磁异常及其梯度多参量联合反演及三维人机交互建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁法勘探中,与总场测量相比,梯度测量在表征浅层异常变化趋势及提高叠加异常辨识度等方面具有优势,故针对总场及其梯度的联合反演逐渐成为研究的热点。但是,如何从理论层面上解释梯度测量为什么具有优势,如何最大限度地利用梯度优势进行多参量约束反演,却几乎没有人进行过深入研究。本文以磁异常多参量反演为研究对象,从理论上评价联合梯度反演的“优越性”,回答了前面的问题;同时借助于人机交互建模及三维可视化技术,开展磁多参量联合约束反演方法技术研究及实用化软件研发工作。
     1.从磁场正演公式出发,分析梯度数据的特点及与总场相比具有“优越性”的根源所在。同时,针对不同埋深、不同类型的场源及不同比例尺的实际测网,指出总场与梯度之间存在着互补性:各参量从不同侧面表现位场特征。为减少多解性,反演中应合理利用多参量数据,以获取完整的位场变化信息。基于此确定了多参量反演的具体技术措施。
     2.通过模型反演试验得出,梯度在反演中所能发挥的作用应一分为二地看待:对于大尺度研究对象而言,梯度能够辅助总场提高定量反演的精度;对于小尺度目标探测而言,梯度能够弥补总场信息的不足,提高探测分辨率。第二点作用往往对实际勘探帮助更大。
     3.根据实际应用中不同探测精度的总场及梯度磁力仪,分析其对于总场测量和梯度测量的各自实际探测能力,认识到了梯度对于仪器噪声的敏感性要大于总场,误差的存在使得梯度在实际应用中具有局限性。
     4.通过对实测梯度和换算梯度在测量与计算中所表现出来的差异性进行分析评价,认为换算梯度作为总场的另一种表达形式,不能取代实测梯度用作多参量联合约束反演,从而明确了梯度测量的必要性。
     5.为应对多参量测量带来的数据表达方式及反演进程控制难题,利用软件开发相关技术,实现了磁梯度多参量正反演系统。模型构造方面,设计了可扩展拓扑多面体数据结构;模型编辑方面,推导了二维逻辑坐标与三维地理坐标的映射公式,基于此实现了真三维模型形态修改功能;交互反演方面,利用多线程并行技术,实现了实时可视化正、反演功能。
     6.为充分发挥物性反演与形态反演各自的优点,同时弥补二者存在的不足,在两种反演方式相结合的综合反演方面作了一次探索研究:基于计算几何中等值面重建及格网简化相关原理,实现了物性模型与形态模型的转化技术。
In the magnetic exploration, gradient measurements’ advantages over total fieldmeasurements are as follows: they can reflect abnormal characteristics of shallowsubsurface zones and improve the identification of superimposed abnormal bodies.Therefore, a joint inversion method specific to total field and corresponding gradienttensor has gradually become a hotspot research. But little effort has been dedicated tostudying how to theoretically explain why gradient measurements can have anadvantage, and how to maximize the use of gradient advantages in the inversion withmulti-parameter constraints. In this paper, multi-parameter inversion using magnetictotal field and gradient is the research object, and the superiority of joint inversionwith gradient data has been evaluated in theory. So the above-mentioned questionshave been answered. Meanwhile, it have put the techniques of human-computerinteraction modeling and3D visualization as research tools, aiming at researching thejoint inversion method with constraints of magnetic anomalies and gradient anomaliesand developing practical software.
     1. Based on theoretical formula of the forward of magnetic fields, the features ofmagnetic gradient data and root of the "superiority" of gradient measurements overmagnetic total field are analyzed. Meanwhile, for field sources with different depthand different size and measuring grid with different scale, this paper had pointed outthe complementary between magnetic total field and magnetic gradient: these dataperformed characteristics of the field from different aspects. To obtain total variationof field and thus reduce the multiplicities of geophysical interpretation, theinformation of multi-parameters should be cooperative considered in inversion. So thespecific technical measures of multi-parameters inversion were determined finally.
