PVP-SDS软模板制备纳米银
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银作为金属银的一种特殊形态,具有粒径小、比表面积大、催化活性高、熔点低的特点,同时保留了金属银的导电性好、导热系数高、抗菌性能好的优点,在催化、信息存储、生物标记、抗菌以及表面增强拉曼光谱等领域具有潜在的应用价值而得到科学工作者的密切关注。纳米银的性质取决于其大小、形状、组成、结晶度以及结构(实心与空心)。原则上,调节以上性能参数的任何一项就能细微的调控纳米银的性质。
     在众多纳米银材料的制备方法中,其中多元醇法相对于其它方法来说无需借助其它设备而具有简便、廉价和产率高的优点,在制备特殊形貌的纳米材料中备受关注。本文以多元醇法为原型,在常温水相中,在不加晶种的条件下,利用表面活性剂和大分子作为软模板制备银纳米粒子,不仅绿色无有机物污染,还具有产率高,能耗少的优点。
     以表面活性剂和大分子作为软模板由来已久,因其对纳米粒子保护充分,对纳米粒子形貌调控显著的优点而被广泛应用。表面活性剂和大分子之间存在相互作用,在一定表面活性剂浓度范围内,表面活性剂和大分子软团簇结构会发生胶束结构的改变,即存在双临界胶束浓度特性。在第一临界浓度c_1以前,大分子和表面活性剂分子之间无相互作用;在c_1和c_2之间,表面活性剂分子吸附在大分子链上形成束缚胶束,在c_2以后,大分子链上的束缚胶束达到饱和,溶液中开始形成自由胶束。PVP是一种常见的水溶性大分子,SDS是一个典型的阴离子表面活性剂,两者的混合水溶液也具有上述特征,且加入银氨络离子这种双临界胶束浓度特性不会改变。
     PVP-SDS混合水溶液作为纳米制备的软模板具有特殊的意义,它具备二级模板作用,可以二次调控纳米粒子的生长。在反应初期,SDS束缚胶束吸附溶液中的银氨络离子,在反应进行的过程被富集的银氨离子在SDS束缚胶束周围还原形成原级纳米晶粒,即辅助均相成核过程,此为一级模板作用。随着原级纳米晶粒的进一步增多,依附在大分子链上的原级纳米银晶粒由于大分子链的牵引而彼此靠近融合生长得到进一步的纳米结构物,此为二级模板作用。此外PVP分子还兼具有定向吸附和弱还原功能,PVP分子链可以定向吸附在纳米银的某些晶面上,利于银纳米粒子的定向生长;在适当的条件下PVP链还具有微弱的还原作用,能够充当弱还原剂还原银氨离子。
     本文在常温、水相、无需加入晶种和有机溶剂的条件下,以PVP-SDS为软模板,用葡萄糖还原银氨络离子制得五重孪晶银纳米粒子。该纳米银的等离子共振吸收峰在441 nm处,XRD表明其为面心立方体,在(111)晶面有最强吸收;通过HRTEM观察到纳米银颗粒的晶格条纹和孪晶面证实其为多重孪晶(MTP),选区电子衍射(SAED)证实了其五重孪晶结构。该纳米粒子具有很高的生长活性,可以进一步生长得到棒状纳米银。实验考察了模板的作用机理,在银纳米棒生长的第一阶段,SDS束缚胶束起主要模板作用,得到直径约为5-10 nm的原级纳米银晶粒。在第二生长阶段,PVP大分子链起主要模板作用,得到的直径约为50±5 nm的次级纳米银颗粒;在第三生长阶段,五重孪晶的晶体生长规律占居主导地位,通过Ostwald熟化生长,合成了直径为40 nm,最大长度为700 nm的银纳米棒,软模板仅通过选择性吸附起到辅助晶体生长的作用。
     采用自晶种法制备片状银纳米粒子,在PVP-SDS软模板保护下以硼氢化钠为还原剂快速还原银氨络离子制得银晶种,在后续反应中高浓度的PVP链充当弱还原剂,缓慢还原银氨络离子得到银,在PVP-SDS软模板中调控SDS浓度、PVP浓度以及pH改变纳米银的形貌,制得三角片状、圆盘状以及截角三角片状纳米银。通过组装得到树枝状纳米银结构。
As a special form of silver, the nano-silver not only has advantages of small particle size, large surface area, high catalytic activity and low melting point, but also maintains good characteristics of metal silver, such as high electrical conductivity, high thermal conductivity and good performance in anti-bacterial. Since then it has been widely used in catalysis, information storage, biological labeling, anti-bacterial and surface enhanced Raman scattering (SERS). The properties of the nano-silver are mainly determined by its size, shape, composition, crystallinity and morphology (solid versus hollow). In principle, one could control any of these parameters to fine-tune the properties of the nano-silver.
