烟气中性面的理论模型及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开口是建筑与外界环境进行能量与质量交换的主要渠道,而中性面则是开口内外的烟气流动主要影响因素。中性面作用下的开口流动一方面决定着火房间内的火灾发展,另一方面又是烟气流出着火房间,在建筑内大面积蔓延的主要原因。因此,研究中性面对于建筑火灾烟气防控具有重要意义。
     本文通过理论分析、实验和数值模拟相结合的方法,围绕烟气中性面的基础问题开展了以下几个方面的研究:火灾实验模拟火源的燃烧特性和稳定性;烟气层分界面计算方法;考虑温度和开口宽度分布的竖井中性面计算模型;有排烟仓室的开口中性面计算理论模型和溢流抑止条件等。论文的具体工作包括:
     研究了池火火源燃烧特性以及水浴保护下的稳定性。通过实验发现,汽油池火的辐射热反馈量占总反馈量的84.6,甲醇为31.9%。因此,汽油的燃烧速率对火焰扰动更敏感。有水浴时池火燃烧速率更稳定,但均值有不超过10%的降低。因而,为了得到更稳定的火源功率时,在火灾实验时宜对池火火源进行水浴保护。
     发展了一种新的烟气层分界面计算方法。该方法基于客观温度数据,通过比较不同温度阈值下的类内方差和类内积分比,在有效摒除阈值选定过程人为主观性和经验性的同时,保证了分界阈值的最优化。试验表明,该方法基本消除了温度振荡对烟气层计算的不利影响。在烟气层温度较低、温度梯度较小的状况下,该方法仍可合理有效的计算整个火灾过程的烟气层高度变化,为区域模型分区提供了比其他方法更为接近真实的分界面位置。
     研究了竖井内温度衰减原因,建立了考虑温度以及开口宽度分布的中性面计算模型。根据管道内部流动下的传热计算方程对竖井的壁面热损进行了量级分析,认为在烟气运动时间较长的竖井内,壁面热损的影响应当考虑,并得到了指数规律分布的竖井内温度计算式。在此基础上,还发展了一种考虑竖井中性面下部低温空气卷入对竖井内温度衰减影响的迭代算法。建立了一个考虑开口宽度分布、竖井内温度分布以及顶部开口大小的竖井中性面计算通用连续模型,并通过1/8小尺寸实验检验发现,该模型的中性面高度计算结果和实验结果相比偏差较小,一般都在5%之内,优于已有的其他模型。
     研究了排烟作用下仓室开口中性面计算模型及溢流抑止临界条件。建立了排烟仓室烟气中性面计算的区域模型和连续模型,得到了溢流抑止临界排烟流量以及开口处气体流量的计算式。通过数值模拟研究发现室内温度主要受火源功率的影响。排烟量、开口宽度,火源功率对开口处流动状态有着重要影响,是影响溢流抑止条件的重要参数。通过全尺寸实验研究发现:在排烟仓室火灾条件下,200s左右室内温度基本稳定,烟气沉降到地面。不同高度处的温升呈近似线性分布,同种火源功率条件下仓室内温度变化不大。研究还也发现临界排烟量分别随着开口宽度和火源功率的增加而增加。通过全尺寸实验和数值模拟对区域和连续模型进行了检验,发现这两种模型都可以较好的计算排烟仓室的中性面高度,溢流抑止临界排烟量,开口烟气流入质量流量。区域模型计算方便,但是相比连续模型计算精度要差一些,且其得到的临界排烟量偏低,开口烟气流入质量流量偏高。
Opening is the main channel for mass and energy exchange between building and outside environment, while the neutral plane is the main factor affecting the smoke flow through openings. The smoke flow through openings determines the fire development within the room; on the other hand, it is also the main reason for smoke spreading in buildings out of fire room. Therefore, it is of great significance to study the neutral plane in order to prevent smoke spread in a fire.
     By theoretical analysis, experiments and numerical simulation, this paper focused on the following aspects about the neutral plane:the burning characteristics and stability of fire source in experiment; calculation method for interface height of smoke layer; the shaft neutral plane calculation model considering the temperature and opening width distribution; neutral plane calculation model and the critical condition to suppress overflow for vertical opening of carbin with exhaust. The specific work of the paper includes:
     The burning character of pool fire and its stability under water-bath protection was studied. By the experiments, it is found that the radiation feedback of gasoline with a bright flame, accounts for84.6%to the total energy feedback, while31.9%for the methanol. Therefore, the burning rate of gasoline is more sensitive to flame disturbance; while the burning rate is more stable with water-bathing, the mean value decreased within10%. Thus, in order to get a more stable fire source, water-bathing protection was given to the pool fire in experiments of this paper.
