灰霉病菌双组分组氨酸激酶信号途径上五个关键基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双组分组氨酸激酶(以下简称TCHK)信号途径在真菌体内参与多种生命活动,但目前,人们对灰霉病菌的TCHK信号途径还缺乏深入的了解。已有研究表明,二甲酰亚胺类杀菌剂(以下简称DCFs)通过激活TCHK信号途径而抑制灰霉病菌生长,但该药剂具体的作用位点尚不清楚,因此,研究灰霉病菌TCHK信号途径对于了解DCFs的作用机制有重要的理论和现实意义。
     本课题利用农杆菌介导的真菌转化系统、通过基因敲除和互补的方法研究了灰霉病菌TCHK途径上五个重要元件BOS1、BRRG-1、BOS4、BOS5和BOS2的生物学功能,结果发现:1) BRRG-1、BOS4、BOS5和BOS2的敲除突变体均不形成气生菌丝和分生孢子;BOS5敲除突变体的菌丝严重扭曲畸形、多分枝、顶端膨大。2)药剂敏感性测定发现,只有BOSl基因敲除突变体对DFCs表现抗性,而其它四个基因敲除突变体对该类药剂表现更加敏感;另外,BOS1上点突变可导致病菌对DFCs产生抗性。3)渗透压敏感性测定发现,所有五个元件的敲除突变体对NaCl和KCl产生的离子型渗透压力表现敏感,而对山梨醇等中性渗透压力的敏感性无改变。4)氧化压力敏感性测定发现,除BOS1以外其他四个元件的敲除突变体对H202均表现敏感。5)致病性测定表明,灰霉病菌TCHK信号途径上的三个促分裂原活化蛋白(以下简称MAP)激酶BOS4、BOS5和BOS2与致病性密切相关,这些基因缺失突变体能正常侵染穿透寄主细胞但不能形成病斑。6)蛋白杂交结果显示,在正常培养条件下,BRRG-1、BOS4 (?)口BOS5敲除突变体内均检测不到BOS2磷酸化,表明这些组分位于BOS2的上游。
     本研究结果表明,灰霉病菌TCHK信号途径参与菌体致病性、产孢、生长发育等多种生命活动;BOS1应该是DFCs的靶标位点;此外,由于BOS4、BOS5和BOS2在病菌致病中发挥重要作用,它们可能成为潜在的新药靶。
Two-component histidine kinase (TCHK) signaling pathway is involved in a variety of life activities of fungi, but to date, little is known about the TCHK in Botrytis cinerea, which causes grey mold in more than 200 economically important crops. Previous studies have showed that the dicarboximides fungicides (DCFs) act as antifungal compounds, in part, through activation of the TCHK in B. cinerea. However, the target of DCFs remains unclear. In this study, thus, we investigated functions of the five important TCHK components:BOS1, BRRG-1, BOS4, BOS5 and BOS2 in Botrytis cinerea using a gene knockout and complementary strategy. Results of this study showed that 1) BRRG-1, BOS4, BOSS and BOS2 knockout mu-tants could not produce aerial hyphae and conidia. The BOS5 deletion mutant formed seriously distorted hyphal and swelling tips with more branches.2) The disruption mutant of BOS1 showed increased resistance to DCFs, while mutants of other four elements exhibited more sensitive to these fungicides compared to the wild type strain. Additionally, mutations in BOS1 resulted to resistance to DCFs.3) Sensitivity to osmotic stress showed that all five gene deletion mutants revealed increased sensitiv-ity to ionic osmotic stresses produced by NaCl and KC1, but not by the neutral os-motic stress mediated by sorbitol.4) Sensivity to oxidative stress indicated that the mutants of BRRG-1, BOS4, BOS5 and BOS2 became more sensitive to oxidative stress generated by H2O2 except that of BOS1as compared to the wild-type strain.5) Inoculation on cucumber and rapeseed leaves showed that the three mitogen-activated protein (MAP) kinases BOS4, BOS5 and BOS2 in TCHK pathway were essential for the pathogenicity. These gene disruption mutants could penetrate the host surface but couldn't form lesions.6) Western blotting analysis showed that the phosphorylation of BOS2 protein was not detected in BRRG-1, BOS4 and BOS5 deletion mutants un-der normal cultural condition, suggesting that these elements were located at the BOS2 upstream of TCHK signaling pathway.