     Compared with other preparation of the nano-silver, polyol process has been increasing popular, which has various advantages, such as simple, inexpensive, high yield and without needing the help of machine. In this paper, based on the prototype of polyol process, the nano-silver were synthesized by using surfactants and macromolecules as soft templates in normal temperature, but without adding seed or organic solvent. This method was totally green, and has many significant advantages such as without organic solvent pollution, high yield and low energy consumption.
     It was a long time to use surfactants and macromolecules as soft templates, since they can fully cap nanoparticles and significantly control the morphology of nanoparticles. The interaction between surfactants and macromolecules has been confirmed. At a certain range of surfactants concentration, the micelle structures of the soft clusters which consist of surfactants and macromolecules were changed with the change of surfactants concentration, which showed the characteristic of two critical concentrations.
     Before the first critical micelle concentration c_1, there is no interaction between surfactants and macromolecules; between c_1 and the second critical micelle concentration c_2, surfactants adsorb on macromolecules chain to form bound micelles; after c_2, the bound micelle has been saturated and the free micelles begin to form. In our research, since PVP is a common water-soluble macromolecule and SDS is a typical anionic surfactant, the complex of PVP-SDS aqueous solution can provide the above characteristics. Simultaneously, by adding silver ammonia complex ion in solution the two critical micelle concentrations remain the same.
     The complex of PVP-SDS aqueous solution as soft templates to prepare nano-silver has special meanings. It has two-level template effect, which can control the growth of nanoparticles twice. In the initial stage, silver ammonia ion was adsorbed to the SDS bound micelles. With the reduction of silver ammonia ion, the amount of Ag was enriched by SDS bound micelles and finally nano-crystals were formed. This stage was the process of assisting homogeneous nucleation. This is the first level of template effect. Then with the number of nano-crystals increasing, more and more nano-crystals attached on the chains of polymers, which made nano-crystals close to each other and grow to nanostructures in the end. This is the second level of template effect. Meanwhile, PVP chains acted as oriented adsorption and a weak reducer. PVP chains can be absorbed to a certain crystal face of silver nanoparticles, which was benefit to oriented growth of silver nanoparticles. Besides, PVP chains also have a weak effect of reduction in the appropriate condition, which can act as a weak reducer to reduce silver ammonia ions.
     Multiply twinned particles (MTP) of nanosilver were synthesized from ammoniacal silver ion reduced by glucose in aqueous solution of polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS) aggregations. In this method, there was normal temperature, water phase, without adding seeds and on organic solvents. The Plasma resonance absorption of MTP was at 441 nm, the size was 50±5 nm in diameter. The XRD diffraction pattern shows the face centric structure (fcc) of MTP with the strongest diffraction peak at (111) lattice plane. The lattice fringes and twin planes were observed by the high-resolution transmission electron microscopy (HRTEM) and the quintuple twinned structure of silver nanoparticles was further validated by selected area electron diffraction (SAED). The as-prepared MTP of nanosilver with high growth activity could further grow into silver nanorods by the inducing of the template. We present an explanation to the growth mechanism of soft template. In the first stage, SDS bound micelles played a major role of the template to get the original silver nano-crystals of 5-10 nm in diameter. Second, PVP chains play a major role of the template, got 50±5 nm in diameter of the secondary silver nanoparticles. Third, the five-twinned crystal self growth became dominance, finally 40 nm in diameter and 700 nm in length of silver nanorods were synthesized by Ostwald ripening, the soft template only play a supporting role by selective adsorption in crystal growth.
     Flake-like silver nanoparticles was prepared by self-seeding in the PVP-SDS aqueous solution. In this method, sodium borohydride was used to fast reducer to obtain silver seed, in the subsequent of reaction, high concentration of PVP chains acted as weak reduction agent to slowly reduce of silver ammonia complex ion. Modified the pH and the concentration of SDS or PVP, the morphology of silver nanoparticles were changed. By this means, we obtained triangular, flakes and truncated triangular of nanosilver. We also got dendritic silver nano-structure through base assemble.
