基于抗生素残留分离/分析的咪唑型离子液体绿色双水相体系的构建及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素在临床、养殖业和食品加工业中的滥用已经给生态环境和人类健康带来了严重威胁。因此,对环境和食物中抗生素残留的分离/富集方法的建立成为关注的热点。由于环境和食物中抗生素基质成分复杂,干扰多,而且通常为痕量或超痕量存在,必须找到合理的方法对环境和食物样品中的抗生素进行分离/富集,从而达到分离干扰物质,降低检出限和提高测定准确度的目的。
     本课题深入研究了咪唑型离子液体-盐双水相体系的液液相平衡行为及其分相能力,为其应用提供了充分的理论依据。在此基础上构建了离子液体双水相萃取和离子液体双水相气浮溶剂浮选体系,将其应用于环境和食物中抗生素残留的分离/富集中。通过优化抗生素萃取、浮选的影响因素,探讨萃取、浮选机理,为离子液体双水相萃取和离子液体双水相气浮溶剂浮选其它生物小分子物质提供可行性研究的可靠依据。主要研究结果如下:
     1.咪唑型离子液体-盐双水相体系的构建及液液相平衡行为的研究
     (1)通过对一系列咪唑型离子液体-盐双水相体系双节线数据的拟合,筛选得到了适用于咪唑型离子液体-盐双水相体系双节线数据拟合的最佳方程w1=exp(α+bw20.5+Cw2+dw22)。利用滴定法、密度计测定法以及“杠杆规则”计算法得到了离子液体-盐双水相体系的液液相平衡组成,并用Othmer-Tobias方程和Bancroft方程进行关联,结果令人满意。
     (2)通过计算不同分相盐在1-丁基-3-甲基咪唑四氟硼酸([C4mim]BF4)水溶液中的有效排除体积,以及绘制以摩尔质量浓度为单位的双节线相图,得出阳离子的盐析能力为Na+>NH4+;阴离子的盐析能力为Po43->C6H5O73->CO32->SO42-≈C4H4O62->C4H4O42->H2PO4->C2H3O2->CI-。同理,根据计算6种分相盐在1-乙基-3-甲基咪哗四氟硼酸([C2mim]BF4)、1-丙基-3-甲基咪唑四氟硼酸([C3mim]BF4)和[C4mim]BF4中的有效排除体积,以及绘制双节线相图,得到离子液体的分相能力顺序为[C4mim]BF4>[C3mim]BF4>[C2mim]BF4。
     (3)研究了温度对离子液体-盐双水相体系分相能力的影响。结果表明,随着温度的降低,双节线向左移动,两相区面积扩大,系线斜率增大,离子液体-盐双水相体系的成相能力逐步增强。
     2.离子液体-盐双水相体系分离/富集抗生素残留
     (1)构建[C4mim]BF4-Na2CO3双水相体系结合分子荧光光谱分离/富集罗红霉素残留。讨论盐的种类、Na2CO3和离子液体用量以及萃取温度的影响。在最佳条件下,该方法能满意地应用于分离/富集环境水样中的罗红霉素残留,检出限为0.03μg/mL,精密度为1.90%,平均萃取率大于90%。离子液体-盐双水相体系的成相机理用水合理论来解释。红外和紫外光谱表征共同证明在萃取过程中离子液体和罗红霉素之间没有发生化学键的变化,离子液体只是起到溶剂的作用。
     (2)建立[C4mim]BF4-(NH4)2SO4双水相体系结合高效液相色谱-紫外法萃取磺胺类抗生素残留。实验选取了三种磺胺类抗生素(磺胺甲基嘧啶、磺胺甲恶唑和磺胺甲塞二唑)作为目标物研究和评估实验方法。选用单因素和响应曲面实验设计优化最佳萃取条件。在最佳条件下,将建立的方法用于测定一系列环境和食物样品,加标回收率在83.7~116.5%,方法的检出限为0.15~0.3 ng/mL,检量限为0.5~1.0 ng/mL,低于其它一些预处理技术。
     (3)构建[C4mim]BF4-有机盐双水相体系结合高效液相色谱法萃取/分析氯霉素残留。探讨影响氯霉素分配行为的影响因素:有机盐的种类和含量、体系的pH值、[C4mim]BF4的加入体积和萃取温度。热力学研究证明疏水作用是氯霉素萃取的主要驱动力,同时盐析作用也十分关键。在最佳条件下,将该方法成功地用于分离/富集饲养水、牛奶和蜂蜜中的氯霉素残留,加标回收率在90.4~102.7%,方法检出限为0.3 ng/mL,检量限为1.0 ng/mL。此种离子液体-有机盐双水相萃取技术操作简单,并且对环境无污染,在抗生素分离中有着重要的应用价值。
     3.离子液体双水相气浮溶剂浮选分离/富集氯霉素及机理研究
     (1)建立氯化1-丁基-3-甲基咪唑四氟硼酸([C4mim]Cl)-K2HPO4离子液体双水相气浮溶剂浮选体系结合高效液相色谱法浮选/分离氯霉素残留。讨论了离子液体和盐的种类对离子液体双水相气浮溶剂浮选体系成相行为的影响,详细研究盐种类、K2HPO4浓度、体系pH值、氮气流速、浮选时间和[C4mim]Cl初始加入量对氯霉素浮选效率的影响。在最佳条件下,浮选湖水、饲养水、牛奶和蜂蜜中氯霉素残留,浮选率为97.1~101.9%。该方法的线性范围为0.5~500 ng/mL,方法检出限为0.1 ng/mL,检量限为0.3 ng/mL。该方法优于液液萃取、溶剂浮选以及离子液体双水相萃取,其富集倍数高、减少离子液体用量、对环境友好的优点,在小分子生物物质中的分离/富集具有重要的应用价值。
     (2)以氯霉素为目标物,构建离子液体-K2HPO4双水相气浮溶剂浮选体系。利用四因素三水平响应曲面实验设计法优化氯霉素的影响因素,筛选出的最佳条件为:离子液体选择[C6mim]Cl, K2HPO4浓度为0.74 g/mL、浮选时间为50 min、浮选流速为50 mL/min,此时氯霉素的分配系数为405.71,浮选率为93.16%。三维响应曲面图可以得到影响氯霉素分配系数和浮选率的影响因素强度依次为浮选时间>浮选流速>IL的种类> K2HPO4的浓度。离子液体双水相气浮溶剂浮选机理是由离子液体双水相体系的成相机理和溶剂浮选机理两部分构成。
The abuse of antibiotics in clinical medicine, aquaculture and food processing industry has been posed a serious threat to the ecological environment and human health. Therefore, the establishment of the method for separation and enrichment of antibiotic residues in the environment and food becomes the focal point of attention. Due to the composition of antibiotics matrix is complicated and usually trace or ultra-trace exists, we must find a reasonable method for separation and enrichment of antibiotics in the environment and food. It will achieve the separation of interfering substances, lower detection limits and improve the measurement accuracy of the purpose.
     This thesis deeply researches into the behavior of liquid-liquid equilibrium (LLE) of iminazole-ionic liquid aqueous two-phase system (ILATPS) and its phase-separation abilities, so this provides sufficient theoretical foundation for its application. On the basis of which, an ionic liquid aqueous two-phase extraction (ILATPE) system and an ionic liquid aqueous two-phase flotation (ILATPF) system were established, they can be applied to separate and concentrate antibiotic residues in the environment and food. Various factors influencing the extraction and flotation of antibiotics were optimized; the mechanisms of extraction and flotation were discussed. These studies provide a feasibility evidence on separation and concentration of other biological small molecules by ILATPE and ILATPF. The main results are as follows:
     1. Construction of ILATPS and the research of LLE
     (1) Through the fitting of a series of iminazole ILATPS of binodal data, the optimum equation was selected, and it was w,= exp(a+bw20.5+cw2+dw22). Based on the titration method, the densimeter method and "lever rule" calculation, the LLE compositions were obtained. The equations of Othmer-Tobias and Bancroft were used to fitting the LLE data, and the result was satisfactory.
