絮体分形成长与流场协同作用机制及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
絮凝是水处理的核心操作单元之一。该过程中形成絮体的粒度、结构和强度等对絮凝效果及后续的固液分离行为都具有重要的影响。因此,能否形成性能良好的絮体,是絮凝工艺的关键,这主要取决于絮凝机理及絮体成长过程。然而,由于絮体形成与它所处的物化条件和水动力学环境之间关系密切,整体上呈现纷繁复杂性和具有混沌性,再加之试验和检测手段的制约,致使人们对絮体成长与多项影响因子在动态絮凝过程中的相互作用仍缺乏足够的认识。
     本文以絮凝试验为基础研究手段,并通过对反应器内水动力学环境(三维流场)和絮体分形成长过程的计算机模拟,尝试将试验现象与结果同数值计算有机结合起来,进而对动态絮凝过程中絮体分形成长与流场协同作用机制进行了深入探讨。试验研究中,以聚合氯化铝(PAC)为絮凝剂、高岭土和腐植酸悬浊液为试验水样,借助水中絮体形态原位识别技术对方形反应器内不断运动的絮体进行实时监测和原位分析,以期更为准确地对动态絮凝过程中絮体粒度和结构的演变特征进行定量描述。
     通过对具有不同几何结构特征的方形反应器内三维流场进行数值模拟,并将计算结果与相应工况下的絮凝试验现象相联系,初步考察了反应器内水流结构与絮体成长的相互作用关系。研究结果表明,只有在适宜的高宽比(如H=D)、挡板条件(如B=0.10D)和桨叶高度(如C=0.33H)时,才能确保反应器内桨叶区及其附近的紊动耗散率较大和水流循环时间较短,使尽可能多的颗粒参与到流体的大循环中,同时还可最大限度地消除“死水区”,实现颗粒在桨叶区及其附近充分碰撞凝聚,加快絮凝反应,获得理想的絮凝效果。研究还发现,较大的絮凝强度可减弱上述条件对絮凝后期絮体形态演变的影响;较长的沉淀时间也可削弱各工况时剩余浊度的差异。
     为了深入探索絮体内部构造,对传统有限扩散凝聚(DLA)模型进行了适当改进,在模型中考虑了不同粒子来源时总凝聚粒子数以及粒子可运动区域、粘结方式和粘附几率等的影响,并借助新模型实现了单一或多个凝聚核时颗粒聚集过程的可视化。通过系统分析单凝聚核时虚拟絮体的成长及形态统计特性,发现絮体在粒度增加的同时,其致密性开始下降,结构变得疏松多孔,强度也随之降低,致使絮体抵抗水流剪切破坏的能力变弱。此外,在全圆周粒子源条件下,可实现“絮凝核心”在各个方向上充分发育,为随机粒子提供更多的粘附位置,最终使所形成虚拟絮体的粒度比半圆周粒子源的要大,其结构也比后者的要致密。多凝聚核时的模拟结果表明,在多个凝聚核的颗粒聚集过程中,各凝聚集团的分形成长之间存在着竞争作用,且凝聚核的间距越小,竞争作用越激烈,这对深化认识絮体的成长机制有重要意义。研究还发现,回转半径内网格占有率的增加是絮体密度增大和结构变得致密的主要原因,也是导致其边界分形维数减小和空隙率下降的主要因素。
     在絮体分形结构虚拟模拟的基础上,分别对絮体破碎及再形成过程絮体形态的动态变化进行了数值模拟和试验分析,以考察颗粒破碎行为对其形态演变的影响及絮体的分形成长特征。研究发现:(a)在虚拟絮体成长过程中,存在一个使其由各向同性向各向异性过渡的临界时刻,之后各枝杈对彼此生长的抑制作用增强;(b)絮体抵抗剪切破坏能力主要取决于其质心附近颗粒的空间分布,而受远离质心的区域内颗粒重组的影响较弱;(c)破碎后形成的絮体碎片,为再形成阶段悬浮颗粒(或微小团簇)的重组提供了更多的附着位点,它们的粒度及结构决定着再形成过程絮凝核心的性能。研究认为,在具体操作时需要合理控制絮凝体系的物化条件,既不能使絮体过度破碎,也不能让破碎后的絮体过度生长,这均不利于改善最终形成絮体的性能。
     基于前文及相关文献的研究,本文建立了一种新的絮体动态生长模型,并借助该概念模型,通过对低剪切条件下以及多级搅拌时絮体形态演变特征的分析,深入探讨了动态絮凝过程中絮体分形成长与流场的协同作用机制。研究发现,由絮体破裂及随之发生的再形成行为引起的重组过程中形成凝聚体的粒度比由絮体破损及随后的再形成过程形成的要大,结构也更为致密,这有助于絮凝反应池的优化设计,也为形成特定絮体结构奠定了理论基础。此外,由于分形凝聚体的自相似性,对于任一絮凝强度,絮体边界分形维数进入稳定状态的耗时比其平均粒径的要少,并且随着絮凝强度的增大,二者达稳耗时的差值呈先减小而后增大的变化趋势。
Flocculation is one of the most important operational units in water treatment. The size, structure and strength of flocs formed during this process significantly affect flocculation efficiencies and subsequent solid/liquid separation behaviors. Therefore, forming flocs of good quality is considered fundamental to the process of flocculation, and is highly dependent upon flocculation mechanisms and floc growth processes. However, as floc formation is greatly related to the physicochemical conditions and the hydrodynamic environments, making it rather complicated and chaotic characterized, it is not yet well known how flocs have formed during flocculation and how multinomial factors interact to reach a dynamic balance.
     The objective of this study is to better understand the synergetic mechanisms of floc growth and flow field in water during dynamic process of flocculation by integrated combination of flocculation phenomena and numerical results. Firstly, the three-dimensional flow field and the fractal growth process of flocs were respectively simulated by computer. Secondly, a series of flocculation tests were performed and an in-situ recognition technique of floc morphology in water was used to monitor/capture the moving flocs in rectangular reactors. The captured images of flocs were then analyzed to accurately characterize the evolution of floc size and structure during flocculation. For each test, kaolin and humic acid suspension was used as testing water sample and polyaluminum chloride (PAC) was selected as the flocculant.