引文
1.王志强.创造与变革来自新材料[J].苏州工艺美术职业技术学院学报, 2006, 2: 51-52.
    2.袁寿财,朱长纯.纳米电子技术[J].半导体技术, 1999, 24(1): 6-9.
    3.刘凯,邹德福,廉五州等.纳米传感器的研究现状与应用[J].仪表技术与传感器, 2008, 1: 10-12.
    4.李永军,刘河洲,李华等.钡铁氧体包覆多壁碳纳米管复合材料的合成与表征[J].机械工程材料, 2010, 34(1): 88-91.
    5.史册,邵光杰,胡婕等.钙钛矿型复合氧化物纳米薄膜的研究进展[J].中国有色金属学报, 2008, 18 (10): 1893-1902.
    6. Lijima S. Helical microtubes of graphite carbon[J]. Nature, 1991, 354: 56-58.
    7. Britto P J, Santhanam K S V, Ajayan P M. Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 1996, 41(1): 121-125.
    8. Chen Zhi, Zhang Luyan, Chen Gang. Carbon nanotube/poly(ethylene-co-vinyl acetate) composite electrode for capillary electrophoretic determination of esculin and esculetin in Cortex Fraxini[J]. ELECTROPHORESIS. 2001, 30(19): 3419-3426.
    9.孙洪庆.纳米技术:中国新世纪图强的制高点[J].经济前沿, 2001, 9: 16-19.
    10.刘珍,梁伟,许并社等.纳米材料制备方法及其研究进展[J].材料科学与工艺. 2000, 8, 3: 103-108.
    11.张立德.纳米材料的发展[J].中国科学基金, 1994, 3:198-202.
    12.唐一科,许静,韦立凡.纳米材料制备方法的研究现状与发展趋势[J].重庆大学学报(自然科学版), 2005, 28(1): 5-10.
    13.刘维平,邱定蕃,卢惠民.纳米材料制备方法及应用领域[J].化工矿物与加工, 2003, 12: 1-6.
    14. Nix william D, Gao huajian. Indentation size effects in crystalline materials: a law for strain plasticity[J]. J. Mech. Phys. Solids, 1998, 46(3): 411-425.
    15. Zdenek. P, Bazant, F. Size effect in blunt fracture: concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4): 518-535.
    16.张池明,超微粒子的化学特性[J].化学通报, 1993, 8: 20-23.
    17. Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties[J]. J. Phys. Chem, 1991, 95: 525-532.
    18. Buffat P, Borel J P. Size effect on the melting temperature of gold particles[J]. Physical.Review. A, 1976, 13: 2287-2298.
    19. Rubakov V A. Particle creation in a tunneling universe[J]. JETP.Lett, 1984, 39(2): 107-110.
    20.高春华.纳米材料的基本效应及其应用[J].江苏理工大学学报(自然科学版), 2001, 22(6): 45-49.
    21.郭景坤,徐跃萍.纳米陶瓷及其进展[J].硅酸盐学报, 1992, 20(3): 286-291.
    22.林元华.沉淀溶出法制备纳米锌钛酸盐[D].中国科学院化工冶金研究所, 1998.
    23. Rupp J, Birringer R. Enhanced specific-heat-capacity (Cp) measurements (150~300K) of nanometer -size crystalline materials[J]. Physical Review B, 1987, 35(15): 7887-7890.
    24. Inomata K. Giant magnetoresistance and its sensor application[J]. Journal of Electroceramics, 1998, 2(4): 283-293.
    25.陈佩佩,董宏涛,陈龙.原子力显微术应用于活细胞及新鲜组织成像的新进展[J].科学通报, 2009, 54, 14: 2027-2032.
    26. Rotsch C, Jacobson K, Condeelis J, et al. EGF-stimulated lamellipod extension in adenocarcinoma cells[J]. Ultramicroscopy, 2001, 86: 97-106.
    27. Han D, Ma W Y, Liao F L, et al. Time-series observation of the spreading out of microvessel endothelial cells with atomic force mi-croscopy[J]. Phys Med Biol, 2003, 48: 3897-3909.
    28.白春礼,商广义.扫描探针显微镜[J].现代科学仪器, 1994,4: 3-5.