     Results of this study indicate that 1) the TCHK signaling pathway is involved in regulating vegetative differentiation, pathogenicity, and the sensitivity to osmotic and oxidative stresses in B. cinerea; 2) BOS1 could be the target of DCFs, meanwhile be-cause BOS4, BOS5 and BOS2 are important virulence determinants in B. cinerea, they could become potential targets for the development of new antifungal com-pounds.
引文
Agrios G. Plant pathology. London Elsevier Academic Press,1997,635.
    Akutsu K, Kobayashi Y. Morphological studies on infection process of cucumber leaves by co-nidia of botrytis cinerea stimulated with various purine-related compounds. Annual Re-view of Phytopathology of Japan,1981,47:234-243.
    Appleby J L, Parkinson J S, Bourret R B. Signal transduction via the minireview multi-step phos-phorelay:Not necessarily a road less traveled. Cell,1996,86:845-848.
    Arino J, Casamayor A, Gonzalez A. Type 2c protein phosphatases in fungi. Eukaryot Cell,2011, 10:21-33.
    Backhouse D, Willets H J. A histochemical study of sclerotia of botrytis cinerea and botrytis fabae. Canadian Journal of Microbiology, 1984,30:171-178.
    Balhadere P V, Foster A J, Talbot N J. Identification of pathogenicity mutants of the rice blast fungus magnaporthe grisea by insertional mutagenesis. Molecular Plant-Microbe Interac-tions,1999,2:129-142.
    Banno S, Noguchi R, Yamashita K, et al.. Roles of putative his-to-asp signaling modules hpt-1 and rrg-2, on viability and sensitivity to osmotic and oxidative stresses in neurospora crassa. Current Genetics,2007,51:197-208.
    Bourret R B, Borkovich K A, Simon M I. Signal transduction pathways involving protein phos-phorylation in prokaryotes. Annual Review of Biochemistry,1991,60:401-441.
    Brent K J, Hollomon D W. Frac monogrph no.2 gcpe. Brussels:1998,1.
    Brewster J L, de Valoir T, Dwyer N D, et al.. An osmosensing signal transduction pathway in yeast. Science,1993,259:1760-1763.
    Brown J L, North S, Bussey H. Skn7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. Journal of Bacteriology, 1993,175:6908-6915.
    Brown J S, Holden D W. Insertional mutagenesis of pathogenic fungi. Current Opinion in Micro-biology,1998,1:390-394.
    Buchenauer H. Mechanism of action of triazolyl fungicides and related compound. Lyr H. Modern selective fungicides, properties, applications and mechanism of action. New York:Long-man and Wiley,1987,205-231.
    Bundock P, Dulk-Ras A, Beijersbergen A, et al.. Trans-kingdom t-DNA transfer from agrobacte-rium tumefaciens to saccharomyces cerevisiae. EMBO Journal,1995,14:3206-3214.
    Cangelosi G A, Ankenbauer R G, Nester E W. Sugars induce the agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein. Proceedings of the National Academy of Sciences of the United States of America,1990,87:6708-6712.
    Catlett N L, Yoder O C, Turgeon B G. Whole-genome analysis of two-component signal transduc-tion genes in fungal pathogens. Eukaryotic Cell,2003,2:1151-1161.
    Chang C, Stewart R C. The two-component system:Regulation of diverse signaling pathways in prokaryotes and eukaryotes. Plant Physiology,1998,117:723-731.
    Chang C, Stadeler R C. Ethylene hormone receptor action in arabidopsis. Bioassays,2001,23: 619-627.
    Choi G J, Lee H J, Cho K Y. Involvement of catalase and superoxide dismutase in resistance of-botrytis cinereato dicarboximide fungicide vinclozolin. Pesticide Biochemistry and Physiology,1997,59:1-10.
    Cui W, Beever R E, Parkes S L, et al.. An osmosensing histidine kinase mediates dicarboximide fungicide resistance in botryotinia fuckeliana (botrytis cinerea). Fungal Genetics and Bi-ology,2002,36:187-198.
    Daboussi M J, Capy P. Transposable elements in filamentous fungi. Annual Review of Microbiol-ogy,2003,57:275-299.
    Davidse L, Ishii T. Biochemical and molecular aspects of benzimidazoles, n-phenylcarbamates and n-phenylformamidoxines and the mechanisms of resistance to these compounds in fungi. Lyr H. Modern selective fungicides—properties, applications, mechanisms of ac-tion. Jena:Gustav Fisher Verlag,1995,305-322.