     In order to investigate the interaction between flow distribution and floc growth in flocculating reactors, three-dimensional flow fields were simulated in rectangular reactors with different geometrical structural characteristics, and then the numerical results were used to analyze flocculation testing phenomena in corresponding conditions. As expected, a flocculating reactor, with an appropriate height-to-width ratio (e.g., H=D), rational baffle sizes (e.g., B=0.10D) and an optimal impeller height (e.g., C=0.33H), could effectively accelerate flocculation process and produce an ideal efficiency of flocculation. This was because the geometrical structures mentioned above might not only ensure that average turbulent dissipation rate was larger and flow circulation time was shorter in the vicinity of the impeller, making as many particles as possible involved in the whole circulation of flow, but also maximize the elimination of“dead zones”existed in rectangular reactors, increasing the opportunity of particle collisions. Moreover, it was found that a higher intensity of flocculation could weaken the effect of above conditions on floc morphological evolution in late stage of flocculation. Also, a longer settling time might narrow differences of residual turbidity produced in each working condition.
     The traditional model of limited-diffusion aggregation (DLA) was modified properly by considering effects of particle sources, aggregated particle number, particle movement region, particle adhesive types and probability, etc. With the help of the modified model, particle aggregation process was visualized for a single aggregating core and multiple aggregating cores, in order to explore the internal structure of flocs. By analyzing virtual-floc growth and its statistical morphological properties, it was found that when the size of flocs increased, their structure became loose and porous, resulting in a relatively low strength, making them susceptible to breakage by fluid shear. Furthermore, virtual flocs formed by whole-circle particle source had a larger size and a more compact structure than those formed by half-circle particle source, because for the former particle source,“flocculating core”could fully grow in all directions due to more adhesive points provided for random particles. The numerical results for multiple aggregating cores showed that during the process of particle aggregation for multiple aggregating cores, fractal-growth competition existed among all aggregates, and the smaller the distance between aggregating cores, the more intense the competitive effect, which has important implications for increasing understanding of floc growth mechnisms. It was also found that the increase of grid occupancy rate in radius of gyration resulted in the increase of floc density and the formation of flocs with more compact structures, which were the main factors for the decrease in floc boundary fractal dimension and void ratio.