     A new method to calculate interface height of smoke layer was developed. Based on objective temperature data, the within-class variance of smoke and air under different temperature threshold was compared to obtain the optimal threshold, and the two methods also effectively exclude subjectivity and empiricism during the threshold selection process. The experiment results showed that the model can eliminate the adverse effects of temperature oscillation to the smoke layer. When gas temperature was relatively lower with little gradient, this method can be effective for the smoke layer height calculation of the entire fire process, and provide a better partition interface location prediction for zone model than other methods.
     Reasons for shaft temperature's decline were investigated, and a new neutral plane calculation model considering the temperature and opening width distribution was proposed. According to the heat transfer calculation equations for internal pipe flow, heat loss to the wall was carried out by scale analysis. And the results showed that in shafts with long-time smoke travelling, wall heat loss to the wall should be taken into consideration and a temperature calculation formula by exponential distribution was obtained for shaft. Based on this formula, iterative algorithm is proposed to calculate the influence of the cold air entrainment from the lower part of the shaft neutral plane. A universal neutral plane calculation model for shaft was developed, which considered the opening width, temperature distribution and the opening size in the shaft top. Through1/8size small-scale experiments, it was showed that the neutral plane height calculated by the model was in little variance when compared with experiment results, generally within5%, better than the other existing models.
     Neutral plane calculation model and the critical condition to suppress overflow for vertical opening of carbin with exhaust were studied. Zone model and continuous model were developed to calculate the neutral plane in vertical opening of carbin with exhaust and a formula was derived to estimate critical exhaust rate to suppress overflow and mass flow rate flowing into the burning room though openings. It is found by numerical simulation that the indoor temperature is mainly affected by the fire power, while the opening flows was dominated by the density difference due to temperature difference. The smoke exhaustion amount, opening width and fire power are important factors affecting the overflowing-inhibition condition, which have a great impact on the opening flow state. Full-size experimental study found that:under the fire condition of exhaust cabins, the indoor temperature approached stability at about200s, and smoke sank to floor. The temperature rise at different heights approximates linearly distribution in the cabin, and temperature changed little under the same fire power. The study also found that the critical exhaust rate increased respectively with the opening width and fire power. Zone model and continuous model were examined by both full-size experiments and numerical simulation. It is found that both of these two models can calculate the neutral plane height, critical exhaust rate, mass inflow through the opening with good accuracy. Zone model is easy-handling, but compared with the continuous model, its calculation result is relatively worse, the calculated critical exhaust rate is relatively lower, as the mass inflow through the opening is higher.
引文
[1]霍然,袁宏永.性能化防火分析与设计[M].合肥:安徽科学技术出版社.2003年9月
    [2]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,2009年9月.
    [3]李世雄.中国火灾统计年鉴[M],北京:警官教育出版社,1996年~2006年
    [4]霍然、范维澄等.正视经济发展过程中的火灾问题[J],消防科技,1997(1):3-7.
    [5]霍然、王清安.城市的发展与火灾防治[J],中国安全科学学报,1997(3):14-18.
    [6]韩占先、徐宝林、霍然.降伏火魔之术——火灾科学与消防工程.[M]济南:山东科学技术出版社,2001年4月.
    [7]陈家强,我国的火灾形势与发展趋势[C],《消防科学与技术》编辑出版,2002年10月。
    [8]中国消防协会,2001年火灾形式分析与防治对策[J],消防技术与产品信息,2002(6):3-7。
    [9]杜兰萍、沈友弟、厉剑等,我国消防安全形势,差距、和对策研究[J],消防科学与技术,2002年第5期,3-13.
    [10]Jukka Hietaniemi, Raija Kallonen and Esko Mikkola. Burning characteristics of selected substances:production of heat, smoke and chemical species[J].Fire and Materials,1999,23(4):171-185.
