由井冈霉素、阿卡波糖及其衍生物制备维列胺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维列胺是一个不饱和C7N氨基环醇,其结构类似α-D-葡萄糖,是各种α-糖苷酶抑制剂的核心结构,利用其N-取代物可合成其它活性更强的糖苷酶抑制剂。阿卡波糖和伏格列波糖可以竞争性抑制α-葡萄糖苷酶,减缓糖类的吸收,是临床上广泛使用的治疗II型糖尿病的降糖药物。
     维列胺除化学合成外,主要由含维列胺结构的化合物来制备。井冈霉素和阿卡波糖结构中都含有维列胺,可经生物转化或化学裂解产生维列胺。阿卡波糖化学裂解法迅速高效,不产生副产物井冈霉胺,但原料成本较高。井冈霉素生物转化产率低、周期长,会产生井冈霉胺。本文进行了由阿卡波糖和井冈霉素制备维列胺的研究。
     本文首先研究了维列胺、阿卡波糖和井冈霉素的检测方法,建立了毛细管区带电泳的分析方法,可同时对维列胺制备过程的底物和产物进行检测,极大提高了检测效率。
     本文通过酸、碱和离子交换树脂与阿卡波糖或井冈霉素反应,发现井冈霉素经酸、碱、离子交换树脂法都不能产生维列胺。三氟乙酸及离子交换树脂水解阿卡波糖能产生维列胺,但维列胺的产率较低。碱裂解阿卡波糖产生维列胺产率最高,阿卡波糖与NaOH质量比1∶4时,121℃裂解30min,维列胺产率最高可达84.2%。阿卡波糖发酵的衍生物杂质C,经NaOH裂解也得到了维列胺,转化率与阿卡波糖相同。
     从实验室菌种库中筛选了4株井冈霉素转化菌,其中SIPI-V08转化效果最好,SIPI-V01和SIPI-V29稍弱,SIPI-V23转化率最低。对它们进行了维列胺的生物转化研究,优化了转化液和转化条件。采用4株转化菌的静息细胞进行转化,维列胺的转化率没有显著提高。
     井冈霉素降解为维列胺是多步酶反应的过程,每步反应的酶活力都不相同,可能有一种酶成为限速酶。即使是催化同一步反应的酶,不同菌种的酶活力也有很大差异,当不同来源的菌种混合进行转化时,可能形成互补,提高总转化率。采用4株转化菌进行混合转化,结果发现部分组合的混合转化能显著提高转化率,高于各自单独转化的最高值。SIPI-V08-V23、SIPI-V01-V08、SIPI-V01-V08-V23的混合时转化效果最好。混合转化也能降低高浓度底物对菌种的抑制,在10%的底物浓度下也能迅速转化。10%底物浓度下静息细胞混合转化总转化率显著提高,转化周期比单独转化缩短一半,SIPI-V08-V23、SIPI-V01-V08-V23、SIPI-V01-V08组合3种组合的混合转化产生的维列胺在第3d就超过了SIPI-V08单独转化6d的5.0mg/ml。SIPI-V08-V23混合在第7d达10.4mg/ml,提高了近一倍。SIPI-V01-V08在第5d维列胺最高为9.2mg/ml。
Valienamine is an unsaturated aminocyclitol compound. The absolute configuration of valienamine is similar to that of a-D-glucose, and it demonstrates strong inhibitory activity against glucosidase. As the key moiety of variousα-glucosidase inhibitors, valienamine can be used as a chemical intermediate in the synthesis of other strong aglycoside inhibitors, such as acarbose and voglibose, which are most widely used drugs for type II diabetes mellitus at present due to their strong ability to delay the absorption of carbohydrates by competitive inhibition of intestinalα-glucosidases.
     Both of Acarbose and validamycin A have a valienamine moiety in their structure s. Besides chemical synthesis, valienamine is mainly produced by cleavage of Acarbose, which is effective but costly, or by degradation of validamycin A, which has a low efficiency and produces impurities. In this paper, the methods for preparation of valienamine by acarbose and validamycin A are completely discussed in details. A new method——capillary electrophoresis is also established for the analysis of valienamine, acarbose and validamycins, which makes a great progress in analysis efficiency.