    De-Groot M J A, Bundock P, Hooykaas P J J, et al.. Agrobacterium tumefaciens-mediated trans-formation of filamentous fungi. Nature Biotechnology,1998,16:839-842.
    Dixon K P, Xu J R, Smirnoff N, et al.. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by magnaporthe grisea. Plant Cell,1999,11:2045-2058.
    Doehlemann G, Berndt P, Hahn M. Different signalling pathways involving a galpha protein, camp and a map kinase control germination of botrytis cinerea conidia. Molecular Microbiology, 2006,59:821-835.
    Dongo A, Bataille-Simoneau N, Campion C, et al.. The group ⅲ two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial polyketide am-bruticin. Applied and Environment Microbiology,2009,75:127-134.
    Dry I B, Yuan K H, Hutton D G. Dicarboximide resistance in field isolates of alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genetics and Biology,2004,41:102-108.
    Dujon B, Sherman D, Fischer G, et al.. Genome evolution in yeasts. Nature,2004,430:35-44.
    Elad Y. Scanning electron microscopy of parasitism of botrytis cinerea on flowers and fruits of cucumber Transactions of the British Mycological Society,1988,91:185-190.
    Elad Y, Williamson B, Tudzynski P, et al.. Botrytis spp., and diseases they cause in agricultural systems—an introduction. Elad Y, Williamson B, Tudzynski P, et al.. Botrytis:Biology, pathology and control. Dordrecht:Kluwer Academic Publishers,2004,1-6.
    Engelbrecht R W. The role of the mediterranean fruit fly, ceratitis capitata, in botrytis bunch rot on grape. South Africa:University of Stellenbosch,2002.
    Faretra F, Pollastro S. Genetic basis of resistance to benzimidazole and dicarboximide fungicides in botryotinia fuckeliana (botrytis cinerea). Mycological Research,1991,95:943-951.
    Faretra F, Pollastro S. Isolation, characterization and genetic analysis of laboratory mutants of botryotinia fuckeliana resistant to the phenylpyrrole fungicide cga 173506. Mycological Research,1993,97:620-624.
    Fermaud M, Le Menn R. Association of botrytis cinerea with grape berry moth larvae. Phytopa-thology,1989,79.
    Fermaud M, Gaunt R E. Thrips obscuratus as a potential vector of botrytis cinerea in kiwifruit. Mycological Research,1995,99:267-273.
    Fluit A C, Visser M R, Schmitz F J. Molecular detection of antimicrobial resistance. Clinical Mi-crobiology Reviews,2001,14:836-871.
    Fujimura M, Ochiai N, Ichiishi A, et al.. Fungicide resistance and osmotic stress sensitivity in os mutants of neurospora crassa. Pesticide Biochemistry and Physiology,2000,67:125-133.
    Fujimura M, Ochiai N, Oshima M, et al.. Putative homologs of ssk22 mapkk kinase and pbs2 mapk kinase of saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in neurospora crassa. Bioscience Biotechnology and Biochemistry,2003,67:186-191.
    Galcheva-Gargova Z, Derijard B, Wu I H, et al.. An osmosensing signal transduction pathway in mammalian cells. Science,1994,265:806-808.
    Gisi U, Chin K M, Knapova G, et al.. Recent developments in elucidating modes of resistance to phenylamide, dmi and strobilurin fungicides. Crop Protection,2000,19:863-872.
    Gonzalez A, Ruiz A, Serrano R, et al.. Transcriptional profiling of the protein phosphatase 2c fam-ily in yeast provides insights into the unique functional roles of ptcl. J Biol Chem,2006, 281:35057-35069.
    Gustin M C, Albertyn J, Alexander M, et al.. Map kinase pathways in the yeast saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews,1998,62:1264-1300.
    Hanks S, Quinn A, Hunter T. The protein kinase family:Comserved featrures and deduced phy-logeny of the catalytic domains. Science,1988,241:42-52.
    Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews,2002,66:300-372.
    Jiang J, Yun Y, Fu J, et al.. Involvement of a putative response regulator fgrrg-1 in osmotic stress response, fungicide resistance and virulence in fusarium graminearum. Molecular Plant Pathology,2011,12:425-436.
    Jiang L, Yang J, Fan F, et al.. The type 2c protein phosphatase fgptc1p of the plant fungal patho-gen fusarium graminearum is involved in lithium toxicity and virulence. Mol Plant Pathol, 2010,11:277-282.