    [11]J. H. McGuire. Smoke Movement in Buildings[J]. Fire Technology,1967,3(3):163-174
    [12]J. H.McGuire, G T. Tamura. Simple analysis of smoke-flow problems in high buildings[J]. Fire Technology,1975,11(1):15-22
    [13]J. H.McGuire. Control of Smoke in Building Fires[J]. Fire Technology,1967,3(4):281-290
    [14]Y. He, V Beck. Estimation of Neutral Plane Position in High Rise Buildings[J]. Journal of Fire Sciences,1996,14(3):235-248
    [15]J. G. Quintiere, B. J. McCaffrey, W. Rinkinen. Visualization of room fire induced smoke movement and flow in a corridor[J]. Fire and Materials,1978,2(1):18-24
    [16]W W. Jones a, J G Quintierea. Prediction of Corridor Smoke Filling by Zone Models [J]. Combustion Science and Technology,1983,35(5):239-253
    [17]J.A. Milke. Smoke management for covered malls and atria[J]. Fire Technology,1990(3): 223-243.
    [18]J.A. Milke, F.W. Mowrer. A design algorithm for smoke management stems in atria an covered malls[C]. Report FP93-04, University of Maryland, College Park, MD,1993.
    [19]J.H. Klote. Method of Predicting smoke Movement in Atria with application to smoke management [S]. NISTIR 5516, National Institute of Standards and Technology,1994.
    [20]W.K. Chow. Smoke development and engineering aspect of smoke-extraction system for atria in Hong Kong[J]. Fire and Materials,1993,17(2):71-77,.
    [21]W.K. Chow. Visualization of Smoke Movement in scale models of atriums. Journal of Applied Fire Science[J],1993-94,3(2):93-111.
    [22]W.K Chow. Use of computational fluid dynamics on simulating enclosure fires[J]. Journal of Fire Sciences,1995,13(4):300-334.
    [23]W.K. Chow. A comparison of the use of fire zone and field models or simulating atrium smoke-filling processes[J]. Fire Safety Journal,1995,25:337-353.
    [24]W.K Chow, K.W. Lau. Field tests on atrium smoke control systems[J]. ASHRAE Transactions:Research,1995,101(1):461-469.
    [25]W.K. Chow. On the use of time constants for specifying the smoke filling process in atrium halls[J]. Fire Safety Journal,1997,28:165-177.
    [26]W.K. Chow, YZ. Li, E. Cui, et al.Natural smoke filling in atrium with liquid pool fires up to 1.6MW[J]. Building and Environment,2001,36:121-127.
    [27]Y He, V Beck. Smoke spread experiment in a multi-storey building and computer modeling[J]. Fire Safety Journal,1996,28(2):139-164.
    [28]P.G Schild, P.O. Tjelflaat, D. Aiulfi. Guidelines for CFD modeling of atria[J]. ASHRAE Transactions:Symposia,1995,102(2):1311-1332.
    [29]J.S. Rho, H.S. Ryou. A numerical study of atrium fires using deterministic models [J]. Fire Safety Journal,1999,33:213-229.
    [30]F.W. Mowrer. Enclosure smoke filling revisited[J]. Fire Safety Journal,1999,33:93-114.
    [31]G.O. Hansell, H.P. Morgan, N.R. Marshall. Smoke flow experiments in a model atrium[J]. Buiding Research Establishment Occasional Paper,1993.
    [32]H. Satoh, O. Sugawa, H. Kurioka, et al. Plume behavior in a confined tall and narrow space-as one of sub-model of plume for an atrium fire[C]. Fire Safety Science-Proceedings of the fourth international symposium,1994,551-562,.
    [33]H. Satoh, O. Sugawa, H. Kurioka. Modeling on temperature and ventilation induced by a model fire in a tall and narrow atrium space[C].1996 UJNR Meeting,1996.
    [34]GV Hadjisophocleous, G.D. Lougheed. Experimental and numerical study of smoke conditions in an atrium with mechanical exhaust[S]. International Journal on Engineering Performance-Based Fire Codes,1999,1(3):183-187.
    [35]G.V. Hadjisophocleous, Z. Fu. Modeling smoke conditions in large compartments equipped with mechanical smoke exhaust using a two-zone model[S]. International Journal on Engineering Performance-Based Fire Codes,1999,1(3):162-167.
    [36]GD.Lougheed, G.V.Hadjisophocleous. Investigation of atrium smoke exhaust effectiveness[J]. ASHRAE Transactions:Symposia, BN-97-5-1,1997.
    [37]Falin Chen, Shin-Chang Guo, He-Yuan Chuay, et al. Smoke Control of Fires in Subway Stations[J]. Theoretical and Computational Fluid Dynamisc,2003,16(5):349-368
    [38]F. Chen, S.-W. Chien, H.-M. Jang, et al.Stack effects on smoke propagation in subway stations [J]. Continuum Mechanics and Thermodynamics,2003,15(5):425-440
    [39]Simcox, Wilkes, Jones, Computer simulation of the flows of hot gases from the fire at King's cross underground station[J], Fire Safety Journal,1992,18(1):49-73.