     (2) The salting-out abilities of salt ions were obtained by calculating the effective excluded volume (EEV) of different species of phase-separation salts in aqueous l-butyl-3-methylimidazolium tetrafluoroborate ([C4mimJBF4) solutions, and drawing binodal curves in molar mass concentration. The phase-separation abilities of cation are in the order Na+>NH4+, and the phase-separation abilities of anion are PO43->C6H5O73->CO32->SO42-≈C4H4O62->C4H4O42->H2PO4->C2H3O2->Cl- Similarly, the phase-separation abilities of ionic liquids were obtained by calculating the EEV of six species of phase-separation salts in aqueous 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim]BF4), 1-propyl-3-methylimi-dazolium tetrafluoroborate ([C3mim]BF4) or [C4mim]BF4, and drawing binodal curves in molar mass concentration. The phase-separation abilities of ionic liquids are in the order [C4mim]BF4> [C3mim]BF4> [C2mim]BF4.
     (3) The effect of temperature on ILATPSs was investigated. When the temperature decreased, the binodal curves shifted to the left, then the area of two-phase region and the slope of tie-line simultaneously increased, so the ability of forming ILATPSs was increased gradually.
     2. Separation and concentration of antibiotic residues using ILATPS
     (1) An ILATPS consisting of [C4mim]BF4 and Na2CO3, which was a sample pretreatment technique coupled with molecular fluorescence spectrophotomery, was developed for simultaneous separation and enrichment of roxithromycin. The extraction yield of roxithromycin in [C4mim]BF4-Na2CO3 ILATPS was influenced by the types of salts, the concentrations of Na2CO3 and [C4mim]BF4, as well as the extracting temperature. Under the optimum conditions, this method was practical when applied to the analysis of roxithromycin in real water samples with the detection limit of 0.03μ.g/mL, relative standard deviation (RSD) of 1.9%, and the average extraction efficiency was up to 90.7%. The mechanism of ILATPS formation was discussed by hydration theory, and the extraction mechanism of the [C4mim]BF4-salt ILATPS was investigated by FT-IR spectroscopy and UV-vis spectroscopy. The results demonstrated that no chemical (bonding) interactions were observed between ionic liquid and roxithromycin, while the nature properties of the roxithromycin are not altered, the ionic liquid just as the role of the solvent.
     (2) [C4mim]BF4-(NH4)2SO4 ILATPS coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) was developed for the extraction of sulfonamides. Three sulfonamides, sulfamerazine, sulfamethoxazole and sulfamethizole were selected as model compounds for developing and evaluating the method. The effects of various experimental parameters in extraction step were studied using two optimisation methods, one variable at a time and the response surface methodology (RSM) approach. Under the optimum conditions, this method was practical when applied to the analysis of sulfonamides in the environment and food. The detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target compounds were achieved within the range of 0.15-0.3 ng/mL and 0.5-1.0 ng/mL from spiked samples, respectively, and the average recovery rate was in the range of 83.7~116.5%, which was lower than or comparable with other reported approaches applied to the determination of the same compounds.
     (3) A sample pretreatment procedure coupled with HPLC was developed for the analysis of chloramphenicol that exploits an aqueous two-phase system based on [C4mim]BF4 and organic salt using a liquid-liquid extraction technique. The influence factors on partition behaviors of chloramphenicol were studied, including the type and amount of salts, the pH value, the volume of [C4mim]BF4, and the extraction temperature. Thermodynamic studies indicated that hydrophobic interactions were the main driving force, and salting-out effects was also important for the transfer of the chloramphenicol. Under the optimal conditions, this method was practical when applied to the analysis of chloramphenicol in feed water, milk, and honey samples with the limit of detection of 0.3 ng/mL and the limit of quantification of 1.0 ng/mL. The recovery of CAP was 90.4-102.7%. This novel process is much simpler and more environmentally friendly and is suggested to have important applications for the separation of antibiotics.
     3. Separation and enrichment of chloramphenicol using ILATPF and mechanism research
     (1) ILATPF which combined ILATPS based on [C4mim]Cl and K2HPO4 with solvent sublation was developed for the analysis of chloramphenicol coupled with HPLC. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C4mim]C1-K2HPCO4 ILATPF was influenced by the types of salts, the concentration of K2HPO4 in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C4mim]Cl. Under the optimum conditions, this method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5~500 ng/mL. The method yielded limit of detection of 0.1 ng/mL and limit of quantification of 0.3 ng/mL. The recovery of CAP was 97.1-101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid-liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.
     (2) An IL-K2HPO4 ILATPF was established to separate chloramphenicol. The response surface experimental design method of four factors and three levels was used to optimize the impact factors of flotation of chloramphenicol, and pick up the best conditions:the ionic liquid was [C6mim]Cl, the concentration of K2HPO4 was 0.74 g/mL, the flotation time was 50 min, and the flow rate was 50 mL/min. Under the best conditions, the partition coefficient of chloramphenicol was 405.71, and the flotation rate was 93.16%. According to the three-dimensional response surface chart, we concluded that the order of influencing factors on the partition coefficient and the flotation rate of chloramphenicol was the time of flotation> flow rate of flotation> the type of IL> the concentration of K2HPO4. The mechanism of ILATPF contained two principal processes. One was the mechanism of IL-salt ILATPS formation, the other was solvent sublation.
引文
[1]梁静芳,李再兴,据盼盼,等.环境介质中抗生素残留检测方法研究进展[J].河北化工,2010,33(10):14-17.
    [2]钱丽华,申兰惠.制霉素类抗生素的快速薄层色谱鉴别[J].中国药品标准,2007,8(5):64-65.
    [3]Kaya S E, Filazi A. Determination of antibiotic residues in milk samples[J]. Kafkas Univ. Vet. Fak. Derg.,2010,16:S31-S35.
    [4]Ghoulipour V, Shokri M, Waqif-Husain S. Determination of ampicillin and amoxicillin by high-performance thin-layer chromatography [J]. Acta Chromatogr.,2011,23(3):483-498.
    [5]Shen J, Xia X, Jiang H, et al. Determination of chloramphenicol, thiamphenicol, florfenicol, and florfenicol amine in poultry and porcine muscle and liver by gas chromatography-negative chemical ionization mass spectrometry [J]. J. Chromatogr. B,2009,877(14-15): 1523-1529.
    [6]Tao Y, Chen D, Yu G, et al. Simultaneous determination of lincomycin and spectinomycin residues in animal tissues by gas chromatography-nitrogen phosphorus detection and gas chromatography-mass spectrometry with accelerated solvent extraction[J]. Food Addit. Contam., Part A,2011,28(2):145-154.
    [7]许鹏军,战瑞,陶晡,等.柱前衍生化毛细管气相色谱法测定土壤中井冈霉素A残留[J]分析化学,2008,36(2):249-252.
    [8]席英玉.食品中农药残留分析技术进展[J].福建水产,2008,3(1):70-74.
    [9]Wang L, Yang H, Zhang C, et al. Determination of oxytetracycline, tetracycline and chloramphenicol antibiotics in animal feeds using subcritical water extraction and high performance liquid chromatography [J]. Anal. Chim. Acta,2008,619(1):54-58.