     It was found in this research that no valienamine was produced after reaction of validamycin A with acid, base or ion exchange resin. Although acarbose could react with trifluoroacetic acid or ion exchange resin to produce valienamine, the yield is very low.
     However, the highest yield of valienamine was finally obtained through the reaction of acarbose with sodium hydroxide for about 30min at 121℃. The most desirable ratio between acarbose and sodium hydroxide is 1 to 4, and the highest valienamine yield could reach 84.2%. Valienamine could also be obtained with the same efficiency of transformation as acarbose when an acarbose derivative, component C in the fermentation broth, was reacted with sodium hydroxide.
     Four strains with the ability to convert validamycins to valienamine were isolated from the laboratory collection of strains, in which strain SIPI-V08 has the highest efficiency of transformation. The transformation efficiency of strain SIPI-V01 and SIPI-V29 are lower, and strain SIPI-V23 the lowest. The yiled of valienamine was obviously improved through optimization of fermentation medium and condition. The relationship between resting cells cultivation and transformation efficiency was also studied, but the result did not turn out to be satisfactory.
     The conversion of validamycin A to valienamine was completed via three steps of enzymatic catalytic reactions involved in several different enzymes. When different strains were co-incubated, the total yield of valienamine could be greatly improved by complementary effect resulting from the interaction of various enzymes in them. Thus, mixed transformations of four strains were studied, and some combinations of the strains resulted in great increase in total yield. The best result comes from the mixed transformation of strain SIPI-V08-V23、SIPI-V01-V08、SIPI-V01-V08-V23. On the other hand, the inhibition of transformation by high concentration of substrate could be strongly attenuated with mixed transformation. Even if the substrate concentration is up to 10%, the transformation could be efficiently performed. The mixed transformation at 10% substrate concentration by resting cells cultivation was also studied and the yield was significantly improved. Meanwhile the total cultivation time was half-shortened as well. The valienamine yield by mixed transformation of strain SIPI-V08-V23、SIPI-V01-V08 or SIPI-V01-V08-V23 exceeded 5.0mg/ml on the 3rd day, however, it required 6 days for strain SIPI-V08 alone to reach the same yield. Valienamine yield by strain SIPI-V08-V23 could reach the maximum 10.4mg/ml on the 7th day and the yield by strain SIPI-V01-V08 could reach the maximum 9.2mg/ml on the 5th day.
引文
[1]束梅英,张骁.糖尿病治疗药物的研究进展和市场前景[J].中国制药信息, 2000, 16(10):8-14.
    [2]广州标点医药信息有限公司.糖尿病用药市场研究报告, 2006.
    [3] Ramachandran A, Snehalatha C, Latha E, et al. Evaluation of the use of fasting plasma glucose as a new diagnostic criterion for diabetes in Asian Indian population[J]. Diabetes Care, 1998, 21(4):666-667.
    [4] Chiasson JL, Josse RG, Gomis R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial[J]. Lancet, 2002, 359(9323):2072-2077.
    [5] Standl E, Schernthaner G, Rybka J, et al. Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics[J]. Diabetes Res Clin Pract, 2001, 51(3):205-213.
    [6] Vichayanrat A, Ploybutr S, Tunlakit M, et al. Efficacy and safety of voglibose in comparison with acarbose in type 2 diabetic patients[J]. Diabetes Res Clin Pract, 2002, 55(2):99-103.
    [7] Nakamura T, Ushiyama C, Shimada N, et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin-1 and albumin excretion in diabetes patients[J]. J Diabetes Complications, 2000, 14(5):250-254.
    [8]张来银.糖尿病的治疗药物研究进展[J].现代中西医结合杂志, 2007, 16(5):704-706.
    [9] Hanefeld M. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus[J]. J Diabetes Complications, 1998, 12(4):228-237.