     Based on the simulation of fractal structure of virtual flocs, numerical and experimental studies on the processes of floc breakage and subsequent re-formation were carried out to investigate the effect of particle breakage behaviors on morphological evolution and fractal-growth characteristics of flocs. The results showed that: (a) during virtual-floc growth, there was a critical moment for a transition from isotropic to anisotropic, and after this moment the inhibition of inter-branch growth became intense; (b) the ability to resist fluid shear was highly dependent upon the spatial distribution of particles in the vicinity of aggregate mass center, but weakly related to restructure of particles far away from the mass center; (c) the size and structure of floc pieces after breakage determined the nature of flocculating core during re-formation, as a result of more adhensive points provided for suspended particles (or micro-aggregates) in the process of re-formation. It suggested that in an operational sense, physicochemical conditions for flocculation system needed a reasonable control, because excessive breakage and excessive re-growth after breakage were both harmful for improving the quality of flocs fromed in the late stage of flocculation.
     According to the study above and some correlative literature, a fractal growth model of floc was proposed and used to analyze evolutional characteristics of floc morphology under low-shear conditions and in variable-level stirring, with the goal of deep exploration about the synergetic mechanisms of floc growth and flow field in water during dynamic process of flocculation. The results showed that fragmentation followed by re-formation seemed to be more effective in forming larger and more compact aggregates than the restructuring process due to erosion and re-formation. This finding may provide useful insights for the design of flocculating reactors and establish a theoretical foundation for the formation of flocs with specific structures. Additionally, flocculation time that was required to reach steady state for floc average size and boundary fractal dimension firstly decreased and then increased with increasing intensity of flocculation, but steady state was attained faster for floc structure than for size at the same shear during whatever flocculation, possibly due to the self-similarity of fractal aggregates.
引文
[1]刘宝珺,廖声萍.水资源的现状、利用与保护[J].西南石油大学学报, 2007, 29(6): 1-9.
    [2] Serra T, Colomer J, Casamitjana X. Aggregation and Breakup of Particles in a Shear Flow[J]. Journal of Colloid and Interface Science, 1997, 187(2): 466-473.
    [3]罗岳平,李宁,李建国,等.自来水中悬浮颗粒物的检测和控制[J].给水排水, 2000, 26(3): 26-31.
    [4]袁宗宣,郑怀礼,舒兴武.絮凝科学与技术的进展[J].重庆大学学报(自然科学版), 2001, 24(2): 143-147.
    [5] Packham R F. Some Studies of the Coagulation of Dispersed Clays with Hydrolyzing Salts[J]. Journal of Colloid Science, 1965, 20(1): 81-92.
    [6] Gregory J. Monitoring Particle Aggregation Processes[J]. Advances in Colloid and Interface Science, 2009, 147-148: 109-123.
    [7] Yuan Y, Farnood R R. Strength and Breakage of Activated Sludge Flocs[J]. Powder Technology, 2010, 199(2): 111-119.
    [8] Delichatsios M A, Probstein R F. Coagulation in Turbulent Flow: Theory and Experiment[J]. Journal of Colloid and Interface Science, 1975, 51(3): 394-405.
    [9] Higashitani K, Tanaka T, Matsuno Y. A Kinematic Interpretation on Coagulation Mechanism of Hydrophobic Colloids[J]. Journal of Colloid and Interface Science, 1978, 63(3): 551-560.
    [10]蒋展鹏,傅涛,杨志华,等.颗粒形态与异向聚沉速率——混凝形态学的动力学研究之一[J].中国给水排水, 1993, 9(4): 4-8.
    [11]傅涛,蒋展鹏,杨志华,等.颗粒形态与同向聚沉速率——混凝形态学的动力学研究之二[J].中国给水排水, 1993, 9(5): 8-12.
    [12] Vigil R, Vermeersch I, Fox R. Destructive Aggregation: Aggregation with Collision-Induced Breakage[J]. Journal of Colloid and Interface Science, 2006, 302(1): 149-158.
