈天鹏,郑秋海,李云飞,半导体金刚石材料研究进展评述,硅酸盐通报,1992,6:46~51
    [16] 宋登元,半导体金刚石与器件,半导体技术,1992,8:17~21
    [17] N. I. Chkhalo, M. V. Fedorchenko, et al. Ultradispersed diamond powders of detonation nature for polishing x-rays mirrors, Nuclear Instrument and Method in Physics Research, 1995, A359:155~ 156
    [18] 陈增凯,纳米级金刚石系列产品的现状及展望,宇航材料工艺,1999,2:23~25
    [19] 王光祖,张运生,郭留希,赵清国,刘 杰, 纳米金刚石的应用, 金刚石与磨料磨具工程, 2003,Vol136 (4):41~44
    [20] 邵乐喜,谢二庆,徐康等,纳米粉预处理的CVD金刚石薄膜成核与生长研究,无机材料学报,1998,13(6):929~93
    [21] F. P. Bundy,H.T.Hall,H. M. Strong and R. H. Wentorf,Nature, 1955, 176:51~ 55
    [22] 仝毅,马峰,恽寿榕等,超微金刚石和静压金刚石的制备、特性及应用,材料导报,1999,13(5): 28~30
    [23] Spitisyn B.V.,Bouilov L.L.Derjaguin B.V.,J.Cryst.Growth,1981(52): 219
    [24] Matsumonos,Sato Y.Y.Kamo M ,Staka N,J.Mater.Science,1982(21):183
    [25] 朱红旭,郎志敏,人工合成金刚石研究发展新动向,河北轻化工学院学报,1996,17(2): 58~62
    [26] 舒兴胜,邬钦崇,水冷反应室式MWPCVD制备金刚石膜装置研制,真空与低温,2001年,7(1): 15~18
    [27] 向军,饶丽,金刚石薄膜合成技术, 四川工业学院学报,1999, 3:47-52.
    [28] 周刚,利用炸药中的碳爆轰合成超细金刚石的研究:[博士学位论文],北京;北京理工大学,1995
    [29] J. H. D. Rebello, V. V. Subramaniam, T. S. Sudarshan, Diamond growth by laser-driven reactions in a CO/H2 mixture, Appl. Phys. Lett., 1993, 62: 899~901
    [30] P. A. Molian, A. Waschek, CO2 laser deposition of diamond thin films on electronic materials, J. Material Science, 1993, 28: 1733~1737
    [31] D. V. Fedoseev, I. G. Varshavskaya, A. V. Lavrent’ev et al., Phase transformations in highly disperse powders during their rapid heating and cooling, Powder. Technol., 1985, 44: 125~129
    [32] D. V. Fedoseev, V. L. Bukhovets, I. G. Varshavskaya et al., Transition of graphite into diamond in a solid phase under the atmospheric pressure,Carbon, 1983, 21: 237~241
    [33] M. Alam, T. Debroy, R. Roy et al., Diamond formation in air by the Fedoseev-Derjaguin laser process, Carbon, 1989, 27: 289~294
    [34] P. P. Patil, D. M. Phase, S. A. Kulkarni, et al., Pulsed-laser–induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron, Phys. Rev. Lett., 1987, 58(3): 238~241
    [35] S. B. Ogale, A. P. Malshe, S. M. Kanetkar et al., Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene, Solid. State. Commun., 1992, 84: 371~373
    [36] G. W. Yang, J. B. Wang, Q. X. Liu, Preparation of nano-crystalline diamonds using pulsed laser induce reactive quenching, J. Phys. -Condes. Matter., 1998, 10(35): 7923~7927
    [37] J. B. Wang, G. W. Yang, Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction, J. Phys. -Condes. Matter., 1999, 11(37): 7089~7094
    [38] G. W. Yang, J. B. Wang, Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite, Appl. Phys. A-Mater. Sci. Process., 2001, 72(4): 475~479
    [39] J. B. Wang, C. Y. Zhang, X. L. Zhong et al., Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction, Chem. Phys. Lett., 2002, 361: 86~90
    [40] S. R. J. Pearce, S. J. Henley, F. Claeyssens et al., Production of nanocrystalline diamond by laser ablation at the solid/liquid interface, Diam. Relat. Mat., 2004, 13: 661~665
    [41] C. X. Wang, Y. H. Yang, Q. X. Liu et al., Phase stability of diamond nanocrystals upon pulsed-laser-induced liquid-solid interfacial reaction: Experiments and ab initio calculations, Appl. Phys. Lett., 2004, 84(9): 1471~1473