    [10]Tsai W H, Chuang H Y, Chen H H, et al. Application of sugaring-out extraction for the determination of sulfonamides in honey by high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. A,2010,1217(49):7812-7815.
    [11]Babic S, Asperger D, Mutavdzic D, et al. Solid phase extraction and HPLC determination of veterinary Pharmaceuticals in wastewater[J]. Talanta,2006,70(4):732-738.
    [12]Benito-Pena E, Partal-Rodera A I, Leon-Gonzalez M E, et al. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection[J]. Anal. Chim. Acta,2006,556(2): 415-422.
    [13]Lu Y, Shen Q, Dai Z, et al. Development of an on-line matrix solid-phase dispersion/fast liquid chromatography/tandem mass spectrometry system for the rapid and simultaneous determination of 13 sulfonamides in grass carp tissues[J]. J. Chromatogr. A,2011,1218(7): 929-937.
    [14]Luo P, Chen X, Liang C, et al. Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in swine muscle by liquid chromatography-tandem mass spectrometry with immunoaffinity chromatography clean-up[J]. J. Chromatogr. B,2010,878(2):207-212.
    [15]Kuldip Kumar A T, Ashok K S, Yogesh C, et al. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples[J]. J. Environ. Qual.,2004,33(1): 250-256.
    [16]Bailon-Perez M I, Garcia-Campana A M, Cruces-Blanco C, et al. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis[J]. J. Chromatogr. A,2008,1185(2):273-280.
    [17]赵利剑,杨亚玲,夏静.固相萃取技术的研究[J].四川化工,2005,8(3):21-25.
    [18]Kristenson E M, Brinkman U A T, Ramos L. Recent advances in matrix solid-phase dispersion[J]. TrAC-Trend Anal. Chem.,2006,25(2):96-111.
    [19]Morales-Munoz S, Luque-Garcia J L, Luque de Castro M D. Continuous microwave-assisted extraction coupled with derivatization and fluorimetric monitoring for the determination of fluoroquinolone antibacterial agents from soil samples[J]. J. Chromatogr. A,2004,1059(1-2): 25-31.
    [20]刘海萍,杨素萍.加压液体萃取技术在生物样品分析中的应用[J].河北北方学院学报(自然科学版),2006,22(5):61-66.
    [21]江忠义,吴洪.分子印迹技术[M].北京:化学化学化工出版社,2003:1-10.
    [22]Bloch R, Frommer M A. The mechanism for formation of "skinned" membranes I. Structure and properties of membranes cast from binary solutions[J]. Desalination,1970,7(2): 259-264.
    [23]Baltussen E, Sandra P, David F, et al. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples:Theory and principles[J]. J. Microcolumn Sep.,1999,11(10): 737-747.
    [24]罗明标,刘维,李伯平,等.多孔中空纤维液相微萃取技术的研究进展[J].分析化学,2007,35(7):1071-1077.
    [25]Rezaee M, Assadi Y, Milani Hosseini M R, et al. Determination of organic compounds in water using dispersive liquid-liquid microextraction[J]. J. Chromatogr. A,2006,1116(1-2): 1-9.
    [26]黎国富,杨劲,赵浩如.盐析辅助均相液液萃取法在体内药物分析中的应用进展[J].药学进展.2010,34(7):313-318.
    [27]De Zayas-Blanco F, Garcia-Falcon M S, Simal-Gandara J. Determination of sulfamethazine in milk by solid phase extraction and liquid chromatographic separation with ultraviolet detection[J]. Food Control,2004,15(5):375-378.
    [28]Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in luxembourg[J]. Sci. total Environ.,2009,407(16):4736-4743.
    [29]Ben W, Qiang Z, Adams C, et al. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1202(2):173-180.
    [30]Tsai W H, Huang T C, Huang J J, et al. Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection[J]. J. Chromatogr. A, 2009,1216(12):2263-2269.
    [31]Wen Y, Zhang M, Zhao Q, et al. Monitoring of five sulfonamide antibacterial residues in milk by in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. J. Agr. Food. Chem.,2005,53(22):8468-8473.
    [32]Bogialli S, Curini R, Di Corcia A, et al. Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk:hot water extraction followed by liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2005,1067(1-2):93-100.
    [33]Zhou J H, Xue X F, Chen F, et al. Simultaneous determination of seven fluoroquinolones in royal jelly by ultrasonic-assisted extraction and liquid chromatography with fluorescence detection[J]. J. Sep. Sci.,2009,32(7):955-964.
    [34]Zhou J, Xue X, Li Y, et al. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and two-step solid phase extraction[J]. Food Chem.,2009,115(3):1074-1080.
    [35]Xu H Y, Chen L G, Sun L, et al. Microwave-assisted extraction and in situ clean-up for the determination of fluoroquinolone antibiotics in chicken breast muscle by LC-MS/MS[J]. J. Sep. Sci.,2011,34(2):142-149.
    [36]Fernandez-Torres R, Lopez M A B, Consentino M O, et al. Enzymatic-microwave assisted extraction and high-performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples[J]. J. Pharmaceut. Biomed.,2011,54(5):1146-1156.
    [37]Berrada H, Borrull F, Font G, wt al. Determination of macrolide antibiotics in meat and fish using pressurized liquid extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1208(1-2):83-89.
    [38]Blasco C, Di Corcia A, Pico Y. Determination of tetracyclines in multi-specie animal tissues by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J]. Food Chem.,2009,116(4):1005-1012.
    [39]Yu H, Tao Y F, Chen D M, et al. Development of a high performance liquid chromatography method and a liquid chromatography-tandem mass spectrometry method with the pressurized liquid extraction for the quantification and confirmation of sulfonamides in the foods of animal origin[J]. J. Chromatogr. B,2011,879(25):2653-2662.
    [40]Shi X, Wu A, Zheng S, et al. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods[J]. J. Chromatogr. B,2007,850(1-2):24-30.
    [41]Hu X G, Pan J L, Hu Y L, et al. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples[J]. J. Chromatogr. A,2008,1188(2):97-107.
    [42]Guo L, Guan M, Zhao C, et al. Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination[J]. Anal. Bioanal. Chem.,2008,392(7):1431-1438.
    [43]Msagati T A M, Nindi M M. Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection[J]. Talanta,2004,64(1):87-100.
    [44]Msagati T A M, Nindi M M. Determination of beta-lactam residues in foodstuffs of animal origin using supported liquid membrane extraction and liquid chromatography-mass spectrometry[J]. Food Chem.,2007,100(2):836-844.
    [45]Huang X, Qiu N, Yuan D. Simple and sensitive monitoring of sulfonamide veterinary residues in milk by stir bar sorptive extraction based on monolithic material and high performance liquid chromatography analysis[J]. J. Chromatogr. A,2009,1216(46): 8240-8245.
    [46]Tao Y, Liu J F, Hu X L, et al. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography[J]. J. Chromatogr. A,2009,1216(35):6259-6266.
    [47]Yudthavorasit S, Chiaochan C, Leepipatpiboon N. Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry[J]. Microchim. Acta,2011,172(1):39-49.
    [48]Chen H, Chen H, Ying J, et al. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey[J]. Anal. Chim. Acta,2009,632(1):80-85.
    [49]Tsai W H, Huang T C, Chen H H, et al. Determination of sulfonamides in swine muscle after salting-out assisted liquid extraction with acetonitrile coupled with back-extraction by a water/acetonitrile/dichloromethane ternary component system prior to high-performance liquid chromatography[J]. J. Chromatogr. A,2010,1217(3):250-255.