     2. Modeling analysis proves that effects of gradient data in multi-parametersinversion should be evaluated by two sides: for large scaled study objects, gradientdata can assist total-field data to optimize quantitative inversion precision; for smallscaled detected objects, gradient data can supplement lack of information in total field and thus enhance the detecting resolution. The second effect is often more valuable inactual exploration
     3. The limitations of using gradient data in multi-parameters inversion witherrors has been analyzed from simulation of different types of instrument noises.
     4. Based on analysis of differences between measured gradient and convertedgradient in the measuring and calculating process, it has been confirmed that asanother expression form of total field, converted gradient can not take the place ofmeasured gradient and not be used in multi-parameters joint inversion. Thus thenecessity of the gradient measurement has been proved.
     5. Aiming at solving the problems of big data management and inversion processcontrol from multi-parameters measurement, the system for forward and inversionwith multi-parameter magnetic fields by human-computer interaction have beendeveloped, in which program design technology were used. In terms of modelstructure, a topology polyhedron data structure have been designed. On model editing,this paper have deduced coordinate mapping formula between2D logical coordinateand3D geographic coordinates. Based on them, functionality on visualizationinteractive editing for models were realized. In inverting the shape of geologicalbodies, real-time forward and inversion were achieved by multi-threaded paralleltechnology.
     6. This paper made an exploratory attempt on combining the inversion forphysical properties and for geological body shape, aiming at making use ofadvantages of properties inversion and shape inversion and covering insufficients ontwo of them simultaneously. Based on the basic principle of iso-surface reconstructionand mesh simplification in computational geometry, conversion technique betweenphysical property models and shape models can be realized. Therefore, both inversioncan learn from each other and restrict mutually is possible.
引文
[1] Akima H. A New Method of Interpolation and Smooth Curve Fitting Based on LocalProcedures. Journal of the Association for Computing Machinery,1970,17(4):589-602
    [2] Barnett C. T. Theoretical modeling of the magnetic and gravitational fields of an arbitrarilyshaped three-dimensional body. Geophysics,1976,41(6):1353-1364
    [3] Bernaschi M., Bisson M., Fatica M., et al. An introduction to multi-GPU programming forphysicists. The European Physical Journal Special Topics,2012,210(1):17-31
    [4] Bo C. and Harry H. Interpretive OpenGL for computer graphics. Computer&Graphics,2005,29:331-339
    [5] Boissonnat J. D. and Oudot S. Provably good sampling and meshing of surfaces. GraphicalModels,2005,67(5):405-451
    [6] Bonduá S., Berry P., Bortolotti V., et al. TOUGH2Viewer: A post-processing tool forinteractive3D visualization of locally refined unstructured grids for TOUGH2. Computers&Geosciences,2012,46:107-118
    [7] Brito A. Blender3D: Architecture, Buildings, and Scenery: Create photorealistic3Darchitectural visualizations of buildings, interiors, and environmental scenery, PacktPublishing,2008.05
    [8] Cao Y. and Sun D. A Parallel Computing Framework for Large-Scale Air Traffic FlowOptimization Intelligent Transportation Systems. IEEE Transactions on,2012,13(4):1855-1864
    [9] David J. K. Visual C++技术内幕(潘爱民译).北京:清华大学出版社,1998
    [10] Davis K. and Li Y. G.3D joint inversion of gradient and total-field magnetic data. SEGExpanded Abstracts,2010,29(1):1784-1788
    [11] Deng J. J. Parallel computing techniques for computed tomography:[博士学位论文].Iowa(USA): The University of Iowa,2011
    [12] Erarslan K. A Practical Approach for3D Modeling of ore Bodies and the Design ofDevelopment for Underground of Mines. Mineral Resourees Engineering,2000,9(3):287-299
    [13] Geosoft Inc., Oasis montaj7.3: Mapping and processing system quick start tutorials. GeosoftInc., Toronto, Canada,2011:35-146
    [14] Gong J. Y. and Cheng P. G. Three-dimensional modeling and application in geologicalexploration engineering. Computers&Geosciences,2004,30:391-404
    [15] Guillen A., Calcagno P., Courrioux G, et al. Geological modelling from field data andgeological knowledge. Earth Planet Interiors,2008,10(16):1-12
    [16] Hansen C. D. and Johnson C. R. Visualization Handbook. Academic Press,2004
    [17] Hardwick C. D. Gradient-enhanced total field gridding: Expanded abstracts, SEG Houston,Gravity and Magnetics,1999,2.7.