    Jones C A, Greer-Phillips S E, Borkovich K. A. The response regulator rrg-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fer-tility, osmotic stress, and fungicide resistance in neurospora crassa. Molecular Biology of the Cell,2007,18:2123-2136.
    Kahmann R, Basse C. Restriction enzyme mediated integration (remi) and its impact on the isola-tion of pathogenicity genes in fungi attacking plants. European Journal of Plant Pathol-ogy,1999,105:221-229.
    Kojima K, Takano Y, Yoshimi A, et al.. Fungicide activity through activation of a fungal signalling pathway. Molecular Microbiology,2004,53:1785-1796.
    Kovtun Y, Chiu W L, Tena G, et al.. Functional analysis of oxidative stress-activated mito-gen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America,2000,97:2940-2945.
    Lammers T, Lavi S. Role of type 2c protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol,2007,42:437-461.
    Lee H J, Choi G J, Cho K Y. Correlation of lipid peroxidation in botrytis cinerea caused by dicar-boximide fungicides with their fungicidal activity. Journal of Agricultural and Food Chemistry,1998,46:737-741.
    Li S, Ault A, Malone C L, et al.. The yeast histidine protein kinase, sln1p, mediates phosphotrans-fer to two response regulators, ssk1p and skn7p. EMBO Journal,1998,17:6952-6962.
    Li S, Dean S, Li Z, et al.. The eukaryotic two-component histidine kinase sln1p regulates och1 via the transcription factor, skn7p. Molecular Biology of the Cell,2002,13:412-424.
    Liu W, Leroux P, Fillinger S. The hog1-like map kinase sakl of botrytis cinerea is negatively regulated by the upstream histidine kinase bosl and is not involved in dicarboximide-and phenylpyrrole-resistance. Fungal Genetics and Biology,2008,45:1062-1074.
    Liu W, Soulie M C, Perrino C, et al.. The osmosensing signal transduction pathway from botrytis cinerea regulates cell wall integrity and map kinase pathways control melanin biosynthe-sis with influence of light. Fungal Genetics and Biology,2011,48:377-387.
    Liu X H, Lu J P, Zhang L, et al.. Involvement of a magnaporthe grisea serine/threonine kinase gene, mgatg1, in appressorium turgor and pathogenesis. Eukaryotic Cell,2007,6: 977-1005.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative pcr and the 2-δδct method. Methods,2001,25:402-408.
    Lohrmann J, Harter K. Plant two-component signaling systems and the role of response regulators. Plant Physiology,2002,128:363-369.
    Ma Z, Michailides T J. Characterization of iprodione-resistant alternaria isolates from pistachio in california. Pesticide Biochemistry and Physiology,2004,80:75-84.
    Ma Z, Michailides T J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 2005,24:853-863.
    Ma Z, Yan L, Luo Y, et al.. Sequence variation in the two-component histidine kinase gene of bo-trytis cinerea associated with resistance to dicarboximide fungicides. Pesticide Biochem-istry and Physiology,2007,88:300-306.
    Maeda T, Wurgler-Murphy S M, Saito H. A two-component system that regulates an osmosensing map kinase cascade in yeast. Nature,1994,369:242-245.
    Maeda T, Takekawa M, Saito H. Activation of yeast pbs2 mapkk by mapkkks or by binding of an sh3-containing osmosensor. Science,1995,269:554-558.
    Marques J M, Rodrigues R J, de Magalhaes-Santana A C, et al.. Saccharomyces cerevisiae hog1 protein phosphorylation upon exposure to bacterial endotoxin. Journal of Biological Chemistry,2006,281:24687-24694.
    Mattison C P, Spencer S S, Kresge K A, et al.. Differential regulation of the cell wall integrity mi-togen-activated protein kinase pathway in budding yeast by the protein tyrosine phos-phatases ptp2 and ptp3. Mol Cell Biol,1999,19:7651-7660.
    MgGrath M T. Fungicide resistance in cucurbit powdery mildew, experiences and challenges. Plant Disease,2001,85:236-243.
    Michielse C B, Hooykaas P J, van den Hondel C A, et al.. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics,2005,48:1-17.
    Mishra N C. Characterization of the new osmotic mutant (os)which orginated during genetic transformationin neurospora crassa. Genetical Research,1977,29:9-19.
