身高蠕变对弯曲放松特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:本论文的目的一是测量人体双肩静力负重前后身高的蠕变情况,采用摄影和肌电同步测试采集elector spinae (ES)竖脊肌, rectus abdominis (RA)腹直肌, external oblique (EO)腹外斜肌和biceps femoris (BF)股二头肌四块肌肉的肌电信号和人体运动影像,分析竖脊肌的弯曲放松特性,探讨身高蠕变对弯曲放松特性的影响。二是根据肌肉之间肌电的强弱关系,探讨所测试的四块肌肉在屈伸过程中的协调性。
     研究方法:本实验受试者为山东师范大学体育学院16名男性学生,身体状况良好均无运动损伤史。实验过程中主要测试肌肉为elector spinae (ES)竖脊肌,rectus abdominis (RA)腹直肌, external oblique (EO)腹外斜肌和biceps femoris (BF)股二头肌四块肌肉。身高发生蠕变的条件是双肩静力负重自身体重的20%,自然站立10分钟,蠕变测试仪器为自制15度夹角滑道和电子游标卡尺。测试动作为躯干屈伸10s,其中5s向前弯曲、5s从最大弯曲返回到初始位置。肌电信号采集与数码摄像同步进行,实验数据在负重前后各采集三次。
     实验结果:人体在10分钟双肩带静力负重自身体重20%的条件下,身高蠕变的平均值为5.9mm。弯曲的过程中,在肌电关闭(EMG-off)方面,负重前后,躯干倾角α的角度绝对值从51.7°变为55.2°(p=0.039)同时角度相对值从83.2%变为90.1% (p=0.030),屈腰角β的角度绝对值从69.0°变为80.5°(p=0.020)同时角度相对值从71.1%变为81.9% (p=0.030)。在肌电开启(EMG-on)方面,负重前后,躯干倾角α的角度绝对值从54.6°变为58.3°(p=0.015)同时角度相对值从87.9%变为95.0% (p=0.003),屈腰角β的角度绝对值从76.1°变为86.5°(p=0.012)同时角度相对值从78.7%变为88.0% (p=0.030)。
     结论与建议:数据显示身高蠕变(变矮)延长了弯曲放松现象的时间即肌电信号消失的时间延长,但是身高蠕变(变矮)缩短肌肉动员时间的机制实验无法证明。无论负重与否,在16个样本中竖脊肌肌电信号均检测出弯曲放松现象(FRP),信号检测率达100%。最大角度的绝对值方面,负重前后的躯干倾角α不存在显著性差异(P>0.05),屈腰角β不存在显著性差异(P>0.05)。肌电关闭(EMG-off)角方面,负重前后的躯干倾角α的绝对值存在显著性差异(P<0.05),屈腰角β的绝对值存在显著性差异(P<0.05);倾角α的相对值存在显著性差异(P<0.05),屈腰角β的相对值存在显著性差异(P<0.05)。肌电开启(EMG-on)角方面,负重前后的躯干倾角α的绝对值存在显著性差异(P<0.05),屈腰角β的绝对值存在显著性差异(P<0.05);倾角α的相对值存在非常显著性差异(P<0.01),屈腰角β的相对值存在显著性差异(P<0.05)。在肌肉协调性研究方面,rectus abdominis (RA)腹直肌, external oblique (EO)腹外斜肌和biceps femoris(BF)股二头肌三块肌肉数据采集不全,biceps femoris (BF)股二头肌的肌电一直大于最大值的5%即一直处于开启状态,说明股二头肌在人体腰部弯曲的过程中没有发挥作用。external oblique (EO)腹外斜肌有俩组数据显示其开启的时间比elector spinae (ES)竖脊肌早。国内对于身高蠕变和弯曲放松特性现象的研究还很少,需要人们投入更大的精力。
Purposes: The purpose of the study was to investigate the effect of the spinalshrinkage on the characteristic of flexion relaxation phenomenon in erector spinaemuscle. In the process of experiment test muscles is elector spinae (ES), rectusabdominis (RA), external oblique (EO) and biceps femoris (BF)。The second isaccording to the muscles of the intensity of the relationship between muscle, discussestest the four muscles in the process of flexion in coordination.