    [50]Han J, Wang Y, Yu C L, et al. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography[J]. Anal. Bioanal. Chem.,2011, 399(3):1295-1304.
    [51]Beijernick, M W. Original mitteilung uber eine eigentumlichkeit der loslichen starke[J]. Centrabl Bakteriologie, Parasitenkunde Infektioskrankheiten,1896,22:699-701.
    [52]Salgado J C, Andrews B A, Ortuzar M F, et al. Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition[J]. J. Chromatogr. A,2008,1178(1-2):134-144.
    [53]Johansson H O, Magaldi F M, Feitosa E, et al. Protein partitioning in poly(ethylene glycol)/sodium polyacrylate aqueous two-phase systems[J]. J. Chromatogr. A,2008, 1178(1-2):145-153.
    [54]Zhi W, Song J, Ouyang F, et al. Application of response surface methodology to the modeling of [alpha]-amylase purification by aqueous two-phase systems[J]. J. Biotechnol.,2005, 118(2):157-165.
    [55]Bassani G, Farruggia B, Nerli B, et al. Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems[J]. J. Chromatogr. B,2007, 859(2):222-228.
    [56]Trindade I P, Diogo M M, Prazeres D M F. Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography[J]. J. Chromatogr. A,2005, 1082(2):176-184.
    [57]Barbosa H S C, Hine A V, Brocchini S, et al. Dual affinity method for plasmid DNA purification in aqueous two-phase systems[J]. J. Chromatogr. A,2010,1217(9):1429-1436.
    [58]Salabat A, Abnosi M H, Bahar A R. Amino acids partitioning in aqueous two-phase system of polypropylene glycol and magnesium sulfate[J]. J. Chromatogr. A,2007,858(1-2):234-238.
    [59]Salabat A, Sadeghi R, Moghadam S T, et al. Partitioning of 1-methionine- in aqueous two-phase systems containing poly (propylene glycol) and sodium phosphate salts[J]. J. Chem. Thermodyn.,2011,43(10):1525-1529.
    [60]Da Silva C A S, Coimbra J S R, Rojas E E G, et al. Partitioning of caseinomacropeptide in aqueous two-phase systems[J]. J. Chromatogr. B,2007,858(1-2):205-210.
    [61]Jiang Y, Xia H, Yu J, et al. Hydrophobic ionic liquids-assisted polymer recovery during penicillin extraction in aqueous two-phase system[J]. Chem. Eng. J,2009,147(1):22-26.
    [62]Mokhtarani B, Karimzadeh R, Amini M H, et al. Partitioning of ciprofloxacin in aqueous two-phase system of poly (ethylene glycol) and sodium sulphate[J]. Biochem. Eng. J,2008, 38(2):241-247.
    [63]Li H, Cao X. Bioconversion of cephalosporin-G to 7-ADCA in a pH-thermo sensitive recycling aqueous two-phase systems[J]. Process Biochem.,2011,46(9):1753-1758.
    [64]Kamihira M, Kumar A. Development of separation technique for stem cells[J]. In Cell Separation:Fundamentals, Analytical and Preparative Methods.2007(106):173-193.
    [65]Lu Y, Lu W, Wang W, et al. Thermodynamic studies of partitioning behavior of cytochrome c in ionic liquid-based aqueous two-phase system[J]. Talanta,2011,85(3):1621-1626.
    [66]Li Z, Teng H, Xiu Z. Extraction of 1,3-propanediol from glycerol-based fermentation broths with methanol/phosphate aqueous two-phase system[J]. Process Biochem.,2011,46(2): 586-591.
    [67]Helfrich M R, El-Kouedi M, Etherton M R, et al. Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems[J]. Langmuir,2005,21(18): 8478-8486.
    [68]Bulgariu L, Bulgariu D. Extraction of gold(III) from chloride media in aqueous polyethylene glycol-based two-phase system[J]. Sep. Purif. Technol.,2011,80(3):620-625.
    [69]徐长波,王巍杰.双水相萃取技术研究进展[J].化工技术与开发,2009,38(5):40-44.
    [70]谭志坚,李芬芳,邢健敏.双水相萃取技术在分离、纯化中的应用[J].化工技术与开发,2010,39(8):29-35.
    [71]张锁江,吕兴梅.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006.
    [72]Dupont J, Consorti C S, Suarez P A Z, et al. In organic syntheses[M]. Hegedus L S. Ed., John Wiley:Chichester,2002,79:236.
    [73]Gutowski K E, Broker G A, Willauer H D, et al. Controlling the aqueous miscibility of ionic liquids:aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations [J]. J. Am. Chem. Soc.,2003,125(22):6632-6633.
    [74]Soto A, Arce A, Khoshkbarchi M K. Partitioning of antibiotics in a two-liquid phase system formed by water and a room temperature ionic liquid[J]. Sep. Purif. Technol.,2005,44(3): 242-246.
    [75]刘庆芬,胡雪生,王玉红,等.离子液体双水相萃取分离青霉素[J].科学通报,2005,50(4):756-759.
    [76]Liu Q, Yu J, Li W, et al. Partitioning behavior of penicillin G in aqueous two phase system formed by ionic liquids and phosphate[J]. Sep. Sci. Technol.,2006,41(12):2849-2858.
    [77]Jiang Y, Xia H, Guo C, et al. Phenomena and mechanism for separation and recovery of penicillin in ionic liquids aqueous solution[J]. Ind. Eng. Chem. Res.,2007,46(19): 6303-6312.
    [78]张建敏,张锁江,陈玉焕,等.中国发明专利:CN1587240A[P],2005.
    [79]Li C X, Han J, Wang Y, et al. Extraction and mechanism investigation of trace roxithromycin in real water samples by use of ionic liquid-salt aqueous two-phase system[J]. Anal. Chim. Acta,2009,653(2):178-183.
    [80]Han J, Wang Y, Kang W B, et al. Phase equilibrium and macrolide antibiotics partitioning in real water samples using a two-phase system composed of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and an aqueous solution of an inorganic salt [J]. Microchim. Acta,2010,169(1-2):15-22.
    [81]Wang Y, Han J, Xie X Q, et al. Extraction of trace acetylspiramycin in real aqueous environments using aqueous two-phase system of ionic liquid l-butyl-3-methylimidazolium tetrafluoroborate and phosphate[J]. Cent. Eur. J. Chem.,2010,8(6):1185-1191.
    [82]Han J, Wang Y, Yu C L. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography[J]. Anal. Bioanal. Chem.,2011,399(3): 1295-1304.
    [83]Ma C H, Wang L, Yan Y S, et al. Extraction of tetracycline via ionic liquid two-phase system[J]. Chem. Res. Chinese U.,2009,25(6):832-835.
    [84]Yu C L, Han J, Wang Y, et al. Ionic liquid/ammonium sulfate aqueous two-phase system coupled with HPLC extraction of sulfadimidine in real environmental water samples[J]. Chromatographia,2011,74(5-6):407-413.
    [85]Deng F Z, Guo D F. Extraction separation of bovine serum albumin in ionic liquid aqueous two-phase system[J]. Chin. J. Anal. Chem.,2006,34(10):1451-1453.
    [86]Du Z, Yu Y L, Wang J H. Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-phase system[J]. Chem. Eur. J.,2007,13(7):2130-2137.
    [87]Dreyer S, Salim P, Kragl U. Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system[J]. Biochem. Eng. J.,2009,46(2):176-185.
    [88]Pei Y C, Li Z Y, Liu L, et al. Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems[J]. Sci. China, Ser. B.,2010,53(7):1554-1560.