    [42] 章文贡,章仪,激光轰击法连续合成金刚石纳米珠(溶胶)的方法,国家发明专利,CN 1347843,2002年5月
    [43] 陈晓虎,王珉,强激光冲击合成金刚石研究,新技术新工艺,1998,4:28
    [44] B. Q. Wei, J. Liang, Z. D. Gao et al., Carbon nanotubes transfer to diamond by laser irradiation, J. Mater. Sci. Lett., 1997, 16(5): 402~403
    [45] B. Wei, J. Zhang, J. Liang et al., The mechanism of phase transformationfrom carbon nanotube to diamond, Carbon, 1998, 36(7): 997~1001
    [46] H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure, Diam. Rel. Mater., 2002, 11: 87~91
    [47] Ogale S B, Patil P P, Phase D M, Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces, Phys Rev B, 1987,36(16):8237~8241
    [48] Venkatesan T, Jacobson D C, Gibson J M, Measurement of Thermodynamic Parameters of Graphite by Pulsed-Laser Melting and Ion Channeling,Phys Rev Lett, 1984,53(4):360~368
    [49] 时志强,王成扬,樊丽萍 等,含菱形相的天然石墨用做锂离子电池负极材料,天津大学学报,2005,38(2): 154~158
    [50] E. Fitzer and U. Funk, Rotgenbeugung and polykritstallinen festenoffen unter besonderer berucksithtigung der verhaltnisse bei graphit, High Tempratures High Pressures, 1973, 5:299~311
    [51] R. R. Franklin, The Structure of Graphitic Carbon.Acta Crys., 1951,4:253~261
    [52] G. EBacon,The Interlayer spacing of graphite,Acta Cryst., 1951,4:558~562
    [53] C.R.Houska and B.E.Warren, X-ray studies of the graphitization of carbon black. J Appl. Phys., 19542,5:1503~1509
    [54] T. Jawhari, A. Roid, J. Casado. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33:1561~1565
    [55] F. Tuinstra, J.L. Koenig. Raman spectrum of graphite. Journal of Chemical Physics, 1970, 53:1126~1130
    [56] M. Alam, T. Debroy, R. Roy, Separation of synthetic diamond from carbon black by oxidation, Carbon, 1988, 26: 591~593
    [57] 张小靖,人造金刚石提纯新方法,金刚石工具,2003,4(5): 54~57
    [58] S. R. J. Pearce, S. J. Henley, F. Claeyssens et al., Production of nanocrystalline diamond by laser ablation at the solid/liquid interface, Diam. Relat. Mat., 2004, 13: 661~665
    [59] 文潮,金志浩,关锦清,李迅,周刚,林俊德,炸药爆轰法制备纳米石墨粉,稀有金属材料与工程,2004,33(6):628~631
    [60] 中华人民共和国国家质量监督检验检疫总局,GB/T 13221-2004,中华人民共和国国家标准,北京:中国标准出版社,2004-09-29
    [61] 文潮,李讯,孙德玉 等,纳米金刚石颗粒粒度的测量,西安交通大学学报,2003,37(9): 984~985
    [62] Yoshikawa M, Mori Y, Maegawa M, Katagiri G, Ishida H, and Ishaitani A.Raman scattering from diamond particles Appl. Phys. Lett., 1993, 62:3114~3116
    [63] CHEN Quan, MA Feng, Yun Shourong, Huang Fenglei,Chinese Journal of Materials Research, 1993,13( 3) :317~321
    [64] Yoshikawa, Raman scattering from nanometer-sized diamond, Appl. Phys. Lett., 1995, 67: 694~696
    [65] E. D. Obraztsova, M. Fujii, S. Hayashi, et al., Raman identification of onion-like carbon, Carbon ,1998,36:821~828
    [66] T. Jawhari, A. Roid, J. Casado. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33:1561-1565
    [67] V. Meenakshi, A. Sayeed, S.V. Subramanyam, Mater. Sci. Forum, 1996, 223:307~312
    [68] Fauchet P. M, Campbell I. H. Crit. Rev: solid state Sci., 1988, 14:79~86
    [69] Richter H, Wang Z. P, Ley L. Solid state Commun, 1981, 39: 625~632
    [70] E. D. Obraztsova, M. Fujii, S. Hayashi, V. L. Kuznetsov, Yu. V. Butenko and A. L. Chuvilin, Raman identification of onion-like carbon, Carbon, 1998, 36:821.