     Methods: 12 male university students volunteered for this study. Theexperimental process test for main muscle elector spinae (ES) vertical spinalmuscular, rectus abdominis (RA) abdominal muscle, external oblique (EO) abdomenbiceps femoris and the oblique muscle (BF) shares biceps four muscles. The spinalshrinkage was made with a load of 20% body weight on shoulder in 10 min. Eachperformed three trials of lumbar flexion-extension with the cycle of 5s flexion, and 5sextension in standing before and after shrinkage. EMG signals acquisition and digitalcamera synchronously, experimental data in the weight three times before and aftershrinkage.
     Results: Human body in 10 minutes with static load their shoulders weight 20%of the conditions, the average height creep of 5.9 mm. Bending process, in the fleshreport close (EMG-off), before and after loading, the trunk inclination Angle theintimacy competency scale from 51.7°into 55.2 absolute value°(p = 0.039) at thesame time and the relative value of Angle from 83.2% to 90.1% (p = 0.030), flexor waist Angle from 69.0°Angle absolute value to 80.5°(p = 0.020) at the same timeand the relative value of Angle from 71.1% to 81.9% (p = 0.030). In the flesh reportopen (EMG-on), before and after loading, the trunk inclination Angle the intimacycompetency scale from 54.6°into 58.3 absolute value°(p = 0.015) at the same timeand the relative value of Angle from 87.9% to 95.0% (p = 0.003), flexor waist Anglefrom 76.1°Angle absolute value to 86.5°(p = 0.012) at the same time and therelative value of Angle from 78.7% to 88.0% (p = 0.030).
     Conclusion and suggestion: It was concluded that shrinkage developed inintervertebral discauses the erector spinae muscles to become active longer duringanterior flexion as well as extension period. It is not clear in this time that theshrinkage will cause the change of FRP. However, one explanation may be relative toneural reflex. 16 samples shaft spinal muscular EMG signals are detected (FRP)bending relax phenomenon, signal detection rate of 100%. The absolute value of thebiggest Angle, the weight of the body of dip Angleαbefore and after not significantly(P > 0.05) down, waist Angleβdoes not exist significant differences (P > 0.05).Muscle electricity shut (EMG-off) in Angle, the load of the body of before and afterthe intimacy competency scale absolute value inclination significantly (P < 0.05)down, waist Angle absolute value significantly (P < 0.05); Dip the relative value ofthe intimacy competency scale there exist significant difference (P < 0.05), bowedAngle relative value waist exists significant difference (P < 0.05). Muscle electricityopen (EMG-on) in Angle, the load of the body of before and after the intimacycompetency scale absolute value inclination significantly (P < 0.05) down, waist Angle absolute value significantly (P < 0.05); Dip the relative value of the intimacycompetency scale exist very significant difference (P < 0.01), bowed Angle relativevalue waist exists significant difference (P < 0.05). In the muscle coordination, rectusabdominis (RA) abdominal muscle, external oblique (EO) abdomen biceps femorisand the oblique muscle (BF) shares biceps three muscles data acquisition is notcomplete, biceps femoris (BF) shares biceps muscle electricity have been greater thanthe maximum value of 5% that have been in an open position that shares biceps inhuman waist in the process of bending don't work. External oblique (EO) abdomenthe oblique muscle two sets of data show the open time is earlier than elector spinae(ES) vertical spinal muscular. More studies are necessary to understand clearly thechange of FRP after shrinkage in future.