    [89]Pei Y C, Wang J J, Wu K, et al. Ionic liquid-based aqueous two-phase extraction of selected proteins[J]. Sep. Purif. Technol.,2009,64(3):288-295.
    [90]王军,张艳,时召俊,等.N-乙基-N-丁基吗啉离子液体双水相体系分离蛋白质[J].应用化工,2009,38(1):70-72.
    [91]He C Y, Li S H, Liu H W, et al. Extraction of testosterone and epitestosterone in human urine using aqueous two-phase systems of ionic liquid and salt[J]. J. Chromatogr. A,2005,1082(2): 143-149.
    [92]Li S H, He C Y, Liu H W, et al. Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids[J]. J. Chromatogr. B,2005,826(1-2):58-62.
    [93]Freire M G, Neves C, Marrucho I M, et al. High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids[J]. Green Chem.,2010,12(10):1715-1718.
    [94]Louros C L S, Claudio A F M, Neves C, et al. Extraction of biomolecules using phosphonium-based ionic liquids+K3PO4 aqueous biphasic systems[J]. Int. J. Mol. Sci., 2010,11(4):1777-1791.
    [95]Claudio A F M, Freire M G, Freire C S R, et al. Extraction of vanillin using ionic-liquid-based aqueous two-phase systems[J]. Sep. Purif. Technol.,2010,75(1):39-47.
    [96]杨青梅,那吉,段利平,等.离子液体双水相萃取分离芦丁的研究[J].云南中医中药杂志,2008,29(5):44-45.
    [97]邓凡政,郭东方.离子液体双水相萃取分离苋菜红的研究[J].分析实验室,2007,26(6):15-17.
    [98]谢秀娟,张振新.离子液体双水相萃取荧光法测定维生素B6[J].分析科学学报,2011,27(4):513-515.
    [99]曹婧,范杰平,孔涛,等.两种离子液体双水相体系萃取葛根素的比较[J].时珍国医国 药,2010,21(7):1589-1590.
    [100]黄建林、彭瑾.儿茶素、白藜芦醇在离子液体双水相体系中的萃取性能研究[J].化学与生物工程,2009,26(11):37-39.
    [101]Fan J, Shao X J, Wei Y F, et al. Extraction of imidacloprid and acetamiprid in ionic liquid/aqueous two phase system-sequential injection spectrophotometric analysis[J]. Chinese J. Anal. Chem.,2008,36(10):1411-1414.
    [102]Wang L, Zhu L, Sun Y T, et al. Determination of trace chlorophenols endocrine disrupting chemicals in water sample using [bmim]BF4-NaH2PO4 aqueous two-phase extraction system coupled with high performance liquid chromatography[J]. Chin. J. Anal. Chem.,2011,39(5): 709-712.
    [103]陈莉莉,邱祖民,黄金莲,等.PMBP缩2-氨基苯并噻唑席夫碱/离子液体双水相体系萃取废水中重金属离子的研究[J].冶金分析,2010,30(5):33-37.
    [104]陈明丽,付海阔,孟浩,等.离子液体双水相萃取-蒸汽发生原子荧光法测定痕量镉[J].分析化学,2010,38(9):1299-1304.
    [105]邓凡政,傅东祈,朱陈银.离子液体双水相萃取分光光度法测定铜[J].冶金分析,2008,28(6):29-32.
    [106]Zafarani-Moattar M T, Hamzehzadeh S. Liquid-liquid equilibria of aqueous two-phase systems containing polyethylene glycol and sodium succinate or sodium formate[J]. Calphad, 2005,29(1):1-6.
    [107]Nicholas J B, Gutowski K E, Rogers R D. Investigation of aqueous biphasic systems formed from solutions of chaotropic salts with kosmotropic salts (salt-salt ABS)[J]. Green Chem., 2007,9:177-183.
    [108]Zafarani-Moattar M T, Emamian S, Hamzehzadeh S. Effect of temperature on the phase equilibrium of the aqueous two-phase poly(propylene glycol)+tripotassium citrate system[J]. J. Chem. Eng. Data,2008,53(2):456-461.
    [109]Ventura S P M, Neves C M S S, Freire M G, et al. Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems[J]. J. Phys. Chem. B,2009,113(27):9304-9310.
    [110]Wu C, Wang J, Pei Y, et al. Salting-out effect of ionic liquids on poly (propylene glycol) (PPG):formation of PPG+ionic liquid aqueous two-phase systems[J]. J. Chem. Eng. Data, 2010,55:5004-5008.
    [111]Pei Y, Wang J, Liu L, et al. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts[J]. J. Chem. Eng. Data,2007,52(5):2026-2031.
    [112]Gonzalez-Tello P, Camacho F, Blazquez G, et al. Liquid-liquid equilibrium in the system poly (ethylene glycol)+MgSO4+H2O at 298 K[J]. J. Chem. Eng. Data,1996,41(6): 1333-1336.
    [113]Graber T A, Taboada M E, Asenjo J A, et al. Influence of molecular weight of the polymer on the liquid-liquid equilibrium of the poly (ethylene glycol)+NaNO3+H2O system at 298.15 K [J]. J. Chem. Eng. Data,2001,46(3):765-768.
    [114]Graber T A, Taboada M E, Carton A, et al. Liquid-liquid equilibrium of the poly (ethylene glycol)+sodium nitrate + water system at 298.15 K[J]. J. Chem. Eng. Data,2000,45(2): 182-184.
    [115]Foroutan M. Liquid-liquid equilibria of aqueous two-phase poly (vinylpyrrolidone) and K2HPO4/KH2PO4 buffer:effects of pH and temperature[J]. J. Chem. Eng. Data,,2007,52(3): 859-862.
    [116]Zafarani-Moattar M T, Banisaeid S, Shamsi Beirami M A. Phase diagrams of some aliphatic alcohols + potassium or sodium citrate+water at 25℃[J]. J. Chem. Eng. Data,2005,50(4): 1409-1413.
    [117]Taboada M E, Asenjo J A, Andrews B A. Liquid-liquid and liquid-liquid-solid equilibrium in Na2CO3-PEG-H2O[J]. Fluid Phase Equilibr.,2001,180(1-2):273-280.
    [118]Murugesan T, Perumalsamy M. Liquid-liquid equilibria of poly (ethylene glycol) 2000+ sodium citrate+water at (25,30,35,40, and 45)℃[J]. J. Chem. Eng. Data,2005,50(4): 1392-1395.
    [119]Zafarani-Moattar M T, Hamidi A A. Liquid-liquid equilibria of aqueous two-phase poly (ethylene glycol)-potassium citrate system[J]. J. Chem. Eng. Data,2003,48(2):262-265.
    [120]Tubio G, Pellegrini L, Nerli B B. Liquid-liquid equilibria of aqueous two-phase systems containing poly (ethylene glycols) of different molecular weight and sodium citrate[J]. J. Chem. Eng. Data,2006,51(1):209-212.
    [121]Tubio G, Pellegrini L, Nerli B B, et al. liquid-liquid equilibria of aqueous two-phase systems containing poly (ethylene glycols) of different molecular weight and sodium citrate[J]. J. Chem. Eng. Data,2005,51(1):209-212.
    [122]Chen Y, Meng Y, Zhang S, et al. Liquid-liquid equilibria of aqueous biphasic systems composed of 1-butyl-3-methyl imidazolium tetrafluoroborate+sucrose/maltose + water[J]. J. Chem. Eng. Data,2010,55(9):3612-3616.
    [123]Zhang Y, Zhang S, Chen Y, et al. Aqueous biphasic systems composed of ionic liquid and fructose[J]. Fluid Phase Equilibr.,2007,257(2):173-176.
