金属银纳米线的制备与光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪八十年代以来,纳米材料和纳米科技一直是最富有活力、内涵最为丰富、成果最为丰硕的科研领域之一。以银为代表的贵金属纳米材料具有特殊的光学性质,即表面等离子激元共振现象,广泛的应用于物理、生物、信息、光电等各个领域,并成为国际上研究的热点之一。银纳米材料的性能受形貌影响较大,因此,银纳米材料合成的可控性十分重要。
     基于以上背景,本课题实践并总结了纳米银材料的制备及表征过程中用到的实验思路及方法。包括以AgN03为银源、PVPK30为表面活性剂,乙二醇为溶剂和还原剂,高温条件下合成了不同形貌的银纳米颗粒、具有五重孪晶结构的银纳米线,以及在银纳米线的可控制备的基础上,使用溶胶-凝胶法合成了Ag@SiO2,和使用两种不同的方法——直接还原法和表面修饰后包覆法,制备了具有三层结构的Ag@SiO2@Ag纳米线。此外,讨论了不同银纳米结构的自组装方法,并进行了实验设计及探索。
     研究了银纳米线、纳米颗粒的形貌及光学性质。通过SEM、TEM、SEAD等手段详细的研究了银纳米结构的形貌特点,分析不同银纳米结构的紫外-可见吸收光谱、拉曼光谱,总结了反应参数,如浓度、滴加方式、温度以及其他因素对反应结果的不同影响,分析了纳米结构的吸收峰与其形貌变化的关系。此外还通过FDTD等仿真手段,研究了单根纳米线的光波导特性。
     分析了Ag@SiO2纳米线的SEM、TEM、SEAD等表征结果,详细的研究了其形貌特点,讨论了该结构的生长过程。并通过Ag@Si02纳米线的紫外-可见吸收光谱分析了其形貌特点对光学性质的影响。
     最后比较了两种方法下制备的Ag@SiO2@Ag三层结构的不同特点,并结合TEM等表征结果进行了详细讨论。
Silver nanomaterial, one of the most active research fields in the metal nanometer materials, has a wide range of applications because of its unique heat, light, electricity and magnetism, catalysis and sensitive features.
     This dissertation is about synthesis and optical properties of Ag nanostructures with various morphologies. It discussed the methods and experiment details:First, the well-known ethylene glycol reduction method with polyvinylpyrrolidone (PVP) as surfactant was used to prepare Ag nanostructures with various morphologies. Second, the shape-controlled synthesis of Ag@SiO2 using stober method is described. And then, we develop two different methods for synthesizing Ag@SiO2@Ag. As an extension of our work, we discuss the designing and exploring experiment of self-assemble of nanostructures.
     The structure and optical properties of the as-prepared Ag nanostructures were investigated in detail; and the waveguiding properties of a single Ag nanowire were studied experimentally and theoretically. The results indicate that Ag nanowires are an effective waveguiding cavity, and the light can propagate through the nanowire from one end to another end with the assistance of surface plasmon resonance.
     We also investigate the structure and growth process of Ag@SiO2 by using the scanning electron microscope(SEM) and Transmission electron microscope (TEM). At the same time, we study the optical properties of this kind of structure by the analysis of its UV-vis absorption spectra.
     At last, we compare the result of the Ag@SiO2@Ag nanocables synthesizing by two different method, and discuss some details about it by using TEM.
引文
[1]M. R. Ghadiri, J. R. Granja, D. E. McRee, et al, Science 1993(93):366.
    [2]N. Khazanovich, J. R. Granja, D. E. McRee, et al, J.Am.Chem.Soc 1994 (116):6011.
    [3]M. R. Ghadiri, J. R. Granja, L. R. Buehler, Nature,1994(369):301.
    [4]D. Zhou, S. Seraphin, Chem.Phys.Let.,1994 (222):223.
    [5]H. J. Dai, E. W. Wong, C. M. Lieber, et al, Nature,1995(375):769.
    [6]W. Q. Han, S. S. Fan, Q. Q. Li, et al., Science,1997(277):1287.
    [7]P. D. Yang, C. M. Lieber, Science 1996 (273):1836.
    [8]G Fasol, Science,1998(280):545.
    [9]A. M. Moralees, C. M. Lieber, Science,1998(279):208.
    [10]W. Z. Li, S. S. X ie, L. X. Qian, et al., Science,1996(274):1701.
    [11]D. T. Colbert, Science,1994(266):1218.
    [12]V. Ivannov, Chem. Phys. Lett,1994 (223):329.
    [13]G. Che, B. B. Lakshmi, E. R. Fisher, et al, Nature,1998 (393):346.
    [14]A. Zettl, Adv. Mater.1996 (8):443.