    29.刘宁,古乾军.用原子操纵在Si (111) 7×7表面形成规则纳米结构[J].仪器仪表学报, 1996, 17 (1): 118-121.
    30. Shen J, Zhu C X, Ma Z L, et al. Observation of small metal clusters on graphite surface with scanning tunneling microscopy[J]. Applied Surface Science, 1992, 60(61): 648-652.
    31. Costa P M F J, Paulo B, Cachim U.K. et al. Mechanics of turbostratic carbon nanotubes filled with ga-doped ZnS[J]. Materials Science Forum, 2010, 1: 665-670.
    32. Knut W U. Is science prepared for atomic-resolution electron microscopy[J]. Nature Materials, 2009, 8: 260-262.
    33. El-Gomati M M, Walker C G, Bonnet C, et al. Secondary, backscattered and low energy loss electrons in the SEM: Quantification for nano analysis[J]. Microsc microanal. 2008, 14(2): 908-909.
    34. Yoshimura, Toshiyuki, Shiraishi, et al. Nano edge roughness in polymer resist patterns[J]. Applied Physics Letters, 1993, 63(6): 764-766.
    35. Shen Y J, Masahiro Nakajima, Mohd R A, ea al. Single cell injection using nano pipette via nanorobotic manipulation system inside E-SEM[C]. 9th IEEE Conference onNanotechnology, 2009: 518-521.
    36.李洪涛,罗毅,席光义等.基于X射线衍射的GaN薄膜厚度的精确测量[J].物理学报, 2008, 57(11): 7119-7125.
    37. William H Z. Theory of X-ray diffraction by a crystal[M]. Oversea Publishing House, 2007, 64-108.
    38.洪昕,杜丹丹,裘祖荣等.半壳结构金纳米膜的局域表面等离子体共振效应[J].物理学报, 2007. 56(12): 7719-7723.
    39.黄茜,王京,曹丽冉等.纳米Ag材料表面等离子体激元引起的表面增强拉曼散射光谱研究[J].物理学报, 2009, 58(3): 1980-1985.
    40.周新木,张丽,曾慧慧等.超细、纳米氧化锌激光粒度分析研究[J].硅酸盐通报, 2006, 21(7): 212-216.
    41.白璐,项顼,李峰.杂化复合前驱体制备高分散金属镍纳米粒子的研究[J].工业催化, 2008(16) 10: 66-70.
    42.朱丽慧,邵光杰,刘一雄.纳米钨粉粒度分布的表征研究[J].上海金属, 2007, 69(4): 6-10.
    43. Song Y J, Robert M, Rachel M, ea al. Synthesis of platinum nanowire networks using a soft template[J]. Nano letters. 2007, 7(12): 3650-3655.
    44. Cheng L F, Zhang X T, Liu B. Template synthesis and characterization of WO3/TiO2 composite nanotubes[J]. Nanotechnology, 2005, 16: 1341-1345.
    45.朱斌,戴遐明.李庆丰.模板法合成TiO2纳米阵列及其微观结构表征[J].过程工程学报, 2007, 7(1):160-163.
    46.米远祝刘应亮张静娴.以碳纳米管为模板的材料组装研究[J].新材料产业, 2005, 2: 19-25.
    47.王平,朱以华,杨晓玲.介孔二氧化硅微球的扩孔及组装磁性纳米铁粒子[J].过程工程学报, 2008, 8(1): 162-166.
    48.刘贵阳,黄正宏,康飞宇.沸石矿为模板制备多孔炭的研究[J].新型炭材料, 2005, 20(1): 13-20.
    49.王正武,李干佐,张笑一等.定量结构-性质相关原理在阴离子表面活性剂临界胶束浓度预测中的应用[J].化学学报, 2002, 60(9): 1548-1554.
    50.张明轩,霍冀川,崔彩萍等. CTAB软模板法碳酸锶纳米棒制备[J].粉体纳米技术, 2008, 14(2): 14-17.
    51. Zhou G G. Surfactant-assisted synthesis and characterization of silver nanorods and nanowires by an aqueous solution approach[J]. Journal of Crystal Growth, 2006, 289:255-259.
    52. Ni C Y, Puthusserickal A, Hassan, et al. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method[J]. Langmuir, 2005, 21: 3334-3337.