    [18] Hardwick C. D. Two methods of gradient-enhanced gridding-A discussion: Expandedabstracts, SEG Denver, Workshop on Magnetic Gradiometry,2004.
    [19] He W., Ran P., Xu Z. et al. A3D Visualization Method for Bladder Filling Examination Basedon EIT. Comput Math Methods Med,2012,1-9
    [20] Hong D. M., Yao C. L., Zheng Y. M. Computation of Magnetic Anomalies and gradients forspatial Arbitrary Posture Regular Body. Journal of Earth Science,2009,20(6):995-1002
    [21] Julien B., Bruno P., Paseale K., et al. A2D-3D visualization support for human-centered rulemining. Computers&Graphics,2007,31:350-360
    [22] Kaikkonen P., Sharma S. P., Mittal S.3D modeling and inversion of VLF and VLF-Relectromagnetic data. Geophysics,2012,77(4): WB219-WB231
    [23] Kitware Inc., Paraview Users' Guide (v3.14). Kitware Inc., New York, USA,2012:66-102
    [24] Lindstrom P. and Turk G. Fast and memory efficient polygonal simplification.IEEEVisualization98Conference Proceedings,1998:279-286
    [25] Lorensen W. E. and Cline H. E. Marching Cubes: A High Resolution3D SurfaceConstruction Algorithm. Computer Graphics (Proceedings of SIGGRAPH '87),21(4):163-169
    [26] Lu T. and Chen F. W. Quantitative analysis of molecular surface based on improved MarchingTetrahedra algorithm. Journal of Molecular Graphics and Modelling,2012,38:314-323
    [27] Muller H. and Wehle M. Visualization of Implicit Surfaces Using Adaptive Tetrahedrizations.Scientific Visualization Conference,1997
    [28] Nabighian M. N. The analytic signal of two-dimensional magnetic bodies with polygonalcross-section its properties and use for automated anomaly interpretation. Geophysics,1972,37(2):507-512
    [29] Nelson J. B. Comparison of gradient analysis techniques for linear two-dimensional magneticsources. Geophysics,1988,53(8):1088-1095
    [30] Nelson J. B. Leveling total-field aeromagnetic data with measured horizontal gradients.Geophysics,1994,59(8):1166-1170
    [31] Nie W. F., Sun J. Z., Jin J., et al. A Dynamic Parallel Volume Rendering Computation ModeBased on Cluster. Lecture Notes in Computer Science,2005,3482:416-425
    [32] Pedersen L. B. and Rasmussen T. M. The gradient tensor of potential field anomalies: Someimplications on data collection and data processing of maps Geophysics,55(12),1558-1558
    [33] Pitney Bowes Inc. Geophysical Interpreters Guide of ModelVision12.0: Pitney Bowes Inc.,North Sydney, Austrilia,2010
    [34] Reford S. and Grant P. Gradient Enhancement of the Total Magnetic Field:: Expandedabstracts, SEG Denver, Workshop on Magnetic Gradiometry,2004.