    [40]Abu-Zaid, Sameer A. Analyzing a transit subway station during fire emergency using computational fluid dynamics[J], Transportation research record. No.1521,1996:159
    [41]Abu-Zaid, Bendelius, Santoianni, et al.Using Computational Fluid Dynamics to design an emergency ventilation system for a transit subway station[C], Safety Engineering and Risk Analysis Division, ASME, v 4, Safety Engineering and Risk Analysis,1995,75-87
    [42]Deng, P.Mark, Miclea, et al.CFD modeling considerations for train fires in underground subway stations[C], Proceedings of the 1996 ASME Fluids Engineering Division Summer Meeting. Part 3. Jul 7-11 1996,238(3), San Diego, CA, USA, Sponsored by:ASME New York NY USA p547-555
    [43]W.H.Park, D.H.Kim, H.C.Chang, Numerical predictions of smoke movement in a subway station under ventilation[J], Tunnelling and Underground Space Technology,2006,21(3-4).
    [44]D.D Drysdale, Macmillan, AJ.R, Shilitto, D., King's cross fire. Experimental verification of the'trench effect'[J], Fire Safety Journal,1992,18(1),75-82
    [45]Dong-Ho Rie. A study of optimal vent mode for the smoke control of subway station fire[J], Tunnelling and Underground Space Technology,2006,21 (3-4).
    [46]R. Huo, XH. Jin, W.K. Chow, et al. Experimental studies on natural smoke filling in atrium due to a shop fire[J], Building and Environment,2005,40(9):1185-1193,
    [47]王国栋,范志刚,史聪灵等.机械排烟与水喷淋对仓室火灾控制效果的实验研究[J],消防科学与技术,2005,5:539-541.
    [48]Y.Z.Li, R. Huo, W.K. Chow. On the operation time of horizontal ceiling vent in an atrium[J]. Journal of Fire Sciences,2002,20(1)37-51.
    [49]李元洲,中庭式大空间建筑内火灾烟气流动与控制研究[D].合肥:中国科学技术大学博士学位论文,2001.
    [50]YZ. Li, W.K. Chow, C.L. Shi,et al.Preliminary experimental studies on cabin fires[J], Journal of Applied Fire Science,2004-2005,13(2):93-112,.
    [51]金旭辉,大空间内小室火灾特性的研究[D].合肥:中国科学技术大学硕士学位论文,2001.
    [52]史聪灵,大空间仓室火灾增长特性及烟气蔓延规律研究[D].合肥:中国科学技术大学博士学位论文,2005.
    [53]史聪灵,李元洲,霍然.室内火灾机械排烟效果的模型计算与实验研究[J].燃烧科学与技术,2003,9(6):546-550,.
    [54]C L Shi, Y Z Li, R Huo, et al. Mechanical smoke exhaust for small retailing shop fires[J]. International Journal of Thermal Sciences,2005,44(5):477-490,.
    [55]C.L. Shi, YZ. Li, R. Huo, et al.Mechanical smoke exhaust for small retail shop fires[C], Proceedings of the 2004 ASME International Mechanical Engineering Congress (IMECE04) held in Anaheim, California, Anaheim Hilton, USA,13-20 November 2004, Paper IMECE2004-59301,2004.
    [56]C.L. Shi, R. Huo, W.Z. Lu, et al.Studies on Spill plume Movement and Natural Filling in Atrium under a Shop fire[C], Sixth World Congress on Computational Mechanics in Conjunction with Second Asian-pacific Congress on Computational Mechanics, Sept 5-10, Beijing, China,2004.
    [57]史聪灵,钟茂华,刘铁民等.喷水排烟作用下大空间内孤岛火灾行为及烟气运动过程实验研究[J],燃烧科学与技术,2006(1)2:32-36,.
    [58]易亮.中庭式建筑中火灾烟气的流动与管理研究[D].合肥:中国科学技术大学博士学位论文,2005.
    [59]钟委.地铁站火灾烟气流动特性及控制方法研究[D].合肥:中国科学技术大学博士学位论文,2007.
    [60]纪杰.地铁站火灾烟气流动及通风控制模式研究[D].合肥:中国科学技术大学博士学位论文,2008
    [61]胡隆华.隧道火灾烟气蔓延的热物理特性研究[D].合肥:中国科学技术大学博士学位论文,2006
    [62]M. Law. Fire and smoke models - Their use on the design of some large buildings[J],ASHRAE Transactions,1990,96(1):963-971,.