引文
[1]赵焕彬,李建设.运动生物力学[M].(第三版)北京:高等教育出版社,2008:38-39
    [2]赵焕彬.摄像测量方法的误差比较与分析[D].硕士学位论文
    [3]赵焕彬.运动技术可视化实时生物力学诊断系统的研制[D].博士学位论文
    [4]单信海.不同的负重对下蹲跳动作下肢肌肉拉长一缩短周期特性的影响[J].第12届全国运动生物力学学术交流论文集:121-122
    [5]初日德,林曦,马洪顺,李润,李振宇.人体脊椎骨蠕变和松弛特性的研究[J].吉林工业大学学报,1994,3:58-61
    [6]卢廷胜,王以进,万年宇,宋展昭,吕则文.腰椎间盘的粘弹性性质的实验研究[J],医用生物力学,1996,11(4):219-223
    [7]宗立本,段德臣,侯小平,周华江,左金良.硬脊膜的蠕变率与椎间盘突出症的自然病程[J].泰山医学院学报,1999,20(3)222-223
    [8]王丽,刘加海,王健.表面肌电与腰背功能评价方法研究进展[J].中国康复医学杂志,2006,21(1):84-87
    [9]王琨,白爱利,李小生,姜涛.不同坐姿下腰部负荷及竖脊肌活动的生物力学研究[J].西安体育学院学报,2008,25(1):67-72
    [10]黄强民,爱娃安得森,阿尔福托斯同森.躯干侧屈时腰背肌、腹肌的肌电活动及其稳定脊柱的生理功能[J].中华骨科杂志,2003,23(5):303-307
    [11]吴纪饶.腹直肌表面肌电图的研究[J].江西师范大学学报,1991,15(1):62-66
    [12]曹玉珍,胡勇.站姿和坐姿腰部表面肌电研究[J].中华劳动卫生职业病杂志,2006,24(12):758-759
    [13]卢德明,王云德,李凤璋.摄影测力遥测肌电的同步测试与分析[J].运动生物力学,1985:49-53
    [14]郭郡浩.身高对腰椎间盘影响的生物力学分析[J].按摩与导引,1999,15(5):5-6
    [15]马莉芳,陈香仙.Thera-band渐进式训练在下腰痛的应用与临床实践[J].北京体育大学学报,2009,(5).
    [16] Althoff I, Brinckmann W, Frobin W, Sandover J, Burton K. An improved method of staturemeasurement for quantitative determination of spinal loading: application to sitting postures andwhole body vibration. Spine 1992;17(6):683–93.
    [17] Boocock, M.G., Garbutt, G., Linge, K., Reilly, T., Troup, J.D. Changes in stature followingdrop jumping and post-exercise gravity inversion. Med. Sci. Sports Exerc. 1990; 22 (3): 385-390.
    [18] Eklund JA, Corlett NE. Shrinkage as a measure of the effect of load on the spine.Spine1984;9(2):189–94.
    [19] Floyd WF, Silver PHS. Function of the erector spinae in flexion of the trunk. Lancet1951;1:133–4.
    [20] Floyd, W.F., Silver, P.H.S. The function of the erectores spinae muscles in certain movementsand postures in man. J. Physiol. 1955; 129:184–203.
    [21] Foreman TK, Linge K. The importance of heel compression in the measurement ofdiurnal stature variation. Applied Ergonomics 1989; 20:299–300.
    [22] Garbutt, G., Boocock, M.G., Troup, J.D. Running speed and spinal shrinkage inrunners with and without low back pain. Med. Sci. Sports Exerc. 1990; 22 (6):769-772.
    [23] Gerke D A , Brismée J-M, Sizer P S, Dedrick G S, James C R, Change in spine heightmeasurements following sustained mid-range and end-range flexion of the lumbar spine,Applied Ergonomics 2011; 42: 331-336.
    [24] Golding, J.S.R. Electromyography of the erector spinae in low back pain. Postgrad. Med. J.1952; 28:401–406.
    [25] Graf M, Guggenbühl U, Krueger H. An assessment of seated activity and postures at fivework places. International Journal of Industrial Ergonomics 1995;15:81–90.