    [35] Rene R. M. xGravity inversion using open, reject, and "shape to the anomaly" fill criteria.Geophysics,1989,51:988-994
    [36] Richardson R. M. and MacInnes S. C. The inversion of gravity data into three-dimensionalpolyhedral models. Geophysics,1989,94:7555-7562
    [37] Rineau L. and Yvinec M. A generic software design for Delaunay refinement meshing.Computational Geometry Theory and Applications,2007,38(1-2):100-110
    [38] Russinovich M. E. and Solomon D. A.深入解析Windows操作系统(潘爱民译).北京市:电子工业出版社,2007
    [39] Shameem A. and Jason R. Multi-Core Programming Increasing Performance throughSoftware Multi-threading. Intel Press, USA,2007
    [40] Tanagho Y. S., Andriole G. L., Paradis A. G., et al.2D Versus3D Visualization: Impact onLaparoscopic Proficiency Using the Fundamentals of Laparoscopic Surgery Skill Set. Journalof Laparoendoscopic and Advanced Surgical Techniques,2012,22(9):865-870
    [41] Tory M. Combining2D and3D views for visualization of spatial data:[博士学位论文].Vancouver: Simon Fraser University,2010
    [42] Van D. B. G. Efficient collision detection of complex deformable models using AABB trees.Joumal of graphics tools,1997,2(4):1-13
    [43] Woo M., et al. OpenGL编程权威指(吴斌,等译).北京:中国电力出版社,2001
    [44] www.geosoft.com
    [45] www.opengl.org
    [46] www.paraview.org
    [47] www.sketchup.com
    [48] Xu C. and Down P. A. Optimal construction and visualisation of geological structures.Computers&Geosciences,2003,29(6):761-773
    [49] Yu S.J., Kim J., Lee S. Thermal3D modeling system based on3-view geometry. OpticsCommunications,2012,285(24):5019-5028
    [50]安玉林,陈玉东,黄金明.重磁勘探正反演理论方法研究的新进展.地学前缘,2003,10(1):141-149
    [51]陈朝曦,孟小红,刘国峰,等.基于GPU的任意三维复杂形体重磁异常快速计算物探与化探.2012,36(1):117-121
    [52]陈钢花,郑孝强.基于OpenGL的三维可视化在地质勘探中的应用.勘探地球物理进展,2005,28(6):428-431
    [53]管志宁,安玉林.区域磁异常定量解释.北京:地质出版社,1991
    [54]管志宁.磁异常矢量倾角法及Za/Ta^2、Ha/Ta^2比值法.物探与化探,1979,6:8-16,39
    [55]管志宁.地磁场与磁力勘探.北京:地质出版社,2005
    [56]管志宁,郝天珧,姚长利.21世纪重力与磁法勘探的展望.地球物理学进展,2002,17(2):237-244