    [71] B. Q. Wei, J. Liang, Z. D. Gao et al., Carbon nanotubes transfer to diamond by laser irradiation, J. Mater. Sci. Lett., 1997, 16(5): 402~403
    [72] B. Wei, J. Zhang, J. Liang et al., The mechanism of phase transformation from carbon nanotube to diamond, Carbon, 1998, 36(7): 997~1001
    [73] 王金斌 , 杨国伟 , 脉冲激光诱导液 -固界面反应合成金刚石纳米晶的结构相变模型, 高压物理学报,1999,13(2):147~150
    [74] M. Musella and C. Ronchi, M. Brykin and M. Sheindlin, The molten state of graphite: An experimental study, J. Appl. Phys., 1998, Vol. 84, ( 5):1~8
    [75] Venkatesan T, Jacobson D C and Gibson J M, Measurement of Thermodynamic Parameters of Graphite by Pulsed-Laser Melting and Ion Channeling, Phys. Rev. Lett 1984, 53: 360~367
    [76] F. P. Bundy, W. A. Bassett, M. S. Weathers et al., The pressure- temperature phase and transformation diagram for carbon, Carbon, 1996, 34: 141~152
    [77] R. Grover ,Proceedings of the seventh symposium on thermodynamic properties,Gaithersburg, MD,1977,edited by A.Czairliyan(American
    Society of Mechanical Engneers,New York,1977), p67
    [78] 倪晓武,陆建 ,阎 大鹏,高功率激光诱导非透明固体表面的击穿现象研究,激光与红外,1988,Vol18(5):19~22
    [79] Mckay J A and Schriempf J T.,Thermal transient analysis of pulsed heat deposition in sheet targets and observation of plasma spreading, Appl. Phys. Lett. 1982, Vol. 31(6): 369~371
    [80] D. Devaux, R. Fabbro, L. Tollier, and E. Bartnicki, Generation of shock waves by laser induced plasma in confined geometry, J. Appl. Phys. 1993, 74 (4):2268~2273
    [81] Anisimov S I, Vaporization of metal absorbing laser radiation, Soviet Phys. JETP. 1988, 27: 182~187
    [82] 陆建,倪晓武,激光与材料相互作用物理学,北京:机械工业出版社,1996,10,25~31
    [83] 陆建,倪晓武,贺安之,高功率激光与材料相互作用机理研究进展,激光技术, 1996, Vol.20 (3):181~184
    [84] David C. et al, Density and temperature of a laser plasma, IEEE J. of Quantum Elec. 1966, 2(9):493~499
    [85] 袁钢,周光泉,用于等离子体及LSD波点燃阈值的判据,高压物理学报, 1989, Vol.2 (2):182~189
    [86] Beverly R E and Walters C T, Measurement of CO2-Laser-induced shock pressure above and below LSD-wave thresholds, J. Appl. Phys. 1976,Vol.47(8):3485~3495
    [87] Lowder J E and Pettingill L C, Measurement of CO2-Laser-gennerated impulse and pressure, Appl. Phys. Lett, 1974,Vol. 24(4):204~207
    [88] Hee K. Park, Dongsik Kim, and Costas P. Grigoropoulos, Pressure generation and measurement in the rapid vaporization of water on a pulsed laser heated surface, J. Appl. Phys. 1996,80 (7):4072~4081
    [89] O. Yavas, A. Schilling, J. Bischof, J. Boneberg, P. Leiderer, Bubble nucleation and pressure generation during laser cleaning of surfaces, Appl. Phys. 1997,A 64:331–339
    [90] Venkatesan T, Jacobson D C and Gibson J M, Phys. Rev. Lett. 1984, 53: 360~367
    [91] M. S. Shaw and J.D.Jonhson, Carbon clustering in detonations, J. Appl. Phys. 1987, 62(5):2080~2085,
    [92] Ph. Buffat and J-P. Borel, Size effect on the melting temperature of goldparticles, Physical Review a, 1976, 18:2287~2298
    [93] C. R. M. Wronski, The size dependence of the melting point of small particles tin, Brit. J. Appl. Phys.1976, 18:1731~1737
    [94] J. Heremans, C. H. Olk,G. L. Eesley, et al, Observation of metallic conductivity in liquid carbon, Phys. Rev. Lett. Vol. 60(50):452~455
    [95] T. Halicioglu, Calculation of surface energies for low index planes of diamond, Surface Science Letters, 1991, 259:714~718
    [96] William, D.Harkins, Energy relations of the surface of solids, J. Chem. Phys., 1942, 10:268~272
    [97] M. Togaya, S. Sugiyama, The review of high pressure science and technology, Vol. 2: 194 ~ 198
    [98] 周刚,文潮等,液碳的三个物理参数的计算及其结晶区域探析,爆炸与冲击, 1998, 18(1): 23~17
    [99] K. Saito, T. Sakka, Y. H. Ogata, Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite–water interface, J. Appl. Phys., 2003, 94: 5530~5536
    [100] T. Thorslund, F. J. Kahlen, A. Kar, Temperature, pressures and stresses during laser shock processing, Opt. Lasers. Eng., 2003, 39: 51~57
    [101] Per Gustufson, An Evaluation of the thermodynamic properties and the P, T phase diagram of carbon, Carbon, 1986, Vol. 24(2):169~176
    [102] Marc Ander Meyers, Dynamic behavior of materials, A Wiley Interscience Publication, 1994
    [103] F. P. Bundy, W. A. Bassett, M. S. Weathers et al., The pressure- temperature phase and transformation diagram for carbon, Carbon, 1996, 34: 141~152
    [104] 陈权 ,炸 药爆轰 合成 超微金刚石的理论及应用问题研究,博士学位论文,北京理工大学,1998.6
    [105] T. Halicioglu, Properties of diamond and diamond like clusters in nanometric dimensions, Phys. Stat. Sol. 1997,199: 345~350
    [106] 徐锡申,张万箱,实用物态方程理论导引,北京:科学出版社,1984,45~70
    [107] Frank J. Zerlli and Hermenzo D. Jones, Surface energy and the size of diamond crystals, Shock Compression of Condensed Mater 1995, S. C. Schmidt, J. N. Johnson (editors) Elsevier Science Publishers B. V. ,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700