    [15]Y. Zhang, H. Gu, S. Iijima, et al., Chem. Phys. Left.,1997 (279):191.
    [16]Y. Zhang, F. Phillipp, G W. Meng, et al., J. Appl. Phys.2000(28):372.
    [17]A. Monnier, F. Schuth, Q. Huo, Science,1993 (261):1299.
    [18]F. Yan, X. M. Bao, X. M. Wu. et al., Appl. Phys. Lett.,1995 (67):3471.
    [19]C. M. Mo, Y. H. Li, Y. S. Liu, et al., J. Appl. Phys. Lett.,1998(83):4389.
    [20]Y. H. Li, C. M. Mo, L. Yao, J. Phys. D.:Condens. Matt.,1998 (10):1655.
    [21]M. D. Dvorak, B. L. Justus, D. K. Gaskill, et al., Appl. Phys. Let.,1995 (66):804.
    [22]S. Shirinit-Rink, Phys. Rev. B,1987 (35):8113.
    [23]V. Vendange, P. Colomban, Mater. Sci. and Eng.A,1993 (168):199.
    [24]张立德,牟季美,纳米材料和纳米结构,2001,科学出版社,北京.
    [25]P. Mulvaney. Surface Plasmon Spectroscopy of Nanosized Netal Particles[J], Langmuir,1996, 12(3):788-800.
    [26]A. R. Tao, S. Habas, P. Yang, Small 2008,4,310.
    [27]Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater.2002,14,4737.
    [28]M. W. Knight, N. J. Halas, Nanoshells to nanoeggs to nanocups:optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit. New J. Phys.2008(10):105006.
    [29]J. Chen, F. Saeki, B. J. Wiley, et al. Gold Nanocages:Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano Lett.,2005,5 (3),473-477.
    [30]Jingyi Chen, Benjamin J Wiley, Younan Xia. One-Dimensional Nanostructures of Metals: Large-Scale Synthesis and Some Potential Applications[J].Langmuir,2007,23:4120-4129.
    [31]乔世宝,司民真,刘仁明等.纳米银膜的制备及其表面增强拉曼光谱研究[J].光散射学报,2009,21(2):129-131.
    [32]ESUMI K, MATSUHISA K, TORIGOE K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template[J]. Langmuir,1995,11(9):3285~3287.
    [33]KIM F, SONG J H, YANG P. Photochemical synthesis of gold nanorods[J]. J Am Chem Soc, 2002,124(48):14316~14317.
    [34]YU YY, CHANG S S, LEE C L, et al. Gold nanorod:Electrochemical synthesis and optical properties[J]. J Phys Chem B,1997,101(34):6661~6664.
    [35]MARTIN B R, DERMODY D J, REISS B D, et al. Orthogonal self-assembly on colloidal gold-platinum nanorods[J]. Adv Mater,1999,11(1):1021-1025.
    [36]GOVINDARAJ A, SATISHKUMAR B B, NATH M, et al, Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles[J]. Chem Mater,2000,12(1):202~205.
    [37]CEPAK V M, MARTIN C R. Preparation and stability of template-synthesized metal nanorpd sols in organic solvents[J]. J Phys Chem B,1998,102(49):9985-9990.
    [38]WEI G, ZHOU H, LIU Z, et al. One-step synthesis of silver nanoparticles, nanorods and nanowires on the surface of DNA network[J]. J Phys Chem B,2005,109(18):8738~8749.
    [39]JANA N R, GEARHEART L, MURPHY C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspects[J]. Chem Comm,2001,7:617~618.
    [40]E. J. Liang, C. Engert, W. Keifer. Surface-enhanced Raman scattering of pyridine in silver colloids excited in the near-inrfared region[J], J. Raman Spectrose.1993,24(11):775-779.
    [41]E. Hanamura, Phys. Rev. B.,1998 (37):1273.
    [42]S. Sanchez, J.V. Garcia. Morphological study of silver colloids employed in surface-enhanced Raman spectroscopy:Activation when exciting in visible and near-infrared regions[J], J. Colloid. Interface Sci,1995 175(2):358-368.
    [43]S. Y. Fu, X. P. Zhang. Chemical effect of chloride ions on SERS in silver sol[J], J. Raman Spectrose.1992,23(2):93-97.
    [44]白春礼.纳米科学与技术[M],昆明:云南科学技术出版社,1995.
    [45]E. J. Liang, C. Engert, W. Keifer. Surface-enhanced Raman scattering of halide ions, Pyridine and crystal violet on oolloidal silver with near-inrfared excitation:low-wavenumber vibrational modes[J], Vibrational Spectrose.1995,8(3):435-444.
    [46]Y. Sun, Y. Xia, Science 2002,298,2176.
    [47]Y. Sun, Y. Yin, B. T. Mayers, et al. Chem. Mater.2002,14,4736.