    [124]Hemayat S, Rahmat S, Jafari S A. Liquid-liquid equilibria for aliphatic alcohols + dipotassium oxalate + water[J]. J. Chem. Eng. Data,2010,55(11):4586-4591.
    [125]Li Z, Pei Y, Liu L, et al. (Liquid+liquid) equilibria for (acetate-based ionic liquids+inorganic salts) aqueous two-phase systems[J]. J. Chem. Thermodyn.,2010,42(7): 932-937.
    [126]Han J, Wang Y, Yu C, et al. (Liquid+liquid) equilibrium of (imidazolium ionic liquids+ organic salts) aqueous two-phase systems at T=298.15K and the influence of salts and ionic liquids on the phase separation [J]. J. Chem. Thermodyn.,2012,45(1):59-67.
    [127]Zafarani-Moattar M T, Nemati-Kande E. Thermodynamic studies on the complete phase diagram of aqueous two phase system containing polyethylene glycol dimethyl ether 2000 and di-potassium hydrogen phosphate at different temperatures[J]. Calphad,2011,35(2): 165-172.
    [128]Zafarani-Moattar M T, Nemati-Kande E. Study of liquid-liquid and liquid-solid equilibria of the ternary aqueous system containing poly ethylene glycol dimethyl ether 2000 and tri-potassium phosphate at different temperatures Experiment and correlation[J]. Calphad, 2010,34(4):478-486.
    [129]Wang Y, Yan Y, Hu S, et al. Phase diagrams of ammonium sulfate + ethanol/1-propanol/2-propanol+water aqueous two-phase systems at 298.15 K and correlation[J]. J. Chem. Eng. Data,2010,55(2):876-881.
    [130]Wang Y, Hu S, Yan Y, et al. Liquid-liquid equilibrium of potassium/sodium carbonate+2-propanol/ethanol+water aqueous two-phase systems and correlation at 298.15 K[J]. Calphad,2009,33(4):726-731.
    [131]Han J, Wang Y, Li Y, et al. Equilibrium phase behavior of aqueous two-phase systems containing 1-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures:experimental determination and correlation[J]. J. Chem. Eng. Data,2011,56(9): 3679-3687.
    [132]Wang Y, Mao Y, Han J, et al. Liquid-liquid equilibrium of potassium phosphate/potassium citrate/sodium citrate + ethanol aqueous two-phase systems at (298.15 and 313.15) K and correlation [J]. J. Chem. Eng. Data,2010,55(12):5621-5626.
    [133]Wang Y, Hu S, Han J, et al. Measurement and correlation of phase diagram data for several hydrophilic alcohol+citrate aqueous two-phase systems at 298.15 K[J]. J. Chem. Eng. Data, 2010,55(11):4574-4579.
    [134]Pei Y C, Wang J J, Liu L, et al. Liquid-liquid equilibria of aqueous biphasic systems containing selected imidazolium ionic liquids and salts[J]. J. Chem. Eng. Data,2007,52(5): 2026-2031.
    [135]Zafarani-Moattar M T, Hamzehzadeh S. Salting-out effect, preferential exclusion, and phase separation in aqueous solutions of chaotropic water-miscible ionic liquids and kosmotropic salts:effects of temperature, anions, and cations[J]. J. Chem. Eng. Data,2010,55(4): 1598-1610.
    [136]Zafarani-Moattar M T, Hamzehzadeh S. Phase diagrams for the aqueous two-phase ternary system containing the ionic liquid 1-butyl-3-methylimidazolium bromide and tri-potassium citrate at T= (278.15,298.15, and 318.15) K[J]. J. Chem. Eng. Data,2009,54(3):833-841.
    [137]Li C X, Han J, Wang Y, et al. Phase behavior for the aqueous two-phase systems containing the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and kosmotropic salts[J]. J. Chem. Eng. Data,2010,55(3):1087-1092.
    [138]Han J, Yu C L, Wang Y, et al. Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate and sodium citrate/tartrate/acetate aqueous two-phase systems at 298.15 K:Experiment and correlation [J]. Fluid Phase Equilibr.,2010, 295(1):98-103.
    [139]Han J, Pan R, Xie X Q, et al. Liquid-liquid equilibria of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate plus sodium and ammonium citrate aqueous two-phase systems at (298.15,308.15, and 323.15) K[J]. J. Chem. Eng. Data,2010,55(9): 3749-3754.
    [140]Deive F J, Rodriguez A, Marrucho I M, et al. Aqueous biphasic systems involving alkylsulfate-based ionic liquids[J]. J. Chem. Thermodyn.,2011,43(11):1565-1572.
    [141]Deive F J, Rivas M A, Rodriguez A. Sodium carbonate as phase promoter in aqueous solutions of imidazolium and pyridinium ionic liquids[J]. J. Chem. Thermodyn.,2011,43(8): 1153-1158.
    [142]Deng Y, Long T, Zhang D, et al. Phase diagram of [Amim]Cl+salt aqueous biphasic systems and its application for [Amim]Cl recovery[J]. J. Chem. Eng. Data,2009,54(9): 2470-2473.
    [143]Deng Y, Chen J, Zhang D. Phase diagram data for several salt+salt aqueous biphasic systems at 298.15 K[J]. J. Chem. Eng. Data,2007,52(4):1332-1335.
    [144]Zafarani-Moattar M T, Hamzehzadeh S. Liquid-liquid equilibria of aqueous two-phase systems containing 1-butyl-3-methylimidazolium bromide and potassium phosphate or dipotassium hydrogen phosphate at 298.15 K[J]. J. Chem. Eng. Data,2007,52(5): 1686-1692.
    [145]Li Z Y, Pei Y C, Liu L, et al. (Liquid plus liquid) equilibria for (acetate-based ionic liquids plus inorganic salts) aqueous two-phase systems[J]. J. Chem. Thermodyn.,2010,42(7): 932-937.
    [146]Yu C L, Han J, Wang Y, et al. Liquid-liquid equilibrium composed of imidazolium tetrafluoroborate ionic liquids plus sodium carbonate aqueous two-phase systems and correlation at (288.15,298.15, and 308.15) K[J]. Thermochim. Acta,2011,523(1-2): 221-226.
    [147]Yu C L, Han J, Hu S P, et al. Phase diagrams for aqueous two-phase systems containing the l-ethyl-3-methylimidazolium tetrafluoroborate/1-propyl-3-methylimidazolium tetrafluorob-orate and trisodium phosphate/sodium sulfite/sodium dihydrogen phosphate at 298.15 K: experiment and correlation[J]. J. Chem. Eng. Data,2011,56(9):3577-3584.
    [148]Han J, Wang Y, Li YF, et al. Equilibrium phase behavior of aqueous two-phase systems containing 1-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures:experimental determination and correlation[J]. J. Chem. Eng. Data,2011,56(9): 3679-3687.
    [149]Wu B, Zhang Y, Wang H. Phase behavior for ternary systems composed of ionic liquid+ saccharides+water[J]. J. Phys. Chem. B,2008,112(20):6426-6429.
    [150]Wu B, Zhang Y, Wang H, et al. Temperature dependence of phase behavior for ternary systems composed of ionic liquid + sucrose + water[J]. J. Phys. Chem. B,2008,112(41): 13163-13165.
    [151]Wu B, Zhang Y M, Wang H P. Aqueous biphasic systems of hydrophilic ionic liquids+ sucrose for separation[J]. J. Chem. Eng. Data,2008,53(4):983-985.