    [13] Zollars R L, Ali S I. Shear Coagulation in the Presence of Repulsive Interparticle Forces[J]. Journal of Colloid and Interface Science, 1986, 114(1): 149-166.
    [14] Sato D, Kobayashi M, Adachi Y. Effect of Floc Structure on the Rate of Shear Coagulation[J]. Journal of Colloid and Interface Science, 2004,272(2): 345-351.
    [15] Gregory J. Optical Monitoring of Particle Aggregates[J]. Journal of Environmental Sciences, 2009, 21(1): 2-7.
    [16] Mandelbrot B B, Passoja D E, Paullay A J. Fractal Character of Fracture Surfaces of Metals[J]. Nature, 1984, 308: 721-722.
    [17] Meakin P. Fractal Aggregates[J]. Advances in Colloid and Interface Science, 1987, 28: 249-331.
    [18] Chakraborti R K, Gardner K H, Atkinson J F, et al. Changes in Fractal Dimension during Aggregation[J]. Water Research, 2003, 37(4): 873-883.
    [19] Bushell G C, Yan Y D, Woodfield D, et al. On Techniques for the Measurement of the Mass Fractal Dimension of Aggregates[J]. Advances in Colloid and Interface Science, 2002, 95(1): 1-50.
    [20] Stone M, Krishnappan B G. Floc Morphology and Size Distributions of Cohesive Sediment in Steady-State Flow[J]. Water Research, 2003, 37(11): 2739-2747.
    [21] Jarvis P, Jefferson B, Parsons S A. Floc Structural Characteristics Using Conventional Coagulation for a High Doc, Low Alkalinity Surface Water Source[J]. Water Research, 2006, 40(14): 2727-2737.
    [22]刘百仓,黄尔,鲁金凤,等.混凝工艺水力条件的优化与絮体尺寸特性的研究[J].环境工程学报, 2010, 4(9): 1968-1972.
    [23] Yeung A, Gibbs A, Pelton R. Effect of Shear on the Strength of Polymer-Induced Flocs[J]. Journal of Colloid and Interface Science, 1997, 196(1): 113-115.
    [24] Boller M, Blaser S. Particles under Stress[J]. Water Science and Technology, 1998, 37(10): 9-29.
    [25] Kilander J, Blomstrom S, Rasmuson A. Spatial and Temporal Evolution of Floc Size Distribution in a Stirred Square Tank Investigated Using PIV and Image Analysis[J]. Chemical Engineering Science, 2006, 61(23): 7651-7667.
    [26]谭万春,王云波,李冬梅,等.计算机模拟技术在絮体分形成长研究中的应用[J].水处理技术, 2005, 31(1): 16-19.
    [27] Sahu A K, Kumar P, Patwardhan A W, et al. CFD Modeling and Mixing in Stirred Tanks[J]. Chemical Engineering Science, 1999, 54(13-14): 2285-2293.
    [28] Lamarque N, ZoppéB, Lebaigue O, et al. Large-Eddy Simulation of the Turbulent Free-Surface Flow in an Unbaffled Stirred Tank Reactor[J]. Chemical Engineering Science, 2010, 65(15): 4307-4322.
    [29]蒋文天,邱祖民.絮凝体DLA模型仿真及其废水处理[J].计算机与应用化学, 2009, 26(2): 233-239.
    [30]李金林. DLA分形结构成长过程的分析[J].青海师范大学学报, 2004, 3: 21-23.
    [31] Kockar H, Bayirli M, Alper M. A New Example of the Diffusion-Limited Aggregation: Ni–Cu Film Patterns[J]. Applied Surface Science, 2010, 256(9): 2995-2999.
    [32] Deglon D, Meyer C. CFD Modeling of Stirred Tanks: Numerical Considerations[J]. Minerals Engineering, 2006, 19(10): 1059-1068.
    [33]岳舜生.水的浊度问题[J].中国给水排水, 1995, 11(4): 33-35.
    [34]杨艳玲,李星,丛丽,等.优化监测与净水工艺提高致病原生动物去除率[J].给水排水, 2003, 29(6): 22-26.