    [48]S. H. Im, Y. T. Lee, B. Wiley, et al. Angew. Chem. Int. Ed.2005,44,2154.
    [49]S. E. Skrabalak, B. J. Wiley, M. Kim, et al. Nano Lett.2008,8,2077.
    [50]Wiley B, Sun Y G, Xia Y N. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res,2007,40:1067—1076.
    [51]Wiley B, Xiong Y J, Xia Y N, et al. Right bipyramids of silver:A new shape derived from single twinned seeds. Nano Lett,2006,6(4):765—768.
    [52]Li C C, Cai W P, Cao B Q, et al. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv Funct Mater,2006,16(1):83—90.
    [53]Kathiramanathan P. Novel cable shielding materials based on the impregnation of microporous membranes with inher-ently conducting polymers. Adv Mater,1993,5:281
    [54]Li Q H, Liang Y X, Wang T H. Oxygen sensing character-istics of individual ZnO nanowire transistors. Appl Phys Lett,2004,85:6389
    [55]Yin Yadong, Yu Lu, et al. Silver nanowires can be directly coated with amorphous silica to generate well-controlled co-axial nanocables of silver/silica. Nano Lett,2002,2 (4):427
    [56]Stober W, Fink A, Bohn E J. Controlled growth of mono-disperse silica spheres in the micron size range. Colloid In-terface Sci,1968,26:62
    [57]Zou K, et al. Seed-mediated synthesis of silver nanostruc-tures and polymer/silver nanocables by UV irradiation. J Crystal Growth,2004,273:285.
    [58]Jana N R, Gearheart L, Murphy C J. Wet chemical synthe-sis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun,2001, (7):617
    [59]Jiang Z Y, et al. Conversion of Se nanowires to Se/Ag2Se nanocables and Ag2Se nanotubes. Chem Phys Lett,2003,378:313
    [60]Yu ZHANG, Ming MA, Ning GU. Preparation of Silver Nanoshells on Silica Particles by a Simple Two-step Process. Chinese Chemical Letters 2004,15(8):1005-1008,2004.
    [61]Sarah L, Westcott, Steven J. Oldenburg, T. Randall Lee, et al. Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir 1998, 14,5396-5401.
    [62]张立德.准一维纳米材料家族的新成员——同轴纳米电缆.中国科学院院刊,1999,5:350.
    [63]Zhan J, Bando Y, Hu J, et al. Synthesis and field-emission properties of Ga2O3-C nanocables. Chem Mater,2004,16(24):5158
    [64]Diederich L, Barborini E, Piseri P. Supercapacitors based on nanostructured carbon electrodes grown by cluster-beam deposition. Appl Phys Lett,1999,75:2662.
    [65]Johnson C J, Dujardin E, Davis S A et al. Growth and Form of Gold Nanorods Prepared by Seed-Mediated, Surfactant-Directed Synthesis, Journal of Materials Chemistry,2002,12:1765.
    [66]Lisiecki I, Filankembo A, Sack-Kongehl H et al. J. Phys. ReV. B,2000,61:4968.
    [67]Sun YG, Gates B, Mayers B et al, Crystalline Silver Nanowires by Soft Solution Processing, NANO LETTERS,2002,2:165-168.
    [68]Dickson R M, Lyon L A. Journal of Physical Chemistry B,2000,104:6095.
    [69]Wang Zhenlin(王振林),A REVIEW ON RESEARCH PROGRESS IN SURFACE PLASMONS (表面等离激元研究新进展),《物理学进展》,2009,29:287.
    [70]Dorfmuller J, Vogelgesang R, Weitz R T et al. Fabry-Perot Resonances in One-Dimensional Plasmonic Nanostructures, Nano Letter.2009,9:2372-2377.
    [71]Lieber C M. Nanowire superlattices[J]. Nano Lett,2002,2:81-82.
    [72]Bjork B T, Ohlsson B J, Sass T, et al. One-dimensional heterostructures in semiconductor nanowhiskers[J]. ApplPhys Lett,2002,80:1058-1060.
    [73]Bjork B T, Ohlsson B J, Sass T, et al. One-dimensional steeplechase for electrons realized[J]. NanoLett,2002,2:87.
    [74]Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M. Growth of nanowire super-lattice structures for nanoscale photonics and electronics[J]. Nature,2002,415:617-620.
    [75]Wu Y, Fan R, Yang P. Transients in the formation of nanowire heterostructures[J]. Nano Lett, 2002,2:83-86.
    [76]Hu J Q, Bando Y, Zhan J H, Golberg D. Fabrication of Silica-shielded Ga-ZnS metal semiconductor nanowire heterojunctions[J]. Adv Mater,2005,17:1964-1969.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700