    [10] DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus[J]. Ann Intern Med, 1999, 131(4):281-303.
    [11]李连瑞,王秀玲.糖尿病的治疗药物进展[J].天津药学, 2003, 15(2):56-58.
    [12]只德贤,刘铮,王敏伟.糖尿病治疗药物的研究进展[J].中华现代医学与临床, 2005, 3(4):56-57.
    [13]阮国虎,营凌燕,李玉,等.糖尿病治疗药物的研究进展[J].实用药物与临床, 2007, 10(1):56-57.
    [14]何素婷,许激扬,陈代杰.具有α-葡糖苷酶抑制作用的抗糖尿病药物[J].工业微生物, 2003, 33(1):43-49.
    [15]王镜岩,朱圣庚,徐长法.生物化学第三版上册.北京:高等教育出版社, 2002.
    [16]陈代杰.微生物药物学.上海:华东理工大学出版社, 1999.
    [17]代小松,韩盛玺.埃索美拉唑-质子泵抑制剂的新成员[J].华西药学杂志, 2007, 22(3):356-357.
    [18]杨昭徐.质子泵抑制剂作用机制的新见解[J].中国医药导刊, 2008, 10(2):165-167.
    [19]邹品文,赵春景.质子泵抑制剂研究进展和研究方向[J].中国药业, 2008(2):23-24.
    [20]龚伟,姜泊.质子泵抑制剂在消化性溃疡领域中的治疗及应用进展[J].中国处方药, 2008(7):43-45.
    [21]刘永丽,石雷.质子泵抑制剂研究进展与临床应用[J].现代医药卫生, 2007, 23(22):3393-3395.
    [22]杨清.质子泵抑制剂治疗消化性溃疡合并出血的临床评价[J].现代中西医结合杂志, 2007, 16(30):4494-4495.
    [23]孟勇,王忠彦,等.β-内酰胺酶抑制剂克拉维酸研究进展[J].中国抗生素杂志, 2003, 28(1):60-64.
    [24]赵俭,蒋东.β-内酰胺酶抑制剂克拉维酸,舒巴坦及其联合制剂的临床应用[J].天津药学, 1997, 9(4):43-44.
    [25]何宁宁.胆碱酯酶抑制剂治疗阿尔茨海默病的研究进展[J].上海医药, 2003,24(7):318-320.
    [26]郑如,苏银法.石杉碱甲的临床应用研究进展[J].实用药物与临床, 2008, 11(2):107-108.
    [27]姚忠,尤启冬,等.用作抗青光眼药物的碳酸酐酶抑制剂[J].药学进展, 2002, 26(4):202-205.
    [28]马晶,胡延丽.碳酸酐酶抑制剂的研究和临床评价[J].国外医药:合成药.生化药.制剂分册, 2001, 22(1):27-28.
    [29]赵武伟,张致峰,何晓,等.培高利特、司来吉兰和左旋多巴-苄丝肼治疗帕金森病疗效比较[J].中国新药与临床杂志, 2004, 23(7):433-436.
    [30]吕元琦,邬春华,袁倬斌.毛细管电泳法测定美多芭片剂中的左旋多巴和羟苄丝肼[J].化学试剂, 2004, 26(4):217-219.
    [31]张廷杰,朱轼.血管紧张素转移酶抑制剂与心血管——基础与临床[J].心血管病学进展, 1996, 17(2):67-77.
    [32]郭玲,王克平.血管紧张素转移酶抑制剂的研究与应用进展[J].心血管病学进展, 1996, 17(1):48-50.
    [33]张冉,刘泉,申竹,等.应用α-葡萄糖苷酶抑制剂高通量筛选模型筛选降血糖中药[J].中国药学杂志, 2007, 42(10):740-743.
    [34] Chen X, Fan Y, Zheng Y, et al. Properties and Production of Valienamine and Its Related Analogues[J]. Chem. Rev. (Washington, DC, U. S.), 2003, 103(5):1955-1977.