    [152]Chen Y, Zhang S. Phase behavior of (1-alky 1-3-methyl imidazolium tetrafluoroborate+ 6-(hydroxymethyl)oxane-2,3,4,5-tetrol + water)[J]. J. Chem. Eng. Data,2010,55(1): 278-282.
    [153]Zhang J, Zhang Y, Chen Y, et al. Mutual coexistence curve measurement of aqueous biphasic systems composed of [Bmim][BF4] and glycine,1-serine, and 1-proline, respectively[J]. J. Chem. Eng. Data,2007,52(6):2488-2490.
    [154]闫永胜,秦永超,陆晓华.溶剂浮选三元缔合物光度法测定痕量锰的研究[J].分析科学学报,2003,19(1):48-50.
    [155]Peleka E N, Matis K A. Application of flotation as a pretreatment process during desalination[J]. Desalination,2008,222(1-3):1-8.
    [156]Lee B K E M, Moure-Eraso R. Analyses of the recycling potential of medical plastic wastes[J]. Waste Manage.,2002,22(5):461-470.
    [157]Shen H, Pugh R J, Forssberg E. Floatability, selectivity and flotation separation of plastics by using a surfactant[J]. Colloid. Surface. A,2002,196(1):63-70.
    [158]Shen H, Forssberg E, Pugh R J. Selective flotation separation of plastics by chemical conditioning with methyl cellulose[J]. Resour. Conserv. Rec.,2002,35(4):229-241.
    [159]Dafnopatidou E K, Lazaridis N K. Dyes removal from simulated and industrial textile effluents by dissolved-air and dispersed-air flotation techniques [J]. Ind. Eng. Chem. Res., 2008,47(15):5594-5601.
    [160]Bande R M, Prasad B, Mishra I M, et al. Oil field effluent water treatment for safe disposal by electroflotation[J]. Chem. Eng. J.,2008,137(3):503-509.
    [161]Beneventi D, Allix J, Zeno E, et al. Influence of surfactant concentration on the ink removal selectivity in a laboratory flotation column[J]. Int. J. Miner. Process.,2008,87(3-4):134-140.
    [162]Dong H R, Bi P Y, Wang S H. Separation and enrichment of baicalin in SBG by solvent sublation and its determination by HPLC and spectroscopy[J]. Anal. Lett.,2005,38(2): 257-270.
    [163]范新美,董慧茹.溶剂浮选法分离富集葛根中大豆营元的研究[J].分析实验室,2006,25(9):88-92.
    [164]Bi P Y, Dong H R, Guo Q Z. Separation and purification of penicillin G from fermentation broth by solvent sublation[J]. Sep. Purif. Technol.,2009,65(2):228-231.
    [165]Sebba F. Ion Flotation [M]. New York:American. Elsevier,1962:112.
    [166]小辻奎也.溶剂浮选分光光度法[J].分析化学(日),1977,26:475-478.
    [167]常志东,刘会洲,陈家镛.泡沫分离法的应用与发展[J].化工进展,1995,5:18-21.
    [168]Valsaraj K. T, Thibodeaux L J. Studies in batch and continuous solvent sublation. Ⅱ. Continuous countercurrent solvent sublation of neutral and ionic species from aqueous solutions[J]. Sep. Sci. Technol.,1991,26(3):367-380.
    [169]Valsaraj K T, Thibodeaux L J. Studies in batch and continuous solvent sublation. I. A complete model and mechanisms of sublation of neutral and ionic species from aqueous solution[J]. Sep. Sci. Technol.,1991,26(1):37-58.
    [170]Lu Y J, Liu J H, Xiong Y, et al. Study of a mathematical model of metal ion complexes in solvent sublation[J]. J. Colloid Interf. Sci.,2003,263(1):261-269.
    [171]Lu Y J, Zhu X H. A mathematical model of solvent sublation of some surfactants[J]. Talanta, 2002,57(5):891-898.
    [172]Lu Y, Zhu X. A mathematical model and mechanism of sublation of dye-surfactant ion complexes[J]. Anal. Bioanal. Chem.,2002,374(5):906-914.
    [173]范新美.溶剂浮选分离富集葛根中大豆甙元及溶剂浮选机理的研究[D].北京:北京化工大学,2006.
    [174]毕鹏禹.溶剂浮选法在天然产物成分分析和氨基酸分离富集中的应用[M].北京:北京化工大学,2007.
    [175]Shelver W L, Hakk H, Larsen G L, et al. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities[J]. J. Chromatogr. A,2010,1217(8):1273-1282.
    [176]Bi P Y, Li D Q, Dong H R. A novel technique for the separation and concentration of penicillin G from fermentation broth:Aqueous two-phase flotation[J], Sep. Purif. Technol., 2009,69(2):205-209.
    [177]Bi P Y, Dong H R, Yuan Y C. Application of aqueous two-phase flotation in the separation and concentration of puerarin from puerariae extract[J]. Sep. Purif. Technol.,2010,75(3): 402-406.
    [178]Show P L, Tan C P, Anuar M S, et al. Direct recovery of lipase derived from Burkholderia cepacia in recycling aqueous two-phase flotation[J]. Sep. Purif. Technol.,2011,80(3): 577-584.
    [179]Cheng Y H, Hou Y M. Study and application on separation and enrichment of calcium-teracycline complex by aqueous two-phase gas floatation spectrometry[J]. Beijing: Science Press Beijing.2009:706-709.
    [180]Hou Y M, Yan Y S, Xie J M, et al. Study and application on separation and enrichment of cobalt-oxyteracycline complex by aqueous two-phase gas floatation[J]. Beijing:Science Press Beijing.2009:702-705.
    [181]Li C X, Xu X H, Yan Y S, et al. Preconcentration/separation of trace Cd(Ⅱ) in the environment samples by hydrophilic organic solvent gas flotation[J]. Chem Anal-Warsaw, 2009,54(6):1355-1366.
    [182]Wang Y, Xu X H, Han J, et al. Separation/enrichment of trace tetracycline antibiotics in water by [Bmim]BF4-(NH4)2SO4 aqueous two-phase solvent sublation[J]. Desalination, 2011,266(1-3):114-118.
    [183]Han J, Wang Y, Yu C L, et al. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography[J]. Anal. Chim. Acta, 2011,685(2):138-145.
    [184]Guan Y, Lilley T H, Treffry T E. A new excluded volume theory and its application to the coexistence curves of aqueous polymer two-phase systems[J]. Macromolecules,1993,26(15): 3971-3979.
    [185]Bernal J D. A geometrical approach to the structure of liquids[J]. Nature,1959,183(4655): 141-147.
    [186]Xie X, Yan Y, Han J, et al. Liquid-liquid equilibrium of aqueous two-phase systems of PPG400 and biodegradable salts at temperatures of (298.15,308.15, and 318.15) K[J]. J. Chem. Eng. Data,2010,55(8):2857-2861.
    [187]Xie X, Han J, Wang Y, et al. Measurement and correlation of the phase diagram data for PPG400+(K3PO4, K2CO3, and K2HPO4)+H2O aqueous two-phase systems at T= 298.15 K[J]. J. Chem. Eng. Data,2010,55(11):4741-4745.
    [188]Rogers R D, Bond A H, Bauer C B, et al. Metal ion separations in polyethylene glycol-based aqueous biphasic systems:correlation of partitioning behavior with available thermodynamic hydration data[J]. J. Chromatogr. B,1996,680(1-2):221-229.
    [189]Hey M J, Jackson D P, Yan H. The salting-out effect and phase separation in aqueous solutions of electrolytes and poly (ethylene glycol)[J]. Polymer,2005,46(8):2567-2572.