    [63]P. Beever. Cabins and Islands:A Fire Protection Strategy for An International Airport Terminal Building[C],Third International Fire Safety Science Symposium, IAFSS, Edinburgh, Scotland, UK,1991,709-718.
    [64]周允基,新机场大楼防火安全构望,中国科学技术大学40周年校庆特邀报告[R],1998年9月.
    [65]W.K. Chow. On the 'cabin' fire safety design concept in the new Hong Kong airport terminal building[J], Journal of Fire Sciences,1997,15 (4):404-423.
    [66]W.K Chow, A preliminary study on the fire protection aspects of the new airport terminal building[J]. Journal of Applied Fire Science,1997,6 (4):327-338.
    [67]Luo Mingchun, A Performance Based Approach to Fire Safety Engineering of Design of Major Projects[C],99 International Symposium on City Fire Safety, Huangshan, China, Oct. 1999.
    [68]J.H. Mote. A general routine of analyzing of stack effect[R]. National Institute of Standards and Technology, NISTIR 4588, July,1991.
    [69]张靖岩.高层建筑竖井内烟气流动特征及控制研究[D].合肥:中国科学技术大学博士学位论文,2006.
    [70]J.Y Zhang, W. Z. Lu, R. Huo, et al. ANew Model for Determining Neutral-Plane Location in Shaft Space of a Building under Fire Situation[J]. Building and Environment,2008, 43(6):1101-1108.
    [71]许晓元,李元洲,毛少华等.火灾情况下竖井中性面多区域模型[J].火灾科学,2010,19(4):224-231
    [72]许晓元,李元洲,毛少华等.预测火灾情况下竖井中性面位置的连续模型[J].燃烧科学与技术,2011,11(4):375:381
    [73]K. D.Steckler, J. G. Quintiere and W. J.Rinkinen, Flow induced by fire in a compartment. 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania.1982,913-920
    [74]J. Prahl, H.W. Emmons. Fire induced flow through an opening[J]. Combustion and Flame, 1975(25):369-385
    [75]A.John Rockett, Fire induced gas flow in an enclosure [J], Combustion Science and Technology,1976,12 (4-5-6):165-175.
    [76]B. Karlsson, J.G. Quintiere, Enclosure Fire Dynamics[C], CRC Press, Boca Raton, FL, September 1999.
    [77]H.W. Emmons,Vent flows, in:P. J. DiNenno (Ed.), The SFPE Handbook of Fire Protection Engineering[M], third ed., Society of FPE, Bethesda, MD,2002,2-32,41.
    [78]K.D. Steckler, H.W. Baum, J.G. Quintiere, Fire induced flows through room openings-flow coefficients[C], in:Proceedings of the 20th Symposium (International) on Combustion, The Combustion Institute,1984.
    [79]J. G. Quintiere, K D.Steckler and D.Corley. An assessment of fire induced flows in compartment[J]. Fire Science and Technology,1984,4(1):1-14.
    [80]I. Nakaya, T. Tanaka, M. Yoshida. Doorway flow induced by a propane fire [J]. Fire Safety Journal,1986,10(3):185-195
    [81]J. G Quintiere, W. J.Rinkinen and W. W. Jones.The Effect of Room Openings on Fire Plume Entrainment[J]. Combustion Science and Technology,1986,26(5-6):193-201.
    [82]Roger Feasey and Andrew Buchanan. Post-flashover fires for structural design[J], Fire Safety Journal,2002(37):83-105.
    [83]H. W.Emmoms,Vent Flows, in the SFPE Handbook of Fire Protection Engineering,2nd edn,Section 2, Chapter 5, National Fire Protection Association,Quincy, Massachusetts, 1995,40-49.
    [84]M. Epstein, Buoyancy-driven flow through small openings in horizontal partitions [J], Journal of Heat Transfer,1988,110,885-893
    [85]J. G.Quintiere. Fundamentals of Fire Phenomena[M], John Wiley and Sons Ltd,2006,256
    [86]E. H. Yii, C. M. Fleischmann and A. H. Buchanan. Experimental study of fire compartment with door opening and roof opening[J]. Fire and material,2005(29):315-334.