    [57]管志宁,侯俊胜,姚长利.航磁梯度资料在金矿地质填图和成矿预测中的应用.现代地质,1996,10(2):239-249
    [58]管志宁,姚长利.倾斜板体磁异常总梯度模反演方法.地球科学(中国地质大学学报),1997,22(1):81-85
    [59]眭素文,于长春,姚长利.起伏地形剖面重磁异常半智能处理解释软件及应.物探与化探,2004,28(1):65-68
    [60]郭志宏.航磁及梯度数据正反演解释方法技术实用化改进及应用:[博士学位论文].北京:中国地质大学(北京),2004
    [61]郭志宏,于长春,周坚鑫.低磁纬度区ΔT剖面磁异常场源深度计算的切线法.物探与化探,2003,27(5):391-394
    [62]郝文化,文自勇,王浩强. Windows多线程编程技术与实例.北京:中国水利水电出版社,2005,1-143
    [63]何畏,吴文鹂.基于截面轮廓线人机交互三维地质体建模.物探化探计算技术,2010,32(4):433-436
    [64]洪东明.磁异常多参量可视化建模研究:[博士学位论文].北京:中国地质大学(北京),2011
    [65]侯捷. STL源码剖析.武汉市:华中科技大学出版社,2002
    [66]胡小红,周旺,吴杰.八叉树构模法在重磁场正演方面的应用.科技广场,2008,(8):112-113
    [67]蒋瑜,杜斌,卢军,等.基于Delaunay三角网的等值线绘制算法.计算机应用研究,2010,27(1):101-103
    [68]李水平.低磁纬度地区ΔT异常处理解释方法在坦桑尼亚某地区金矿预查中的应用.物探与化探,2009,33(6):657-659
    [69]黎益仕,姚长利,管志宁.重磁资料的实时正演拟合.物探化探计算技术,1994,16(3):192-193
    [70]刘浩军,薛典军,郭志宏,等.航空物探软件系统研制.物探与化探,2003,27(2):146-149
    [71]骆遥,段树岭,王金龙,等. AGS-863航磁全轴梯度勘查系统关键性指标测试.物探与化探,2011,35(5):620-625
    [72]骆遥,王平,段树岭,等.航磁垂直梯度调整ΔT水平方法研究.地球物理学报,2012,55(11):3854-3861
    [73]骆遥,姚长利.复杂形体重力场、梯度及磁场计算方法.地球科学,2007,32(4):517-522
    [74]骆遥,姚长利,薛典军,等.2.5D地质体重磁异常无解析奇点正演计算研究.石油地球物理勘探,2009,44(4):487-493
    [75]罗迎. Quest3D虚拟人机交互系统中5DT数据手套的应用.科学技术与工程,2011,11(4):855-859
    [76]骆智彬,李震宇,王国利.最小体积轴向包围盒的增强现实虚拟测量方法及其应用.机床与液压,2009,37(8):277-281
    [77]裴忠,马丽娜,陈晓勇,等.吉林省辉南县金川一带高精度磁测ΔT异常特征分析.长春工程学院学报(自然科学版),2009,10(4):53-55
    [78]申宁华,管志宁.磁法勘探问题.北京:地质出版社,1985
    [79]申蔚,夏立文.虚拟现实技术.北京市:北京希望电子出版社,2002
    [80]数学手册编写组.数学手册.北京:高等教育出版社,1979
    [81]孙文瑜,徐成贤,朱德通.最优化方法.北京:高等教育出版社,2004.8
    [82]唐泽圣,等.计算机图形学基础.北京:清华大学出版社,1998
    [83]汤东阳.三维地质建模中几何形体分析技术的几个算法研究:[硕士学位论文].北京:中国地质大学(北京),2011
    [84]汤洪志,周华中,胡文平,等. VB与Visual Fortran混合语言编程及其在物探化探数值计算中的应用.物探化探计算技术,2002,24(1):71-76
    [85]杨建平.低磁纬度区ΔT异常处理解释方法在老挝平然村铜镍多金属矿区的找矿应用.地质调查与研究,2011,35(2):146-149
    [86]汤敏.利用Master-Slave-Collector模式的大规模数据集的并行体绘制.计算机工程与应用,2011,47(16):176-178,187
    [87]同济大学应用数学系主编.高等数学(第五版).北京:高等教育出版社,2005
    [88]王邦华,林盛表,邓一谦.均匀磁化多面体的磁场.地球物理学报,1980,23(4):415-426
    [89]王光源,马海洋,章尧卿.航空磁探仪探潜目标磁梯度定位方法.兵工自动化,2011,(01):32-34