    [35] Kameda Y, Asano N, Yoshikawa M, et al. Valienamine as an alpha -glucosidase inhibitor[J]. J. Antibiot., 1980, 33(12):1575-1576.
    [36] Ernst Truscheit, Frommer W, Junge B, et al. Chemistry and Biochemistry of Microbial alpha-Glucosidase inhibitors[J]. Angew. Chem. Int. Ed. Engl., 1981, 20(9):744-761.
    [37] Horii S, Fukase H, Matsuo T, et al. Synthesis and alpha -D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents[J]. J. Med. Chem., 1986, 29(6):1038-1046.
    [38]陈海敏,严小军,林伟.α-葡萄糖苷酶抑制剂的构效关系[J].中国生物化学与分子生物学报, 2003, 19(6):780-784.
    [39] Sumitani J-I, Tsujimoto Y, Kawaguchi T, et al. Cloning and secretive expression of the gene encoding the proteinaceous [alpha]-amylase inhibitor paim from Streptomyces corchorusii[J]. Journal of Bioscience and Bioengineering, 2000, 90(2):214-216.
    [40] Iulek J, Franco OL, Silva M, et al. Purification, biochemical characterisation and partial primary structure of a new [alpha]-amylase inhibitor from Secale cereale (rye)[J]. The International Journal of Biochemistry & Cell Biology, 2000, 32(11-12):1195-1204.
    [41] Gu X-f, Chen J. Biosynthesis and fermentation process of acarbose[J]. Guowai Yiyao Kangshengsu Fence, 2006, 27(3):122-125, 142.
    [42] Mueller L, Junge B, Frommer W, et al. Acarbose (BAY g 5421) and homologous alpha -glucosidase inhibitors from Actinoplanaceae[J]. Enzyme Inhibitors, Proc. Meet., 1980:109-122.
    [43]杨光,李春霖.α-糖苷酶抑制剂在糖尿病患者中的应用[J].中国药物应用与监测, 2007, 4(1):16-20.
    [44] Chen X, Zheng Y, Shen Y. Voglibose (Basen, AO-128), one of the most important alpha -glucosidase inhibitors[J]. Curr. Med. Chem., 2006, 13(1):109-116.
    [45]沈佳佳,张晓军,王,等.新型抗糖尿病药物——米格列醇的研究进展[J].海峡药学, 2005, 17(6):8-10.
    [46] Tormo MA, Ropero MF, Nieto M, et al. Effect of miglitol administration to non-insulin-dependent diabetic rats[J]. Gen Pharmacol, 1998, 30(1):125-129.
    [47] Iwasa T, Yamamoto H, Shibata M. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism[J].Jpn J Antibiot, 1970, 23(6):595-602.
    [48] Wehmeier UF. The Biosynthesis and Metabolism of Acarbose in Actinoplanes sp. SE 50/110: A Progress Report[J]. Biocatal. Biotransform., 2003, 21:279-284.
    [49] Stratmann A, Mahmud T, Lee S, et al. The AcbC Protein from Actinoplanes Species Is a C7-cyclitol Synthase Related to 3-Dehydroquinate Synthases and Is Involved in the Biosynthesis of the alpha -Glucosidase Inhibitor Acarbose[J]. J. Biol. Chem., 1999, 274(16):10889-10896.
    [50] Degwert U, Van Huelst R, Pape H, et al. Studies on the biosynthesis of the alpha -glucosidase inhibitor acarbose: valienamine, a m-C7N unit not derived from the shikimate pathway[J]. J. Antibiot., 1987, 40(6):855-861.
    [51] Bowers SG, Mahmud T, Floss HG. Biosynthetic studies on the alpha-glucosidase inhibitor acarbose: the chemical synthesis of dTDP-4-amino-4,6-dideoxy-alpha-D-glucose[J]. Carbohydr Res, 2002, 337(4):297-304.
    [52] Baek JS, Kim HY, Yoo SS, et al. Synthesis of acarbose transfer products by Bacillus stearothermophilus maltogenic amylase with simmondsin[J]. Industrial Crops and Products, 2000, 12(3):173-182.