    [35]王在刚,徐勇鹏,崔福义,等.给水处理过程中颗粒特征分析[J].中国给水排水, 2006, 22(17): 50-52.
    [36]李圭白,张杰.水质工程学[M].北京:中国建筑工业出版社, 2005: 48-79.
    [37] Duan J, Gregory J. Coagulation by Hydrolysing Metal Salts[J]. Advances in Colloid and Interface Science, 2003, 100-102(2): 475-502.
    [38] Spicer P T, Pratsinis S E. Shear-Induced Flocculation: The Evolution of Floc Structure and the Shape of the Size Distribution at Steady State[J]. Water Research, 1996, 30(5): 1049-1056.
    [39] Kostoglou M, Konstandopoulos A G. Evolution of Aggregate Size and Fractal Dimension During Brownian Coagulation[J]. Journal of Aerosol Science, 2001, 32(12): 1399-1420.
    [40] Fukasawa T, Adachi Y. Direct Observation on the Brownian Coagulation of PSL Particles through Optical Microscope in the Regime near Critical Coagulation Concentration (CCC)[J]. Journal of Colloid and Interface Science, 2010, 344(2): 343-347.
    [41] Spicer P T, Keller W, Pratsinis S E. The Effect of Impeller Type on Floc Size and Structure During Shear-Induced Flocculation[J]. Journal of Colloid and Interface Science, 1996, 184(1): 112-122.
    [42]常青.水处理絮凝学[M].北京:化学工业出版社, 2003: 31-44.
    [43]胡筱敏.混凝理论与应用[M].北京:科学出版社, 2007: 25-33.
    [44] Li D H, Ganczarczyk J. Fractal Geometry of Particle Aggregates Generated in Water and Wastewater Treatment Processes[J]. Environmental Science and Technology, 1989, 23(11): 1385-1389.
    [45] Park S, Lee K W. Brownian Coagulation of Fractal Agglomerates: Analytical Solution Using the Log-Normal Size Distribution Assumption[J]. Journal of Colloid and Interface Science, 2000, 231(1): 129-135.
    [46] Hopkins D, Ducoste J J. Characterizing Flocculation under Heterogeneous Turbulence[J]. Journal of Colloid and Interface Science, 2003, 264(1): 184-194.
    [47] Serra T, Colomer J, Logan B E. Efficiency of Different Shear Devices on Flocculation[J]. Water Research, 2008, 42(4-5): 1113-1121.
    [48]蒋展鹏,尤作亮.混凝形态学的研究进展[J].给水排水, 1998, 24(10): 70-75.
    [49] Camp T R, Stein P C. Velocity Gradients and Internal Work in Fluid Motion[J]. Journal of the Boston Society of Civil Engineers, 1943, 85: 219-237.
    [50]徐立群,王芳,何钟怡.反应池中颗粒惯性作用的影响分析[J].中国给水排水, 2002, 18(3): 44-47.
    [51]武道吉,谭凤川,王新文,等.絮凝动力学机理与控制指标研究[J].环境工程, 2000, 18(5): 22-25.
    [52]王绍文.惯性效应在絮凝中的动力学作用[J].中国给水排水, 1998, 14(2): 13-16.
    [53]蒋展鹏,涂方祥,杨志华.粘土颗粒的形态对胶体稳定性的影响[J].中国给水排水, 1993, 9(2): 8-12.
    [54]汤忠红,蒋展鹏.混凝形态学——一条研究混凝过程的新路子[J].中国给水排水, 1987, 3(5): 4-9.
    [55] Bache D H, Gregory R. Flocs and Separation Processes in Drinking Water Treatment: A Review[J]. Journal of Water Supply: Research and Technology, 2010, 59(1): 16-30.
    [56] Mandelbrot B B. Fractal: Form, Chance and Dimension[M]. San Francisco: Freeman, 1977: 4-56.
    [57] Mandelbrot B B. The Fractal Geometry of Nature[M]. San Francisco: Freeman, 1983: 18-63.
    [58]张济忠.分形[M].北京:清华大学出版社, 1995: 7-187.