    [26] Hashemirad, F., Talebian S., Hatef, B., Kahlaee, A.H. The relationship between flexibility andEMG activity pattern of the erector spinae muscles during trunk flexion–extension. JElectromyography and Kinesiology 2009; 19: 746–753
    [27] Healey, E.L., Fowler, N.E., Burden, A.M., McEwan, I.M. Repeatability of staturemeasurements in individuals with and without chronic low back pain. Ergonomics 2005a;48:1613-1622.
    [28]Healey EL, Fowler NE, Burden AM, McEwan IM. Raised paraspinal muscle activity reducesrate of stature recovery after loaded exercise in individuals with chronic low back pain. Archivesof Physical Medicine and Rehabilitation 2005b;86:710–5.
    [29] Healey EL, Burden AM, McEwan IM, Fowler NE. The impact of increasing paraspinalmuscle activity on stature recovery in asymptomatic people. Archives of Physical Medicine andRehabilitation 2008;89:749–53.
    [30] Kanlayanaphotporn, R., Williams, M., Fulton, I., Trott., P. Reliability of the vertical spinalcreep response measured in sitting (asymptomatic and low-back pain subjects). Ergonomics 2002;45 (3), 240-247.
    [31] Kourtis, D., Magnusson, M.L., Smith, F., Hadjipavlou, A., Pope, M.H. Spine height and discheight changes as the effect of hyperextension using stadiometry and MRI. Iowa Orthop. J. 2004;24:65-71.
    [32] Kumar, S. Theories of musculoskeletal injury causation. Ergonomics 2001; 44, 17-47.
    [33] Leivsth G, Drerup B. Spinal shrinkage during work in a sitting posture compared to work in astanding posture. Clinical Biomechanics 1997;12(7/8):409–18.
    [34] Lengsfeld M, Frank A, van Deürsen DL, Griss P. Lumbar spine curvature during office chairsitting. Medical Engineering & Physics 2000;22:665–9
    [35] Magnusson, M.L., Pope, M.H., Hansson, T. Does hyperextension have an unloading effect onthe intervertebral disc? Scand. J. Rehabil. Med. 1995; 27, 5-9.
    [36] Marras, W.S., Lavender, S.A., Leurgans, S.E., Fathallah, F.A., Fergusons, S.A., Allread, W.G.,et al., Biomechanical risk factors for occupationally related low-back disorders. Ergonomics1995,38, 377-410
    [37] Teuvo Sihvonen.Flexion Relaxation of the Hamstring Muscles During Lumbar-PelvicRhythmrch. Phys. Med. Rehabil. 1996;77 (10): 1071-1073.
    [38] NIOSH. Survey of Occupational Injuries and Illnesses, National Institute of OccupationalSafety and Health. Washington, DC., 1999.
    [39] Norcross JP, Lester GE, Weinhold P, Dahners LE. An in vivo model of degenerative discdisease. Journal of Orthopaedic Research 2003;21(1):183–8.
    [40] Olson M., Solomonow M., Li L. Flexion-relaxation response to gravity. J of Biomech 2006;39:2545-2554.
    [41] Puntumetakul,R., Trott,P., Williams,M., Fulton,I. Effect of time of day on the vertical spinalcreep response, Applied Ergonomics 2009;40:33–38
    [42] Rodacki, C.L., Fowler, N.E., Rodacki, A.L., Birch, K. Repeatability of measurement indetermining stature in sitting and standing. Ergonomics 2001;44:1076-1085.
    [43] Rodacki, C.L., Fowler, N.E., Rodacki, A.L., Birch, K., 2003. Stature loss and recovery inpregnant women with and without low back pain. Arch. Phys. Med. Rehabil. 2003;84:507-512.
    [44] Sbriccoli, P., Yousuf, K., Kopershtein, I., Solomonow, M., Zhou, B., Zhu, M., Lu, Y. Staticload repetition is a risk factor in the development of lumbar cumulative disorder. Spine 2004;2643-2653.