    [53] Yoon SH, Robyt JF. Synthesis of acarbose analogues by transglycosylation reactions of Leuconostoc mesenteroides B-512FMC and B-742CB dextransucrases[J]. Carbohydr Res, 2002, 337(24):2427-2435.
    [54] Horii S, Iwasa T, Kameda Y. Studies on validamycins, new antibiotics. V. Degradation studies[J]. J Antibiot (Tokyo), 1971, 24(1):57-58.
    [55] Iwasa T, Higashide E, Yamamoto H, et al. Studies on validamycins, new antibiotics. II. Production and biological properties of validamycins A and B[J]. J Antibiot (Tokyo), 1971, 24(2):107-113.
    [56] Iwasa T, Kameda Y, Asai M, et al. Studies on validamycins, new antibiotics. IV. Isolation and characterizatin of validamycins A and B[J]. J Antibiot (Tokyo), 1971, 24(2):119-123.
    [57] Horii S, Kameda Y, Kawahara K. Studies on validamycins, new antibiotics. 8. Isolation and characterization of validamycins C,D,E and F[J]. J Antibiot (Tokyo), 1972, 25(1):48-53.
    [58] Mahmud T, Lee S, Floss HG. The biosynthesis of acarbose and validamycin[J]. Chem Rec, 2001, 1(4):300-310.
    [59] Mahmud T. The C7N aminocyclitol family of natural products[J]. Nat Prod Rep, 2003, 20(1):137-166.
    [60]申屠旭萍,郑裕国,俞晓平.井冈霉素及其分解产物的开发利用[J].国外医药:抗生素分册, 2005, 26(6):275-278.
    [61] Kyosseva SV, Kyossev ZN, Elbein AD. Inhibitors of pig kidney trehalase[J]. Arch Biochem Biophys, 1995, 316(2):821-826.
    [62]沈寅初.井冈霉素研究开发25年[J].植物保护, 1996, 22(4):44-45.
    [63] Ogawa S, Shibata Y. Total synthesis of acarbose and adiposin-2[J]. J. Chem. Soc., Chem. Commun., 1988(9):605-606.
    [64] Shibata Y, Ogawa S. Synthesis of pseudo-oligosaccharide alpha -amylase inhibitors: acarbose and adiposin-2[J]. Kenkyu Hokoku - Asahi Garasu Kogyo Gijutsu Shoreikai, 1989, 54:1-8.
    [65] Namiki S, Kangouri K, Nagate T, et al. Studies on the alpha-glucoside hydrolase inhibitor, adiposin. I. Isolation and physicochemical properties[J]. J Antibiot (Tokyo), 1982, 35(9):1234-1236.
    [66] Kangouri K, Namiki S, Nagate T, et al. Studies on the alpha-glucoside hydrolase inhibitor, adiposin. III. alpha Glucoside hydrolase inhibitory activity and antibacterial activity in vitro[J]. J Antibiot (Tokyo), 1982, 35(9):1160-1166.
    [67] Itoh J, Omoto S, Shomura T, et al. Oligostatins, new antibiotics with amylase inhibitory activity. I. Production, isolation and characterization[J]. J Antibiot (Tokyo), 1981, 34(11):1424-1428.
    [68] Omoto S, Itoh J, Ogino H, et al. Oligostatins, new antibiotics with amylase inhibitory activity, II. Structures of oligostatins C, D, and E[J]. J Antibiot (Tokyo), 1981, 34(11):1429-1433.
    [69] Yokose K, Ogawa K, Sano T, et al. New alpha-amylase inhibitor, trestatins. I. Isolation, characterization and biological activities of trestatins A, B and C[J]. J Antibiot (Tokyo), 1983, 36(9):1157-1165.
    [70] Yokose K, Ogawa K, Suzuki Y, et al. New alpha-amylase inhibitor, trestatins. II. Structure determination of trestatins A, B and C[J]. J Antibiot (Tokyo), 1983, 36(9):1166-1175.