    [90]吴文鹂.多参数反演技术成果简介.地球学报,2006,(2):174
    [91]吴文鹂,管志宁,高艳芳,等.重磁异常数据三维人机联作模拟.物探化探计算技术,2005,27(3):227-231
    [92]吴文鹂,管志宁.基于八叉树结构的可视化三维位场正反演.物探与化探,1997,21(4):282-288
    [93]吴文鹂,高艳芳,顾观文.起伏地形重磁三维快速正演计算.物探化探计算技术,2009,31(3):179-182
    [94]吴自银,高金耀.一种基于网格的快速等值线充填算法.测绘学报,1999,28(4):350-354
    [95]习宇飞,刘天佑,刘双.井中磁测三分量联合反演.石油地球物理勘探,2012,47(2):344-352
    [96]谢汝宽,王平,郭华,等.考虑航磁水平梯度变化的ΔT网格化方法研究.地球物理学报,2013,56(2):660-666
    [97]熊盛青.“十五”以来我国航空物探进展与展望.物探与化探,2007,31(6):479-484
    [98]熊盛青.图形图像处理方法图示航空物探数据的有效性研究.铀矿地质,1996,12(5):295-300
    [99]熊盛青.我国航空物探现状与展望.中国地质,1999,(9):18-22
    [100]杨国红,沈史日.2.5D(二度半)交互反演技术在四川德昌某钒钛磁铁矿区的应用.中国科技纵横,2011,3:115-115
    [101]姚长利,管志宁.三维地质体磁场梯度计算理论与方法.中国科学[D辑],1997,27(2):103-108
    [102]姚长利,黄卫宁,管志宁.综合利用位场及其垂直梯度的快速样条曲化平方法.石油地球物理勘探,1997,32(2):229-236
    [103]姚长利,黎益仕,管志宁.重磁异常正反演可视化实时方法技术改进.现代地质,1998,12(1):115-122
    [104]姚长利,郑元满,张聿文.重磁异常三维物性反演随机子域法方法技术.地球物理学报,2007,50(5):1576-1583
    [105]姚长利,郑元满.重磁遗传算法三维反演中动态数组优化方法.物探化探计算技术,2002,24(3):240-245
    [106]姚长利.重磁物性三维反演随机子域法及其相关技术研究:[博士学位论文].北京:中国地质大学(北京),2002
    [107]英特尔软件学院教材编写组.多核多线程技术.上海:上海交通大学出版社,2011.01
    [108]于长春,郭志宏,眭素文.航空物探领域的GIS开发与应用.物探化探计算技术,2003,25(1):39-44
    [109]于淼. MapInfo组件的研究和深入开发:[硕士学位论文].辽宁:大连交通大学,2006
    [110]于鹏,王家林,吴健生.二度半长方体组合模型的重力模拟退火反演.地球物理学报,2007,50(3):882-889
    [111]余钦范,楼海.水平梯度法提取重磁源边界位置.物探化探计算技术,1994,16(4):363-367
    [112]于荣欢,吴玲达,瞿师.并行体绘制中的自适应负载平衡算法.北京邮电大学学报,2012,35(1):99-102,106
    [113]张菲菲.二度体磁异常分步反演方法:[硕士学位论文].陕西:长安大学,2009
    [114]张妮佳,成军,张剑平.立体眼镜及其在虚拟博物馆中的应用.全国首届数字(虚拟)科技馆技术与应用学术研讨会论文集,中国浙江杭州,2007
    [115]张陶.二度体磁异常总梯度模反演与应用:[硕士学位论文].四川:成都理工大学,2011
    [116]赵改善.地球物理高性能计算的新选择: GPU计算技术.勘探地球物理进展,2007,30(5):399-405
    [117]赵改善.地球物理软件技术发展趋势与战略研究.勘探地球物理进展,20lO,33(2):77-86
    [118]郑元满,姚长利,张晨,等.基于等值线拓扑走向的快速区域填充算法.石油地球物理勘探,2010,45(6):899-908
    [119]郑元满,姚长利,张晨.重磁三维自动反演软件系统的分析与设计.现代地质,2012,26(6):1225-1230
    [120]郑元满.重磁三维物性实时可视化反演关键技术研究:[博士学位论文].北京:中国地质大学(北京),2011
    [121]中国地质调查局发展研究中心.重磁电数据处理软件RGIS使用手册.北京,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700