    Mochly-Rosen D. Localization of protein kinases by anchoring proteins:A theme in signal trans-duction. Science,1995,268:247-251.
    Mollapour M, Piper P W. Hoglp mitogen-activated protein kinase determines acetic acid resis-tance in saccharomyces cerevisiae. FEMS Yeast Research,2006,6:1274-1280.
    Motoyama T, Kadokura K, Ohira T, et al.. A two-component histidine kinase of the rice blast fun-gus is involved in osmotic stress response and fungicide action. Fungal Genetics and Bi-ology,2005,42:200-212.
    Motoyama T, Ochiai N, Morita M, et al.. Involvement of putative response regulator genes of the rice blast fungus magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Current Genetics,2008,54:185-195.
    Mullins E D, Chen X, Romaine P, et al.. Agrobacterium-mediated transformation of fusarium ox-ysporum:An efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 2001,91:173-180.
    Ninfa A J, Magasanik B. Covalent modification of the glng product, nri, by the glnl product, nrii, regulates the transcription of the glnalg operon in escherichia coli. Proceedings of the Na-tional Academy of Sciences,1986,83:5909-5913.
    Nixon B T, Ronson C W, Ausubel F M. Two-component regulatory systems responsive to envi-ronmental stimuli share strongly conserved domains with the nitrogen assimilation regu-latory genes ntrb and ntrc. Proceedings of the National Academy of Sciences,1986,83: 7850-7854.
    "Noguchi R, Banno S, Ichikawa R, et al.. Identification of os-2 map kinase-dependent genes in-duced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in neu-rospora crassa. Fungal Genetics and Biology,2007,44:208-218.
    Ochiai N, Fujimura M, Motoyama T, et al.. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of neurospora crassa. Pest Management Science,2001,57:437-442.
    Ochiai N, Tokai T, Nishiuchi T, et al.. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in fusarium graminearum. Biochemical Biophysical Research Communications,2007,363:639-644.
    Oita S, Horita M, Yanagi S O. Purification and properties of new chitin-binding antifungal cb-1 from bacillus lichenigormis m-4. Bioscience Biotechnology and Biochemistry,1996,60: 481-483.
    Orth A B, Sfarra A, Pell E J, et al.. Characterization and genetic analysis of laboratory mutants of ustilago maydis resistant to dicarboximide and aromatic hydrocarbon fungicides. Phyto-pathology,1994,84:1210-1214.
    Orth A B, Rzhetskaya M, Pell E J, et al.. A serine (threonine) protein kinase confers fungicide re-sistance in the phytopathogenic fungus ustilago maydis. Applied and Environment Micro-biology,1995,61:2341-2345.
    Oshima M, Fujimura M, Banno S, et al.. A point mutation in the two-component histidine kinase bcos-1 gene confers dicarboximide resistance in field isolates of botrytis cinerea. Phyto-pathology,2002,92:75-80.
    Oshima M, Banno S, K. O, et al.. Survey of mutations of a histidine kinase gene bcosl in dicar- boximide-resistant field isolates of botrytis cinerea. Journal of General Plant Pathology, 2006,72:65-73.
    Ota I M, Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science, 1993,262:566-569.
    Panadero J, Pallotti C, Rodriguez-Vargas S, et al.. A downshift in temperature activates the high osmolarity glycerol (hog) pathway, which determines freeze tolerance in saccharomyces cerevisiae. Journal of Biological Chemistry,2006,281:4638-4645.
    Pappas A C, Fisher D J. A comparison of the mechanisms of action of vinclozolin, procymidone, iprodione and prochloraz against botrytis cinerea. Pesticide Science,1979,10:239-246.
    Parkinson J S, Kofoid E C. Communication modules in bacterial signaling proteins. Annual Re-view of Genetics,1992,26:71-112.
    Parkinson J S. Signal transduction schemes of bacteria. Science,1993,73:857-871.
    Pillonel C, Meyer T. Effect of phenylpyrroles on glycerol accumulation and protein kinase activity of neurospora crassa. Pesticide Science,1997,49:229-236.
    Posas F, Wurgler-Murphy S M, Maeda T, et al.. Yeast hog1 map kinase cascade is regulated by a multistep phosphorelay mechanism in the slnl-ypdl-sskl "Two-component" Osmosensor. Cell,1996,86:865-875.
    Pratt L A, Silhavy T J. Porin regulation of escherichia coli. J Hoch T S, eds. Two-component sig-nal transduction. Washington DC:ASM Press,1995,105-128.