    [190]Neves C M S S, Ventura S P M, Freire M G, et al. Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems[J]. J. Phys. Chem. B,2009,113(15):5194-5199.
    [191]Nascimento K S, Yelo S, Cavada B S, et al. Liquid-liquid equilibrium data for aqueous two-phase systems composed of ethylene oxide propylene oxide copolymers[J]. J. Chem. Eng. Data,2011,56(2):190-194.
    [192]Sadeghi R, Golabiazar R. Thermodynamics of phase equilibria of aqueous poly (ethylene glycol) plus sodium tungstate two-phase systems[J]. J. Chem. Eng. Data,2010,55(1):74-79.
    [193]王赟.小分子醇-盐双水相体系的构建及分相/分离机制和应用研究[D].镇江:江苏大学,2010年.
    [194]Markham A. Faulds D. Roxithromycin an update of its antimicrobial activity, pharmacokinetic properties and therapeutic use[J]. Drugs,1994,48(2):297-326.
    [195]Lim J H, Jang B S, Lee R K, et al. Determination of roxithromycin residues in the flounder muscle with electrospray liquid chromatography-mass spectrometry[J]. J. Chromatogr. B, 2000,746(2):219-225.
    [196]Trindade J R, Visak Z P. Blesic M, et al. Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts[J]. J. Phys. Chem. B,2007,111(18):4737-4741.
    [197]Marcus Y. Thermodynamics of solvation of ions. Part 6.-The standard partial molar volumes of aqueous ions at 298.15 K[J]. J. Chem. Soc., Faraday Trans.,1993,89(4):713-718.
    [198]Marcus Y. Thermodynamics of solvation of ions. Part 5.-Gibbs free energy of hydration at 298.15 K[J]. J. Chem. Soc., Faraday Trans.,1991,87(18):2995-2999.
    [199]Biswas A K, Rao G S, Kondaiah N, et al. Simple multiresidue method for monitoring of trimethoprim and sulfonamide residues in buffalo meat by high-performance liquid chromatography[J]. J. Agr. Food Chem.,2007,55(22):8845-8850.
    [200]Diaz T G, Cabanillas A G, Salinas F. Rapid determination of sulfathiazole, oxytetracycline and tetracycline in honey by high-performance liquid chromatography[J]. Analy. Lett.,1990, 23(4):607-616.
    [201]John D W. Michael D S. Liquid chromatographic determination of sulfamethazine in milk [J]. J. Assoc. Off. Anal. Chem.,1989,72(3):445-447.
    [202]Samanidou V F, Tolika E P, Papadoyannis I N. Development and validation of an HPLC confirmatory method for the residue analysis of four sulphonamides in cow's milk according to the European Union Decision 2002/657/EC[J]. J. Liq. Chromatogr. R T,2008,31(9): 1358-1372.
    [203]The maximum residue limit in food of animal origin established by ministry of agriculture of P.R. China [J]. Chin. J. Vet. Drug,2003,37:15.
    [204]Chiavarino B, Elisa Crestoni M, Di Marzio A, et al. Determination of sulfonamide antibiotics by gas chromatography coupled with atomic emission detection[J]. J. Chromatogr. B,1998,706(2):269-277.
    [205]Kowalski P, Plenis A, Oledzka I, et al. Optimization and validation of the micellar electrokinetic capillary chromatographic method for simultaneous determination of sulfonamide and amphenicol-type drugs in poultry tissue[J]. J. Pharmaceut. Biomed.,2011, 54(1):160-167.
    [206]Garcia-Galan M J, Diaz-Cruz M S, Barcelo D. Determination of 19 sulfonamides in environmental water samples by automated on-line solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS)[J]. Talanta,2010,81(1-2): 355-366.
    [207]Sun L, Chen L, Sun X, et al. Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection[J]. Chemosphere,2009,77(10):1306-1312.
    [208]Maudens K E, Zhang G F, Lambert W E. Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection[J]. J. Chromatogr. A,2004,1047(1):85-92.
    [209]Verzegnassi L, Savoy-Perroud M C, Stadler R H. Application of liquid chromatography-electrospray ionization tandem mass spectrometry to the detection of 10 sulfonamides in honey[J]. J. Chromatogr. A,2002,977(1):77-87.
    [210]Font G, Juan-Garcia A, Pico Y. Pressurized liquid extraction combined with capillary electrophoresis-mass spectrometry as an improved methodology for the determination of sulfonamide residues in meat[J]. J. Chromatogr. A,2007,1159(1-2):233-241.
    [211]Raich-Montiu J, Folch J, Compano R, et al. Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-fluorescence[J]. J. Chromatogr. A, 2007,1172(2):186-193.
    [212]Kishida K, Furusawa N. Matrix solid-phase dispersion extraction and high-performance liquid chromatographic determination of residual sulfonamides in chicken[J]. J. Chromatogr. A,2001,937(1-2):49-55.
    [213]Benavides A, Bassarello C, Montoro P, et al. Flavonoids and isoflavonoids from gynerium sagittatum[J]. Phytochemistry,2007,68(9):1277-1284.
    [214]De Baere S, Baert K, Croubels S, et al. Determination and quantification of sulfadiazine and trimethoprim in swine tissues using liquid chromatography with ultraviolet and mass spectrometric detection[J]. Analyst,2000,125(3):409-415.
    [215]Stoob K, Singer H P, Goetz C W, et al. Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry:quantification of sulfonamide antibiotics, neutral and acidic pesticides at low concentrations in surface waters[J]. J. Chromatogr. A,2005,1097(1-2):138-147.
    [216]Lara F J, Garcia-Campana A M, Neususs C, et al. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis[J]. J. Chromatogr. A, 2009,1216(15):3372-3379.
    [217]Lin C Y, Huang S D. Application of liquid-liquid-liquid microextraction and high-performance liquid-chromatography for the determination of sulfonamides in water[J]. Anal. Chim. Acta,2008,612(1):37-43.
    [218]Zheng M M, Zhang M Y, Peng G Y, et al. Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry[J]. Anal. Chim. Acta,2008,625(2):160-172.
    [219]David Gottlieb M L. The growth and metabolic behavior of streptomyces venezuelae in liquid culture[J]. Mycologia,1953,45(4):507-515.
    [220]Gikas E, Kormali P, Tsipi D, Tsarbopoulos A. Development of a rapid and sensitive SPE-LC-ES1 MS/MS method for the determination of chloramphenicol in seafood[J]. J. Agr. Food Chem.,2004,52(5):1025-1030.
    [221]Mottier P, Parisod V, Gremaud E, et al. Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry[J]. J. Chromatogr. A,2003,994(1-2):75-84.
    [222]Gude T, Preiss A, Rubach K. Determination of chloramphenicol in muscle, liver, kidney and urine of pigs by means of immunoaffinity chromatography and gas chromatography with electron-capture detection[J]. J. Chromatogr. B,1995,673(2):197-204.
    [223]Gantverg A, Shishani I, Hoffman M. Determination of chloramphenicol in animal tissues and urine:Liquid chromatography-tandem mass spectrometry versus gas chromatography-mass spectrometry [J]. Anal. Chim. Acta,2003,483(1-2):125-135.
    [224]Commission decision 2002/657/EC of 12 august 2002 implementing council. directive 96/23/EC concerning the performance of analytical methods, the interpretation of results, Off. J. Eur. Comm. L 211,2002,8-36.
    [225]Sun X, Chang Z, Liu H, et al. Recovery of butyl acetate in wastewater of penicillin plant by solvent sublation I. experimental study[J]. Sep. Sci. Technol.,2005,40(4):927-940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700