    [59] Logan B E, Kilps J R. Fractal Dimensions of Aggregates Formed in Different Fluid Mechanical Environments[J]. Water Research, 1995, 29(2): 443-453.
    [60] Jung S J, Amal R, Raper J A. Monitoring Effects of Shearing on Floc Structure Using Small-Angle Light Scattering[J]. Powder Technology, 1996,88(1): 51-54.
    [61] Zhu Z, Li T, Lu J, et al. Characterization of Kaolin Flocs Formed by Polyacrylamide as Flocculation Aids[J]. International Journal of Mineral Processing, 2009, 91(3-4): 94-99.
    [62] Johnson C P, Li X, Logan B E. Settling Velocities of Fractal Aggregates[J]. Environmental Science and Technology, 1996, 30(6): 1911-1918.
    [63]钟润生,张锡辉,肖峰,等.絮体分形结构对沉淀速度影响研究[J].环境科学, 2009, 30(8): 2353-2357.
    [64]武若冰,王东升,李涛.絮体性能及其工艺调控的研究与进展[J].环境科学学报, 2008, 28(4): 593-598.
    [65] Tambo N, Watanabe Y. Physical Characteristics of Flocs——I. The Floc Density Function and Aluminium Floc[J]. Water Research, 1979, 13(5): 409-419.
    [66] Tambo N, Hozumi H. Physical Characteristics of Flocs——II. Strength of Floc[J]. Water Research, 1979, 13(5): 421-427.
    [67]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨——I.从絮凝体分形构造谈起[J].环境科学学报, 2000, 20(3): 257-263.
    [68] Chellam S, Wiesner M R. Fluid Mechanics and Fractal Aggregates[J]. Water Research, 1993, 27(9): 1493-1496.
    [69] Leentvaar J, Rebhun M. Strength of Ferric Hydroxide Flocs[J]. Water Research, 1983, 17(8): 895-902.
    [70] Fran?ois R J. Strength of Aluminium Hydroxide Flocs[J]. Water Research, 1987, 21(9): 1023-1030.
    [71] Li T, Zhu Z, Wang D, et al. Characterization of Floc Size, Strength and Structure under Various Coagulation Mechanisms[J]. Powder Technology, 2006, 168(2): 104-110.
    [72]金鹏康,王晓昌.引入分形维数的絮体粒径分布规律及其守恒关系[J].环境科学, 2004, 25(1): 78-82.
    [73] Park S, Lee K W. Change in Particle Size Distribution of Fractal Agglomerates during Brownian Coagulation in the Free-Molecule Regime[J]. Journal of Colloid and Interface Science, 2002, 246(1): 85-91.
    [74] Spicer P T, Pratsinis S E, Raper J, et al. Effect of Shear Schedule on Particle Size, Density, and Structure during Flocculation in Stirred Tanks[J]. Powder Technology, 1998, 97(1): 26-34.
    [75] Rossini M, Garrido J G, Galluzzo M. Optimization of the Coagulation- Flocculation Treatment: Influence of Rapid Mix Parameters[J]. WaterResearch, 1999, 33(8): 1817-1826.
    [76] Serra T, Logan B E. Collision Frequencies of Fractal Bacterial Aggregates with Small Particles in a Sheared Fluid[J]. Environmental Science and Technology, 1999, 33(13): 2247-2251.
    [77] Li X, Logan B E. Collision Frequencies between Fractal Aggregates and Small Particles in a Turbulently Sheared Fluid[J]. Environmental Science and Technology, 1997, 31(4): 1237-1242.
    [78] Kim A, Stolzenbach K D. Aggregate Formation and Collision Efficiency in Differential Settling[J]. Journal of Colloid and Interface Science, 2004, 271(1): 110-119.
    [79] Dekkers P, Friedlander S K. The Self-Preserving Size Distribution Theory——I. Effects of the Knudsen Number on Aerosol Agglomerate Growth[J]. Journal of Colloid and Interface Science, 2002, 248(2): 295-305.
    [80] Dekkers P J, Tuinman I L, Marijnissen J C M, et al. The Self-Preserving Size Distribution Theory——II. Comparison with Experimental Results for Si and Si3N4 Aerosols[J]. Journal of Colloid and Interface Science, 2002, 248(2): 306-314.