    Raitt D C, Posas F, Saito H. Yeast cdc42 gtpase and ste20 pak-like kinase regulate shol-dependent activation of the hog1 mapk pathway. EMBO Journal,2000,19:4623-4631.
    Ramesh M A, Laidlaw R D, Durrenberger F, et al.. The camp signal transduction pathway medi-ates resistance to dicarboximide and aromatic hydrocarbon fungicides in ustilago maydis. Fungal Genetics and Biology,2001,32:183-193.
    Ramezani-Rad M. The role of adaptor protein ste50-dependent regulation of the mapkkk stel 1 in multiple signalling pathways of yeast. Current Genetics,2003,43:161-170.
    Reiser V, Salah S M, Ammerer G. Polarized localization of yeast pbs2 depends on osmostress, the membrane protein sho1 and cdc42. Nature Cell Biology,2000,2:620-627.
    Rispail N, Soanes D M, Ant C, et al.. Comparative genomics of map kinase and cal-cium-calcineurin signaling components in plant and human pathogenic fungi. Fungal Genetics and Biology,2009,46:287-298.
    Rolland S, Jobic C, Fevre M, et al.. Agrobacterium-mediated transformation of botrytis cinerea. simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences. Current Genetics,2003,44: 164-171.
    Rui O, Hahn M. The slt2-type map kinase bmp3 of botrytis cinerea is required for normal sapro-trophic growth, conidiation, plant surface sensing and host tissue colonization. Molecular Plant Pathology,2007,8:173-184.
    Saito H, Tatebayashi K. Regulation of the osmoregulatory hog mapk cascade in yeast. Journal of Biochemistry,2004,136:267-272.
    Schumacher J, Kokkelink L, Huesmann C, et al.. The camp-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold botrytis cinerea. Molecular Plant-Microbe Interactions,2008,21:1443-1459.
    Schumacher M M, Enderlin C S, Selitrennikoff C P. The osmotic-1 locus of neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Current Microbiology,1997,34:340-347.
    Segmuller N, Ellendorf U, Tudzynski B, et al.. Bcsakl, a stress-activated mitogen-activated pro-tein kinase, is involved in vegetative differentiation and pathogenicity in botrytis cinerea. Eukaryotic Cell,2007,6:211-221.
    Shankarnarayan S, Malone C L, Deschenes R J, et al.. Modulation of yeast slnl kinase activity by the ccw12 cell wall protein. Journal of Biological Chemistry,2008,283:1962-1973.
    Son S, Osmani S A. Analysis of all protein phosphatase genes in aspergillus nidulans identifies a new mitotic regulator, fcpl. Eukaryot Cell,2009,8:573-585.
    Steel C C, Nair N G. Oxidative protective mechanisms and resistance to the dicarboximide fungi-cide, iprodione, in alternaria alternata. Journal of Phytopathology,1995,143:531-535.
    Steel C C. Catalase activity and sensitivity to the fungicides, iprodione and fludioxonil in botrytis cinerea. Letters in Applied Microbiology,1996,22:335-338.
    Thorsen M, Di Y, Tangemo C, et al.. The mapk hog1p modulates fps1p-dependent arsenite uptake and tolerance in yeast. Molecular Biology of the Cell,2006,17:4400-4410.
    van Kan J A, van't Klooster J W, Wagemakers C A, et al.. Cutinase a of botrytis cinerea is ex-pressed, but not essential, during penetration of gerbera and tomato. Molecular Plant-Microbe Interactions,1997,10:30-38.
    Viaud M, Fillinger S, Liu W, et al.. A class iii histidine kinase acts as a novel virulence factor in botrytis cinerea. Molecular Plant-Microbe Interactions,2006,19:1042-1050.
    Ward M J, Zusman D R. Regulation of directed motility in myxococcus xanthus. Molecular Mi-crobiology,1997,24:885-893.
    Warmka J, Hanneman J, Lee J, et al.. Ptcl, a type 2c ser/thr phosphatase, inactivates the hog pathway by dephosphorylating the mitogen-activated protein kinase hogl. Mol Cell Biol, 2001,21:51-60.
    Wendland J. Pcr-based methods facilitate targeted gene manipulations and cloning procedures. Current Genetics,2003,44:115-123.