    53. Yu D B, Vivian W, Wang H Y, et al.Controlled synthesis of monodisperse silver nanocubes in water[J]. J. AM. CHEM. SOC, 2004, 126: 13200-13201.
    54. Yugang Sun,etc.Crystalline Silver Nanowires by Soft Solution Processing[J]. Nano Letters.2002,2, 2,165-168
    55. Sun Y G . Shape-Controlled synthesis of gold and silvernanoparticles[J]. Science, 2002, 298: 2176-2179.
    56. Sun Y G, Mayers B. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process[J]. Nano Letters, 2003, 3(5): 675-679.
    57. Shen Q, Wei H, Wang L C, et al. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly (vinylpyrrolidone) and sodium dodecyl sulfate[J]. J. Phys. Chem. B, 2005, 109: 18342.
    58. Shi H T, Wang X H, Zhao N, et al. J. Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers[J]. Phys. Chem. B, 2006, 110: 748.
    59. Wei H, Shen Q, ZhaoY, et al. Crystallization habit of calcium carbonate in presence of sodium dodecyl sulfate and/or polypyrrolidone[J]. Journal of Crystal Growth, 2004, 260(3): 545-550.
    60. Cao X B, Yu F, Li L Y, et al. Copper nanorod junctions templated by a novel polymer–surfactant aggregate[J]. J. Cryst. Growth, 2003, 254(1-2): 164-168.
    61. Zhang D B, Qi L M, Ma J M. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Adv. Mater., 2002, 14(20): 1499-1502.
    62. Liu X M, Fu S Y, Xiao H M, et al. Preparation and characterization of shuttle-likeα-Fe2O3 nanoparticles by supermolecular template[J]. J. Solid State Chem., 2005, 178(9): 2798-2803.
    63. Ewers T D, Sra A K, Norris B C, et al. Spontaneous hierarchical assembly of Rhodium nanoparticles in spherical aggregates and superlattices. Chem. Mater., 2005, 17(3): 514-520.
    64. Huo L, Chu Y. Controlled synthesis of PbWO4 crystals via microemulsion-based solvothermal method[J]. Mater Lett., 2006, 60(21-22): 2675-2681.
    65. Leontidis E, Orphanou M, Caseri W, et al. Composite nanotubes formed by self-assembly of PbS nano particles[J]. Nano letters, 2003, 3(4): 569-275.
    66. Xie J P, Lee J Y, Ting Y P, et al. Silver nanoplates from biological to biomimetic synthesis[J]. ACS Nano.2007, 1(5): 429-439.
    67. Zhang J, Gryczynski L, Gryczynski Z, et al. Dye-labeled silver nanoshell-bright particle[J]. J.Phys.Chem.B.2006, 110(18): 8986-8991.
    68. Li Z H, Wang Y W, Yu Q Q, et al. Significant Parameters in the Optimization of Synthesis of Silver Nanoparticles by Chemical Reduction Method[J]. Journal of Materials Engineering and Performance, 2010, 19: 252-256.
    69. Silvert P Y, Urbinab R HM, Kamar T E. Preparation of colloidal silver dispersions by the polyol process Part 2: Mechanism of particle formation[J]. J. Mater. Chem., 1997, 7(2): 293-299.
    70. Zhang W J, Chen P, Gao Q S, et al. High-Concentration Preparation of Silver Nanowires: Restraining inSitu Nitric Acidic Etching by Steel-Assisted[J]. Polyol MethodChem. Mater., 2008, 20: 1699-1704.
    71. Sun Y G, Yin Y D, Brian T., et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone) [J]. Chem. Mater., 2002, 14: 4736-4745.
    72. Xiong Y J, Brian T. Mayers et al. Some recent developments in the chemical synthesis of inorganic nanotubes[J]. Chem. Commun., 2005, 5013-5022.
    73. Sun Y G,Xia Y N. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm[J]. Analyst, 2003, 128: 686-691.
    74. Jiang X C, Zeng Q H, Aibing Yu. A self-seeding coreduction method for shape control of silver nanoplates[J]. Nanotechnology, 2006, 17: 4929-4935.
    75. He X, Zhao X J. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: Application to metal-enhanced fluorescence (MEF) [J]. Applied Surface Science, 2009, 255: 7361-7368.