    [81]金鹏康,井敏娜,王晓昌.引入分形维数的混凝动力学方程数值求解[J].环境工程, 2008, 29(8): 2149-2153.
    [82]武若冰,王东升,汤鸿霄.絮体分形结构形成机制探讨[J].环境科学学报, 2007, 27(10): 1599-1603.
    [83]李冬梅,施周,梅胜,等.絮凝条件对絮体分形结构的影响[J].环境科学, 2006, 27(3): 488-492.
    [84]李冬梅,施周,梅胜,等.高浓度悬浊液架桥絮凝分形体的形态学研究[J].中国给水排水, 2006, 22(19): 95-99.
    [85] Xiao F, Zhang B, Ma J, et al. Effects of Low Temperature on Floc Fractal Dimensions and Shape Factors During Alum Coagulation[J]. Journal of Water Supply: Research and Technology, 2009, 58(1): 21-27.
    [86]王毅力,卢佳,杜白雨,等.聚合氯化铁-腐植酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究[J].环境科学学报, 2008, 28(4): 606-615.
    [87]卢佳,王毅力,杜白雨,等.聚合氯化铁-腐植酸(PFC-HA)絮体的粒度和分形维数的动态变化[J].环境科学学报, 2008, 28(4): 624-633.
    [88]李彦.聚合氯化铝(PAC)混凝絮体分形结构及气浮去除特性的研究[D].西安:西安建筑科技大学环境工程学科硕士学位论文, 2004: 28-59.
    [89] Wang Y, Gao B Y, Xu X M, et al. Characterization of Floc Size, Strength andStructure in Various Aluminum Coagulants Treatment[J]. Journal of Colloid and Interface Science, 2009, 332(2): 354-359.
    [90]常颖,张金松,王宝贞,等.基于分形理论的混凝控制研究[J].中国给水排水, 2005, 21(2): 1-5.
    [91] Sutherland D N. A Theoretical Model of Floc Structure[J]. Journal of Colloid and Interface Science, 1967, 25(3): 373-380.
    [92] Thill A, Veerapaneni S, Simon B, et al. Determination of Structure of Aggregates by Confocal Scanning Laser Microscopy[J]. Journal of Colloid and Interface Science, 1998, 204(2): 357-362.
    [93] Thill A. Structural Interpretations of Static Light Scattering Patterns of Fractal Aggregates——II. Experimental Study[J]. Journal of Colloid and Interface Science, 2000, 228(2): 386-392.
    [94] Thill A, Moustier S, Aziz J, et al. Flocs Restructuring During Aggregation: Experimental Evidence and Numerical Simulation[J]. Journal of Colloid and Interface Science, 2001, 243(1): 171-182.
    [95] Chakraborti R K, Atkinson J F, Benschoten J E V. Characterization of Alum Floc by Image Analysis[J]. Environmental Science and Technology, 2000, 34(18): 3969-3976.
    [96] Biggs S, Habgood M, Jameson G J, et al. Aggregate Structures Formed via a Bridging Flocculation Mechanism[J]. Chemical Engineering Journal, 2000, 80(1-3): 13-22.
    [97] Torres F E, Russel W B, Schowalter W R. Simulation of Coagulation in Viscous Flows[J]. Journal of Colloid and Interface Science, 1991, 145(1): 51-73.
    [98] Goodarz N I. Floc Density, Porosity and Void Ratio in Colloidal Systems and Aerosols[J]. Journal of Colloid and Interface Science, 1977, 62(1): 131-141.
    [99] Vold M J. Computer Simulation of Floc Formation in a Colloidal Suspension[J]. Journal of Colloid and Interface Science, 1963, 18(7): 684-695.
    [100] Sutherland D N. Comments on Vold's Simulation of Floc Formation[J]. Journal of Colloid and Interface Science, 1966, 22(3): 300-302.
    [101]王晓昌,丹保宪仁.絮凝体形态学和密度的探讨——II.致密型絮凝体形成操作模式[J].环境科学学报, 2000, 20(4): 385-390.