    [87]E.H. Yii, C.M. Fleischmann, A.H. Buchanan,Vent Flows in fire compartments with a large opening[J]. Journal of Fire Protection Engineering,2007,17 (3):211-238
    [88]Lei Wang, J.G. Quintiere, An analysis of compartment fire doorway flows [J], FireSafety Journal,2009 (44):718-731
    [89]J.G Quintiere, Lei Wang, A general formula for the prediction of vent flows[J], FireSafety Journal,2009 (44):789-792
    [90]P.Jeremiah Crocker, Ali S. Rangwala, ANicholas, Dembsey and David J. LeBlanc. Investigation of Sprinkler Sprays on Fire Induced Doorway Flow [J]. Fire Technology, 2010(46):347-362
    [91]D. Mackay, T. Barber, G.H. Yeoh. Experimental and computational studies of compartment fire behavior training scenarios[J]. Building and Environment,2010,45(12):2620-2623
    [92]Yee-Ping Lee, M. A. Delichatsios, Yoshifumi Ohmiyac. The physics of the outflow from the opening of an enclosure fire and re-examination of Yokoi's correlation[J]. Fire Safety Journal,2012 (49):82-88
    [93]H. Emmons.The Home Fire Viewed as a Scientific System [J]. Society of Fire Protection Engineers SFPEAnnual Seminar,1977,77-85
    [94]J. G Quintiere. Compartment Fire Modeling (3)162-170 in:SFPE Handbook of Fire Protection Engineering[M]. Third Edition. Edited by Philip J. Di Nenno et al.
    [95]H.W. Emmons, The Ceiling Jet in Fires, Fire Safety Science[C], Proceedings of the Third International Symposium (G Cox and B. Langford, eds.), Elsevier Applied Science, New York, p.249 (1991).
    [96]H.W. Emmons, Some Observations on Pool Burning[J], The Use of Models in Fire Research, Publication 786 NAS-NRC, Washington, DC, pp.50-67 (1961).
    [97]H.W. Emmons, HE. Mitler, and L.N. Trefethen, Computer Fire Code Ⅲ[C], Home Fire Proj. Tech Rept. No.25, Harvard Univ. Cambridge, MA (1978).
    [98]L Y Cooper, M.Harkleroad, J.GQuintiere, et al. An experimental study of upper hot layer stratification in full-scale multi-room fire scenarios[J]. J Heat Transfer,1982; 104:741-749.
    [99]Y P He, A Fernando, M C Luo. Determination of interface height from measured parameter profile in enclosure fire experiment [J]. Fire Safety Journal,1998,31 (1):19-38
    [100]蒋亚强,霍然,胡隆华等.通道火灾时横向排烟对烟气层化特性的影响研究[J].工程力学,2010,27(7):250-256.
    [101]C.Gutierrez-Montes, E.Sanmiguel-Rojas, A Viedma, et al. Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium[J]. Building and Environment, 2009,44(9):1827-1839.
    [102]M Janssens, H. C. Tran. Data reduction of room tests for zone model validation[J]. Journal of Fire Sciences,1992,10(6):528-555.
    [103]尤飞,周建军,张昱春等.大空间建筑火灾中烟气层界面的一种判定[J],火灾科学,2000,9(4):58-65
    [1]范维澄,刘乃安,火灾安全科学个新兴交叉的工程科学领域[J],中国工程科学,2001,3(1):6-14
    [2]范维澄,王清安,姜冯辉等,火灾学简明教程[M],合肥:中国科学技术出版社,1995,
    [3]霍然,胡源,李元洲,建筑火灾安全工程导论(第二版)[M],合肥:中国科学技术大学出版社,2009,
    [4]霍然,性能胡建筑防火分析与设计[M],合肥:安徽科学技术出版社,2003
    [5]胡隆华,隧道火灾烟气蔓延的热物理特性研究[D],合肥:中国科学技术大学博士学位论文,2006
    [6]丁祖荣,流体力学[M],北京:高等教育出版社,2003
    [7]廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,2003.
    [8]易亮,霍然,张靖岩等,柴油油池火功率特性[J],燃烧科学与技术,2006,12(2):164-168.
    [9]Kevin McGrattan, et al. Fire Dynamics Simulator (Version 5) User's Guide[R], NIST Special Publication 1019-5. National Institute of Standards and Technology, March 2007.
    [10]Kevin McGrattan, et al. Fire Dynamics Simulator (Version 5) Technical Reference Guide[R], NIST Special Publication 1018-5. National Institute of Standards and Technology, March 2007.
    [1]范维澄,王清安,姜冯辉等,.火灾简明教程[M].合肥:中国科学技术大学出版社,1995.