    76. Sun Y G, Xia Y N. Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J]. SCIENCE, 2002, 298(13): 2176-2179.
    77. Benjamin J., Wiley, Xiong Y J, et al. Right Bipyramids of Silver: A New Shape Derived from Single Twinned Seeds[J]. Nano Lett., 2006, 6(4): 765-768.
    78. Brackman J C. The interaction between water-soluble polymers and surfactant aggregates[D]. University of gronigen, The Netherlands, 1990.
    79. Goddard E.D., Polymer/Surfactant Interaction--Its Relevance to Detergent Systems[J]. JAOCS, 1994, 71(1): 1-16.
    80. Nicholas J., Turro, Bruce H. B, et al. Photoluminescence Probes for the Investigation of Interactions between Sodium Dodecyl Sulfate and Water-Soluble Polymers[J].Macromolecules. 1984, 17: 1321-1324.
    81. Dibakar D, Dinesh O., Shah. Effect of Poly(ethylene glycol)s on Micellar Stability of Sodium Dodecyl Sulfate[J]. Langmuir, 2001, 17: 7233-7236.
    82. Gharibi H., Rafati A A. Electrochemical and Kinetic Studies of Micellization of Sodium Tetradecyl Sulfate in the Presence of Poly(vinylpyrrolidone)[J]. Langmuir, 1998, 14: 2191-2196.
    83.夏咏梅,方云,杨扬等. SDS-PEG及SDS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18 (11) :627-630.
    84.方云,吴云兰,丁远飞等. AS - PEG及AS - PVP的γ- lg c曲线的双拐点特性.精细化工[J], 2000, 17(12): 693-703.
    85.方云,吴云兰,丁远飞等. SDS - PEG及SDS - PVP的γ- lg c曲线的双拐点特征.精细化工[J], 2000, 17(11): 631-632.
    86.夏咏梅,方云,刘雪锋等.阴离子表面活性剂与非离子水溶性大分子二元体系的临界类胶束聚集数[J].高等学校化学学报, 2002, 23(10): 1911-1914.
    87.方云,刘雪锋,夏咏梅等. AS-PEG及AS-PVP体系的聚合物相对分子质量阈值及表面活性剂临界浓度[J].精细化工, 2001, 18(10): 572-575.
    88.方云,刘雪锋,夏咏梅等.稳态荧光探针法测定临界胶束聚集数[J].物理化学学报, 2001, 17(9): 828-831.
    89.方云,刘雪锋,夏咏梅等.十二烷基硫酸钠水溶性非离子大分子间团簇化作用部位的1 H和13C及2D NMR表征[J].高等学校化学学报, 2006, 27(4): 731-734.
    90.黄盛友,方云,陈国尧等.碱金属离子对SDS-PEG软团簇形成边界的影响及其在软团簇上的缔合量[J].江南大学学报(自然科学版), 2005, 4(1): 76-79.
    91.方云,黄盛友,陈方博等.碱金属硫酸盐-SDS-PEG三维浓度变化对SDS的束缚胶束聚集数的影响[J].化学学报, 2006, 64(15): 1587-1592.
    92.黄盛友,方云,陈方博等.碱金属硫酸盐-十二烷基硫酸钠-聚乙二醇三元复合体系的束缚胶束特性[J].高等学校化学学报, 2005, 26(10): 1881-1885.
    93. Dederen J C, Auweraer M, Schryver F C. Quenching of 1-methylpyrene by Cu2+ in sodium dodecylsulfate. A more general kinetic model[J]. Chemical Physics Letters, 1979, 68(2): 451-454.
    94. Endrino J. L., Horwat D., Gago R., et al. Electronic structure and conductivity of nanocomposite metal (Au, Ag, Cu, Mo)-containing amorphous carbon films[J]. Solid State Sciences, 2009, 11(10): 1742-1746.
    95. Jin R C, Cao Y W, Mirkin C. A., et al. Photoinduced Conversion of Silver Nanospheresto Nanoprisms[J]. Science 2001, 294(5548): 1901-1903.
    96. Wang A L, Yin H B, Ren M, et al. Synergistic effect of silver seeds and organic modifiers on the morphology[J]. Applied Surface Science Applied Surface Science, 2008, 254: 6527-6536.
    97. Andreasen A., Lynggaard H., Stegelmann C., et al. A microkinetic model of the methanol oxidation over silver[J]. Surface Science, 2003, 544(1): 5-23.