    [71] Watanabe K, Furumai T, Sudoh M, et al. New alpha-amylase inhibitor, trestatins. IV. Taxonomy of the producing strains and fermentation of trestatin A[J]. J Antibiot (Tokyo), 1984, 37(5):479-486.
    [72] Yamagishi T, Uchida C, Ogawa S. Total synthesis of the trehalase inhibitor salbostatin[J]. Chem.--Eur. J., 1996, 1(9):634-636.
    [73] Knuesel I, Murao S, Shin T, et al. Comparative studies of suidatrestin, a specific inhibitor of trehalases[J]. Comp Biochem Physiol B Biochem Mol Biol, 1998, 120(4):639-646.
    [74] Tatsuta K. Recent progress in total synthesis and development of natural products using carbohydrates[J]. ACS Symp. Ser., 2003, 841(Carbohydrate Synthons in Natural Products Chemistry):157-179.
    [75] Kawamura N, Sawa R, Takahashi Y, et al. Pyralomicins, new antibiotics from Actinomadura spiralis[J]. J Antibiot (Tokyo), 1995, 48(5):435-437.
    [76] Takeuchi M, Kamata K, Yoshida M, et al. Inhibitory effect of pseudo-aminosugars on oligosaccharide glucosidases I and II and on lysosomal alpha-glucosidase from rat liver[J]. J Biochem, 1990, 108(1):42-46.
    [77] Takeuchi M, Takai N, Asano N, et al. Inhibitory effect of validamine, valienamine and valiolamine on activities of carbohydrases in rat small intestinal brush border membranes[J]. Chem Pharm Bull (Tokyo), 1990, 38(7):1970-1972.
    [78] Kim KS, Kim DJ, Lee BY, et al. Simple method for preparing valienamine in high yield and low cost by using D-glucose derivatives as starting material[P]. KR2006038813.
    [79] Chang Y-K, Lee B-Y, Kim DJ, et al. An Efficient Synthesis of Valienamine via Ring-Closing Metathesis[J]. J. Org. Chem., 2005, 70(8):3299-3302.
    [80] Cumpstey I. Formal synthesis of valienamine using ring-closing metathesis[J]. Tetrahedron Lett., 2005, 46(37):6257-6259.
    [81] Tatsuta K, Mukai H, Takahashi M. Novel synthesis of natural pseudo-aminosugars, (+)-valienamine and (+)-validamine[J]. J Antibiot (Tokyo), 2000, 53(4):430-435.
    [82] Paulsen H, Heiker FR. Cyclitol reactions. 3. Synthesis of chiral valienamine[J]. Angew. Chem., 1980, 92(11):930-931.
    [83] Paulsen H, Heiker FR. Cyclitol reactions. V. Synthesis of enantiomerically pure valienamine from quebrachitol[J]. Liebigs Ann. Chem., 1981(12):2180-2203.
    [84] Shing TK, Li TY, Kok SH. Enantiospecific Syntheses of Valienamine and 2-epi-Valienamine(1)[J]. J Org Chem, 1999, 64(6):1941-1946.
    [85] Kok SHL, Lee CC, Shing TKM. A New Synthesis of Valienamine[J]. J. Org. Chem., 2001, 66(21):7184-7190.
    [86] Yoshikawa M, Cha BC, Okaichi Y, et al. Syntheses of validamine, epi-validamine, and valienamine, three optically active pseudo-amino-sugars, from D-glucose[J]. Chem. Pharm. Bull., 1988, 36(10):4236-4239.
    [87] Kapferer P, Sarabia F, Vasella A. Carbasaccharides via ring-closing alkene metathesis. A synthesis of (+)-valienamine from D-glucose[J]. Helv. Chim. Acta, 1999, 82(5):645-656.
    [88] Ogawa S, Miyamoto Y, Nakajima A. Cleavage of the imino bonds of validoxylamine A derivatives with N-bromosuccinimide[J]. Chem. Lett., 1989(5):725-728.