    [2]A Hamins, SJ Fischer, T Kashiwagi, Heat feedback to the fuel surface in pool fire[J],Combustion Science and Technology,1994,9(1-3):37-62
    [3]D.Drysdale, A Introduction to Fire Dynamics[M], John Wiley and Sons,New York,NY,1985
    [4]H.C.Hottel.1959.Certain Laws Governing Diffusive Burning of Liquids by Blinov VI,Khudiakov GN[C].Fire Research Abstract and Reviews,1:41-44
    [5]霍然,胡源,李元洲.建筑火灾安全工程导论[M].合肥:中国科学技术大学出版社,1999.
    [6]易亮,霍然,等.柴油油池火功率特性[J].燃烧科学与技术,2006,12(2):164-16.
    [7]孙志友,庄磊,陆守香.正方形煤油池火燃烧特性研究[J].火灾科学,2008,17(2):93-98.
    [8]V Babrauskas. Estimating large pool fire burning rates[J]. Fire Technology,1983,19(4): 251-261.
    [9]魏东,赵大林等,油罐火灾燃烧速度的实验研究[J].燃烧科学与技术,2005,11(3):286-291.
    [10]冯瑞,霍然,于海春.受限空间油池火燃烧特性的实验研究[J].消防科学与技术,2005,24(3):288-291.
    [11]M E Klassen, J P Gore. Heat Feedback to the Fuel Surface in Pool Fires[J]. Combustion Science and Techology.1994,97(1):37-62.
    [12]Standard Australia(Standardslia Association of Austra) AS 4391 Australia Standard. Smoke management Systems-Hot Smoke Test[S].1999.
    [13]D. J.Rasbash, Z.W. Rogowski, and G W. V Stark, Properties of Fires of Liquids [J], Fuel, 1956,35:94-107.
    [1]YP.He, A.Fernando, M. C.Luo. Determination of interface height from measured parameter profile in enclosure fire experiment[J]. Fire Safety Journal,1998,31(1):19-38.
    [2]NFPA. NFPA92B Guide for smoke management systems in malls, atria, and large areas[S]. USA: National Fire Protection Association,2000.
    [3]L. Y Cooper, M. Harkleroad, J. G Quintiere, et al. An experimental study of upper hot layer stratification in full-scale multiroom fire scenarios[J]. Journal of Heat Transfer,1982,104(4): 741-749.
    [4]J.G Quintiere, K.Steckler, D. Corley.An assessment of fire induced flows in compartments[J]. Fire Science and Technology,1984,4(1):1-14.
    [5]M.Janssens, H.C.Tran. Data reduction of room tests for zone model validation[J]. Journal of Fire Sciences,1992,10(6):528-555.
    [6]R Huo, W K Chow, X H Jin, et al. Experimental studies on natural smoke filling in atrium due to a shop fire[J]. Building and Environment,2005,40(9):1185-1193.
    [7]W K Chow, Y Z Li, E Cui, et al. Natural smoke filling in atrium with liquid pool fires up to 1.6MW[J]. Building and Environment,2007,36(1):121-127.
    [8]蒋亚强,霍然,胡隆华等.通道火灾时横向排烟对烟气层化特性的影响研究[J].工程力学,2010,27(7):250-256.
    [9]C.Gutierrez-Montes, E.Sanmiguel-Rojas, A.Viedma, et al. Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium[J]. Building and Environment, 2009,44(9):1827-1839.
    [10]D L Gary, V H George. Investigation of atrium smoke exhaust effectiveness [J]. ASHRAE Transactions,1997,103(2):519-533.
    [11]陈玉明.用C02红外气体分析仪测定市内火灾烟气-空气分界面位置的方法[J].分析仪器,1996(4):52-57.
    [12]N Otsu. A threshold selection method from gray-level histograms[C]IEEE Transactions on Systems, Man and Cybernetics.1979,9(1):62-66.
    [13]陈希孺.概率论与数理统计[M].合肥:中国科学技术大学出版社,2004.
    [1]K. D. Steckler, J. G.Quintiere and W. J.Rinkinen, Flow induced by fire in acompartment[C]. 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania.1982,913-920
    [2]J.H. Klote. A general routine of analyzing of stack effect[R]. National Institute of Standards and Technology, NISTIR 4588, July,1991.
    [3]张靖岩.高层建筑竖井内烟气流动特征及控制研究[D].合肥:中国科学技术大学博士学位论文,2006.