    Westfall P J, Ballon D R, Thorner J. When the stress of your environment makes you go hog wild. Science,2004,306:1511-1512.
    Williamson B, Tudzynski B, Tudzynski P, et al.. Botrytis cinerea:The cause of grey mould disease. Molecular Plant Pathology,2007,8:561-580.
    Wurgler-Murphy S M, Saito H. Two-component signal transducers and mapk cascades. Trends in Biochemical Sciences,1997,22:172-176.
    Yan L, Yang Q, Sundin G W, et al.. The mitogen-activated protein kinase kinase bos5 is involved in regulating vegetative differentiation and virulence in botrytis cinerea. Fungal Genetics and Biology,2010,47:753-760.
    Yoshimi A, Kojima K, Takano Y, et al.. Group iii histidine kinase is a positive regulator of hog1-type mitogen-activated protein kinase in filamentous fungi. Eukaryotic Cell,2005,4: 1820-1828.
    Young C, Mapes J, Hanneman J, et al.. Role of ptc2 type 2c ser/thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot Cell,2002,1:1032-1040.
    Zarrinpar A, Bhattacharyya R P, Nittler M P, et al.. Sho1 and pbs2 act as coscaffolds linking com- ponents in the yeast high osmolarity map kinase pathway. Molecular Cell,2004,14: 825-832.
    Zhang H, Liu K, Zhang X, et al.. A two-component histidine kinase, moslnl, is required for cell wall integrity and pathogenicity of the rice blast fungus, magnaporthe oryzae. Current Genetics,2010,56:517-528.
    Zhang Y, Lamm R, Pillonel C, et al.. Osmoregulation and fungicide resistance:The neurospora crassa os-2 gene encodes a hogl mitogen-activated protein kinase homologue. Applied and Environment Microbiology,2002,68:532-538.
    Zhao X, Mehrabi R, Xu J R. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryotic Cell,2007,6:1701-1714.
    成家壮.植物病原真菌的抗药性与杀菌剂的混配.广州化工,2008,36:1-5.
    刁春玲,刘芳,宋宝安.农用杀菌剂作用机理的研究进展.农药,2006,45:374-377.
    董金皋.农业植物病理学(北方本).北京:中国农业出版社,2001,384-421.
    黄卫,汪天虹,吴志红等.丝状真菌遗传转化系统研究进展.微生物学杂志,2000,20:40-44.
    类延宝,宋松泉,傅家瑞等.植物的双组分信号系统.植物学通报,2004,21:216-227.
    李林,关爱莹,刘长令.防治稻瘟病的新型内吸性杀菌剂氰菌胺.农药,2003,42:36-38.
    李科孝,谢宏伟.大棚韭菜灰霉病的发生规律与防治.植物保护,2001,27:46-47.
    林孔勋.杀菌剂毒理学.北京:中国农业出版社,1995
    刘楠梅.基因功能研究方法浅介.生物技术通讯,2000,11:231-233.
    刘英华,王开运,姜兴印等.植物病原菌抗性生物学及生化机制研究进展.世界农药,2004,26:16-18.
    陆玉峰,柏亚罗Strobilurin类杀菌剂的作用机制和化学合成.现代农药,2003,2:29-33.
    马忠华,叶钟音.嘧啶胺类杀菌剂的作用机制.农药科学与管理,1996,1:30-32.
    深见顺一,上杉康彦,石琢皓迟.农药实验法--杀菌剂篇.北京:中国农业出版社,1991,99-100.
    孙延忠,曾洪梅,李国庆.抗生素对微生物作用的研究.微生物学杂志,2003,23:44-47.
    吴永刚,黄诚,施媛媛等.农用杀菌剂的作用方式与分类.世界农药,2009,31:1-22.
    徐志英,关晓燕,时春喜等.保护地蔬菜灰霉病发生规律及防治技术研究.中国农学通报,2005,21:339-342.
    杨燕涛.国内保护地蔬菜灰霉病侵染规律及防治技术研究进展.农药,2003,42:6-10.
    张穗,郭永霞,唐文华.井冈霉素a对水稻纹枯病菌的毒力和作用机理研究.农药学学报,2001,3:31-37.
    赵军锋,丁明武.黑色素生物合成抑制剂分子生物合理设计研究进展.世界农药,2004,26:14-17.
    祝明亮,严金平,孙启玲等.植物病原真菌对二甲酰亚胺类杀菌剂的抗性分子机制.生物技术2005,15:95-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700