    [89]许栗,吴振焕.使用三氟乙酸由阿卡波糖或阿卡波糖衍生物制备维列胺的方法[P]. CN1630630.
    [90]许栗,吴振焕,朴永日.使用固体催化剂制备井冈霉烯胺的方法[P]. CN1849297.
    [91] Kameda Y, Asano N, Teranishi M, et al. New cyclitols, degradation of validamycin A by Flavobacterium saccharophilum[J]. J. Antibiot., 1980, 33(12):1573-1574.
    [92] Kameda Y, Asano N, Teranishi M, et al. New intermediates, degradation of validamycin A by Flavobacterium saccharophilum[J]. J Antibiot (Tokyo), 1981, 34(9):1237-1240.
    [93] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of 3-ketovalidoxylamine A C-N lyase from Flavobacterium saccharophilum[J]. J Biochem, 1985, 98(6):1631-1638.
    [94] Takeuchi M, Ninomiya K, Kawabata K, et al. Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum[J]. J Biochem, 1986, 100(4):1049-1055.
    [95] Takeuchi M, Asano N, Kameda Y, et al. Purification and properties of soluble D-glucoside 3-dehydrogenase from Flavobacterium saccharophilum[J]. Agricultural and biological chemistry, 1988, 52(8):1905-1912.
    [96] Asano N, Takeuchi M, Ninomiya K, et al. Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymic cleavage of C-N linkage in validoxylamine A[J]. J. Antibiot., 1984, 37(8):859-867.
    [97] Zheng Y, Xue Y, Wang Y, et al. Method for manufacturing valienamine and validamine with Alcaligenes faecalis[P]. CN1772914.
    [98] Zheng Y, Xue Y, Wang Y, et al. Method for producing valienamine and validamine from validamycin with microbial cracking[P]. CN1772913.
    [99] Zheng Y, Xue Y, Wang Y, et al. Method for manufacturing valienamine by degrading acarbose and its derivatives with microorganism[P]. CN1740332.
    [100] Chen X, Zheng Y, Shen Y. A New Method for Production of Valienamine with Microbial Degradation of Acarbose[J]. Biotechnol. Prog., 2005, 21(3):1002-1003.
    [101] Zheng Y, Chen X, Xue Y, et al. Preparation of valienamine and validamine using Stenotrophomonas maltophilia CCTCC No.M 204024[P]. CN1563397.
    [102] Zheng Y-G, Xue Y-P, Shen Y-C. Production of valienamine by a newly isolated strain: Stenotrophomonas maltophilia[J]. Enzyme Microb. Technol., 2006, 39(5):1060-1065.
    [103] Horii S, Kameda Y, Fukase H. N-Substituted pseudo-aminosugars, and their use[P]. EP89812.
    [104] Horii S, Fukase H, Kameda Y. Stereoselective conversion of valienamine and validamine into valiolamine[J]. Carbohydr. Res., 1985, 140(2):185-200.
    [105] Qiu G, Yao P, Wang X. Method for manufacturing valiolamine from validamycin[P]. CN101029318.
    [106]邵昌.伏格列波糖新路线设计及合成[D].硕士:重庆医科大学, 2006: 1-71.
    [107] Yuan J, Shao C, Chen D, et al. Preparation of valiolamine as intermediate of voglibose[P]. CN1683320.
    [108]吕春雷,叶伟东,胡三,等.由Valiolamine制备伏格列波糖[J].中国医药工业杂志, 2005, 36(9):525-525.
    [109]周和平,陈小勇.伏格列波糖合成路线图解[J].中国医药工业杂志, 2006, 37(8):574-576.
    [110] Fukase H, Horii S. Synthesis of valiolamine and its N-substituted derivatives AO-128, validoxylamine G, and validamycin G via branched-chain inosose derivatives[J]. J. Org. Chem., 1992, 57(13):3651-3658.
    [111] Furumoto T, Kameda Y, Matsui K. Enzymic synthesis of glucoside derivatives of validamine and valienamine[J]. Chem. Pharm. Bull., 1992, 40(7):1871-1875.