    98. Wang X W, Yuan Z H. Electronic transport behavior of diameter-graded Ag nanowires[J]. Physics Letters A, 2010, 374(22): 2267-2269.
    99. Miyatake T, Takashi S, Masaharu D. Optical waveguide device formed in an electrooptical substrate with in-substrate electrode, manufacturing method for optical waveguide device, optical modulator, and optical switch comprising the optical waveguide device[P]. U.S. Pat., 2010, US2010195953.
    100. Bryce M R., Brian J, Kataky R, et al. Ionophores based on 1, 3-dithiole-2- thione-4, 5-dithiolate (DMIT) as potentiometric silver sensors[J]. Analyst, 2000, 125(5): 861-866.
    101. Wang X S, Tang Y Z, Xiong R G. Indirectly in-situ hydrothermal preparation of a novel Ag tetrazole coordination polymer[J]. Wuji Huaxue Xuebao, 2005, 21(7): 1025-1029.
    102. Sun Y G, Byron G, Brian M, et al. Crystalline Silver Nanowires by Soft Solution Processing[J]. Nano Letters, 2002, 2(2): 165-168.
    103. Gao F, Lu Q, Komarneni S. Interface Reaction for the Self-Assembly of Silver Nanocrystals under Microwave-Assisted Solvothermal Conditions[J]. Chem. Mater., 2005, 17: 856-860.
    104. Yin H, Yamamoto T, Wada Y, et al. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J]. Mater. Chem. Phys., 2004, 83: 66-70.
    105. Cherneva S., Iankov R., Stoychev D. Characterisation of mechanical properties of electrochemically deposited thin silver layers[J]. Transactions of the Institute of Metal Finishing, 2010, 88(4): 209-214.
    106. Salabat A. Prediction of silver nanoparticles size synthesized in microemulsion system[J]. Russian Journal of Physical Chemistry A, 2010, 84(7): 1255-1256.
    107. Boies A M., Roberts J T., Girshick S L., et al. SiO2 coating of silver nanoparticles by photoinduced chemical vapor deposition[J]. Nano-technology, 2009, 20(29): 295604/1-295604/8.
    108. Catherine J. M, Nikhil R. J. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires[J]. Adv. Mater., 2002, 14(1): 80-82.
    109. Lawinski, Grzegorz W., Zamborini, et al. Synthesis and Alignment of Silver Nanorods and Nanowires and the Formation of Pt, Pd, and Core/Shell Structures by Galvanicxchange Directly on Surfaces[J]. Langmuir, 2007, 23(20): 10357-10365.
    110. Sun Y G, Brian M, Thurston H, et al. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence[J]. Nano Letters, 2003, 3(7): 955-960.
    111.黄盛友.无机电解质/SDS/PEG三元体系的聚集特性[D].江南大学, 2005
    112.阮小云. SDS-PVP软团簇制备超细镍粉的模板研究[D].江南大学, 2008.
    113.徐俊.十二烷基硫酸钠-聚乙烯吡咯烷酮软物质团簇为模板制备含镍纳米粒子的研究[D].江南大学. 2006.
    114.陈方博.软物质团簇制备含铜纳米/亚微米粒子的可调控模板研究[D].江南大学. 2007.
    115.王纯荣.软物质团簇制备金纳米粒子的可调控软模板作用[D].江南大学. 2006.
    116. Maier S A, Brongersma M L, Kik P G, et al. Plasmonics—A Route to Nanoscale Optical Devices[J]. Adv. Mater. 2001, 13(19): 1501-1505.
    117. Ganeev R A, Baba M., Ryasnyansky A I, et al. Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids[J]. Optics Communications, 2004, 240, (15): 437-448.
    118. Chen S H, Fan Z Y, Carroll D L. Silver nanodisks: synthesis, characterization, and self-assembly[J]. J. Phys. Chem. B, 2002, 106(42): 10777-10781.
    119. Chen S H, Carroll D L. Silver nanoplates: size control in two dimensions and formation mechanisms[J]. J. Phys. Chem. B, 2004, 108: 5500-5506.
    120. Chen S H, Carroll D L. Synthesis and characterization of truncated triangular silver nanoplates[J]. Nano Letters, 2002, 2(9): 1003-1007.
    121. Jiang L P, Xu S, Zhu J M, et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings[J]. Inorganic Chemistry, 2004, 43(19): 5877-5883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700