    [4]J.Y Zhang, W. Z. Lu, R. Huo, et al.ANew Model for Determining Neutral-Plane Location in Shaft Space of a Building under Fire Situation[J]. Building and Environment,2008, 43(6):1101-1108.
    [5]许晓元,李元洲,毛少华等.火灾情况下竖井中性面多区域模型[J].火灾科学,2010,19(4):224-231.
    [6]许晓元,李元洲,毛少华等.预测火灾情况下竖井中性面位置的连续模型[J].燃烧科学与技术,2011,11(4):375-381.
    [7]弗兰克P.英克鲁佩勒,大卫P.德维特等,传热和传质的基本原理(第六版)[M].北京:化学工业出版社,2009.05.
    [8]孙晓乾.火灾烟气在高层建筑竖向通道内的流动及控制研究[D].合肥:中国科学技术大学博士学位论文,2009.
    [9]Winterton, R. H. S., Int. J. Heat Mass Transfer[M],1998,41,809
    [10]丁祖荣.流体力学(上册)[M].北京:高等教育出版社2003.12
    [11]许晓元.高层建筑内竖向通道中性面位置研究[D].合肥:中国科学技术大学硕士学位论文,2011.
    [12]张奕,郭恩震.传热学[M].南京:东南大学出版社.
    [1]A John. Rockett, Fire induced gas flow in an enclosure [J], Combustion Science and Technology,1976,12 (4-5-6) 165-175.
    [2]B. Karlsson, J.G. Quintiere, Enclosure Fire Dynamics[C], CRC Press, Boca Raton, FL, September 1999.
    [3]H.W. Emmons, Vent flows, in:P. J. DiNenno (Ed.), The SFPE Handbook of Fire Protection Engineering[M], third ed., Society of FPE, Bethesda, MD,2002, pp.2-32,41.
    [4]K.D. Steckler, H.W. Baum, J.G. Quintiere, Fire induced flows through room openings-flow coefficients[C], in:Proceedings of the 20th Symposium (International) on Combustion, The Combustion Institute,1984.
    [5]K. D.Steckler, J. G.Quintiere and W. J.Rinkinen, Flow induced by fire in a compartment[C]. 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania.1982, pp.913-920
    [6]H. W. Emmoms.Vent Flows, in the SFPE Handbook of Fire Protection Engineering[M],2nd edn,Section 2, Chapter 5, National Fire Protection Association,Quincy, Massachusetts, 1995,40-49.
    [7]K.D. Steckler, J.G Quintiere, W.J. Rinkinen, Flow induced by fire in a compartment[S], NBSIR 82-2520, National Bureau of Standards, September 1982
    [8]J. Prahl, H.W. Emmons. Fire induced flow through an opening[J]. Combustion and Flame, 1975(25):369-385
    [9]J. G.Quintiere, W. J.Rinkinen and W. W.Jones.The Effect of Room Openings on Fire Plume Entrainment[J]. Combustion Science and Technology,1986,26(5-6):193-201.
    [10]Lei Wang, J.G. Quintiere, An analysis of compartment fire doorway flows [J], Fire Safety Journal,2009 (44):718-731
    [11]J.G. Quintiere, Lei Wang, A general formula for the prediction of vent flows[J], Fire Safety Journal,2009 (44):789-792
    [12]J Peremiah Crocker, Ali S. Rangwala, A Nicholas. Dembsey and David J. LeBlanc. Investigation of Sprinkler Sprays on Fire Induced Doorway Flow [J]. Fire Technology, 2010(46):347-362
    [13]K. D.Steckler, J. G.Quintiere and W. J. Rinkinen, Flow induced by fire in a compartment[C]. 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, Pennsylvania.1982,913-920
    [14]I. Nakaya, T. Tanaka, M. Yoshida. Doorway flow induced by a propane fire [J]. Fire Safety Journal,1986,10(3):185-195
    [15]M.Epstein, Buoyancy-driven flow through small openings in horizontal partitions[J], Journal of Heat Transfer,1988,110,885-893
    [16]许晓元.高层建筑竖向通道内中性面位置研究[D].合肥:中国科学技术大学,2011
    [17]张靖岩.高层建筑竖井内烟气流动特征及控制研究[D].合肥:中国科学技术大学,2011
    [18]J.H. Klote. A general routine of analyzing of stack effect[R]. National Institute of Standards and Technology, NISTIR 4588, July,1991.
    [19]H. Emmons. The Home Fire Viewed as a Scientific System [J]. Society of Fire Protection Engineers SFPEAnnual Seminar,1977,77-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700