    [45] Sihvonen T., Flexion Relaxation of the Hamstring Muscles during Lumbar-pelvic rhythm,Arch Phys Med Rehabil 1997; 78:486-90
    [46] Solomonow, M., Baratta, R.V., Banks, A., Freudenberger, C., Zhou, B,H. Flexion-relaxationresponse to static lumbar flexion in males and females. Clin Biomech 2003; 18:273-279
    [47] Solomonow, M., Zhou, B.H., Baratta, R.V., Lu, Y., Harris, M. Biomechanics of increasedexposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscularstabilization. Spine 1999; 24(23):2426-2434.
    [48] T.Reilly, M.G.Boocock. Changes in stature during exercise and sports training.Clin. Biomech.2000;15: 546-548.
    [49] Svensson HO, Andersson GBJ. The relationship of low-back pain, work history, workenvironment, and stress: a retrospective cross-sectional study of 38 to 64 year old women. Spine1989;14(5):517–21.
    [50] US Department of Labor. Workplace Injuries and Illnesses. Bureau of Labor Statics, ReportUSDL-95-508. Washington, 1995.
    [51] Van Deursen DL, van Deursen LL, Sniders CJ. Relationship between everyday activities andspinal shrinkage. Clinical Biomechanics 2005;20(5):547–50.
    [52] Wilke H, Neff P, Caimi M, Hoogland T, Claes L. New in vivo measurements of pressures inthe intervertebral disc in daily life. Spine 1999;24(8):755–62.
    [53] Williams, M., Solomonow, M., Zhou, B.H., Baratta, R.V., Harris, M. Mutifidus spasmselicited by prolonged lumbar flexion. Spine 2000; 25(22): 2916-2924.
    [54] Xu, Y., Bach, E., Orhede, E. Work environment and low-back pain: the influence ofoccupational activities. Occup. Enviton. Med. 1997; 54, 741-745.
    [55]姜建元,吕飞舟,张志玉,王以进.前交叉韧带及其替代物粘弹性性质的实验研究[J].医用生物力学,1997,12(4):205-211.
    [56]吴翠娥,刘建春,袁鹏,刘伟民.等速向心运动中膝关节屈伸肌群的sEMG研究[J].体育与科学,2008,29(06):20-23.
    [57]井兰香,刘宇,田石榴.阻力训练及超等长阻力训练对下肢肌肉活性和力量的影响[J].中国体育科技,2011,47(6):90-93.
    [58]马洪顺,王玉臣,刘绍英,麻文办.人颈椎前纵韧带蠕变实验研究[J].试验枝术与试验机,1993,33(12):53-55.
    [59]张远鹰,王雪晖,应洪亮等.前交叉韧带粘弹性特性的实验研究[J].中国生物医学工程学报,2007,26(2):260-264.
    [60]王继艳.体育锻炼对中年人下肢主要运动素质影响的实验分析和评定[D].西安体育学院硕士学位论文,2010.
    [61]李鹏,孟广伟,马洪顺.膝关节前交叉韧带与后交叉韧带粘弹性实验研究[J].生物医学工程研究,2006,25(4):202-205.
    [62]陈鹏,张忠君,马洪顺.拇指掌指关节侧副韧带粘弹性的实验研究[J].生物医学工程研究,2007,26(3):253-255.
    [63]李治罡,赵鑫,孙博等.人体腰椎后纵韧带蠕变的实验研究[J].中医正骨,2005,17(2):5.
    [64]王溪原,苑福生,张远石,袁宏谋,冯晰民.青年与老年人脊柱黄韧带黏弹性实验研究[J].医用生物力学,2011,26(1):75-80.
    [65]于涛,马洪顺.髂股韧带与股骨头韧带黏弹性实验研究[J].北京生物医学
    [66]赵宝林,张忠君,马洪顺.人颈椎后纵韧带黏弹性实验研究[J].北京生物医学工程,2005,24(2):120-124.
    [67]朴成东,李鹏,马洪顺.膝关节前交叉韧带与内侧副韧带粘弹性实验研究[J].医用生物力学,2007,22(1):64-67
    [68]SM McGill, S Brown. Creep response of the lumber spine to prolonged full flexion[J].ClinicalBiomechanics,1992,7:43–46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700