    [112] Choi YH. Preparation method of Oseltamivir[P]. KR2007082985.
    [113] Montefiori DC, Robinson WE, Jr., Mitchell WM. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1[J]. Proc Natl Acad Sci U S A, 1988, 85(23):9248-9252.
    [114] Silva CHTP, Taft CA. Computer-aided molecular design of novel glucosidase inhibitors for AIDS treatment[J]. J. Biomol. Struct. Dyn., 2004, 22(1):59-64.
    [115] Fleet GW, Karpas A, Dwek RA, et al. Inhibition of HIV replication by amino-sugar derivatives[J]. FEBS Lett, 1988, 237(1-2):128-132.
    [116] Nishimura Y, Satoh T, Adachi H, et al. Synthesis and antimetastatic activity of L-iduronic acid-type 1-N-iminosugars[J]. J Med Chem, 1997, 40(16):2626-2633.
    [117] Wrodnigg TM, Steiner AJ, Ueberbacher BJ. Natural and synthetic iminosugars as carbohydrate processing enzyme inhibitors for cancer therapy[J]. Anticancer Agents Med Chem, 2008, 8(1):77-85.
    [118] Gerber-Lemaire S, Juillerat-Jeanneret L. Glycosylation pathways as drug targets for cancer: glycosidase inhibitors[J]. Mini Rev Med Chem, 2006, 6(9):1043-1052.
    [119] Choi BT, Shin CS. Reduced Formation of Byproduct Component C in Acarbose Fermentation by Actinoplanes sp. CKD485-16[J]. Biotechnol. Prog., 2003, 19(6):1677-1682.
    [120]顾觉奋,陈菁.阿卡波糖生物合成和发酵工艺研究进展[J].国外医药:抗生素分册, 2006, 27(3):122-125, 142.
    [121] Acarbose[S]. European Pharmacopoeia 5.1: 2873-2874.
    [122] WS1-(X-396)-2003Z.阿卡波糖片[S].国家药品标准:国家食品药品监督管理局.
    [123] GB/T9553-93.井冈霉素水剂[S].中华人民共和国国家标准.
    [124]杨磊,高敏,祖元刚.高效液相色谱法测定阿卡波糖水解产物中的Valienamine含量[J].分析化学, 2006, 34(9):1357-1357.
    [125]何进.几种微生物及其代谢产物的毛细管电泳方法研究[D].博士:华中农业大学, 2003: 1-85.
    [126]孙清华,刘道杰.用于测定糖的衍生试剂的研究进展[J].化学试剂, 2005, 27(11):653-656.
    [127] H. Fabre, K.D. Altria. Validating CE Methods for Pharmaceutical Analysis. In: LC-GC Europe,CE currents (www.lcgceurope.com). 2001: 1-5.
    [128] Xue YP, Zheng YG, Chen XL, et al. Quantitative determination of valienamine and validamine by thin-layer chromatography[J]. J Chromatogr Sci, 2007, 45(2):87-90.
    [129]边一锡,金周晟,申晟,等.制备井冈霉烯胺的方法[P]. CN101048365.
    [130] Jin L-Q, Xue Y-P, Zheng Y-G, et al. Production of trehalase inhibitor validoxylamine A using acid-catalyzed hydrolysis of validamycin A[J]. Catalysis Communications, 2006, 7(3):157-161.
    [131] Zheng Y-G, Jin L-Q, Shen Y-C. Resin-catalyzed degradation of validamycin A for production of validoxylamine A[J]. Catalysis Communications, 2004, 5(9):519-525.
    [132] Her Y, Oh J-H, Park Y-I. Preparation method of valienamine via selective hydrolysis of acarbose, validamycin, and validoxylamine derivatives using exchange resins or zeolite as catalysts[P]. WO2004108657.
    [133] Zheng Y-G, Zhang X-F, Shen Y-C. Microbial transformation of validamycin A to valienamine by immobilized cells[J]. Biocatal. Biotransform., 2005, 23(2):71-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700