    [102] Fran?ois R J, Haute A A. Structure of Hydroxide Flocs[J]. Water Research, 1985, 19(10): 1249-1254.
    [103] Witten T A, Sander L M. Diffusion-Limited Aggregation: A Kinetic CriticalPhenomenon[J]. Physical Review Letters, 1981, 47(19): 1400-1403.
    [104] Witten T A, Sander L M. Diffusion-Limited Aggregation[J]. Physical Review B, 1983, 27(9): 5688-5697.
    [105]井敏莉,李敏.絮凝体分形模型概述、优化及应用[J].中国水运, 2008, 8(8): 149-151.
    [106]谢磊,董秉直,曹达文,等.机械絮凝和网格絮凝处理低浊度水源水的性能对比中试研究[J].工业用水与废水, 2008, 39(5): 73-76.
    [107]刘强,吕浩,孙志民,等.带气絮体在气浮分离区运动的数值模拟[J].沈阳建筑大学学报, 2010, 26(2): 339-344.
    [108]周静,王宁.新型机械+折板组合絮凝反应池的试验研究[J].供水技术, 2009, 3(2): 26-29.
    [109] Weber-Shirk M L, Lion L W. Flocculation Model and Collision Potential for Reactors with Flows Characterized by High Peclet Numbers[J]. Water Research, 2010, 44(18): 5180-5187.
    [110] Vigil R D. On Equilibrium Solutions of Aggregation–Fragmentation Problems[J]. Journal of Colloid and Interface Science, 2009, 336(2): 642-647.
    [111] McCurdy K, Carlson K, Gregory D. Floc Morphology and Cyclic Shearing Recovery: Comparison of Alum and Polyaluminum Chloride Coagulants[J]. Water Research, 2004, 38(2): 486-494.
    [112] Mikkelsen L H, Keiding K. The Shear Sensitivity of Activated Sludge: An Evaluation of the Possibility for a Standardised Floc Strength Test[J]. Water Research, 2002, 36(12): 2931-2940.
    [113] Jarvis P, Jefferson B, Gregory J, et al. A Review of Floc Strength and Breakage[J]. Water Research, 2005, 39(14): 3121-3137.
    [114] Yu W, Li G, Xu Y, et al. Breakage and Re-Growth of Flocs Formed by Alum and PACl[J]. Powder Technology, 2009, 189(3): 439-443.
    [115] Barbot E, Dussouillez P, Bottero J Y, et al. Coagulation of Bentonite Suspension by Polyelectrolytes or Ferric Chloride: Floc Breakage and Reformation[J]. Chemical Engineering Journal, 2010, 156(1): 83-91.
    [116] Chaignon V, Lartiges B S, Samrani A E, et al. Evolution of Size Distribution and Transfer of Mineral Particles between Flocs in Activated Sludges: An Insight into Floc Exchange[J]. Water Research, 2002, 36(3): 676-684.
    [117] Solomentseva I, Barany S, Gregory J. The Effect of Mixing on Stability and Break-up of Aggregates Formed from Aluminum Sulfate Hydrolysis Products[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298(1-2): 34-41.
    [118] Yu W, Gregory J, Campos L C. Breakage and Re-Growth of Flocs Formed by Charge Neutralization Using Alum and PolyDADMAC[J]. Water Research, 2010, 44(13): 3959-3965.
    [119] Yu W, Gregory J, Campos L. The Effect of Additional Coagulant on the Re-Growth of Alum–Kaolin Flocs[J]. Separation and Purification Technology, 2010, 74(3): 305-309.
    [120] Xiao F, Lam K M, Li X Y, et al. PIV Characterisation of Flocculation Dynamics and Floc Structure in Water Treatment[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1-3): 27-35.
    [121]张忠国,栾兆坤,赵颖,等.聚合氯化铝(PACl)混凝絮体的破碎与恢复[J].环境科学, 2007, 28(2): 346-351.
    [122] Rasteiro M G, Garcia F A P, Ferreira P, et al. Evaluation of Flocs Resistance and Reflocculation Capacity Using the LDS Technique[J]. Powder Technology, 2008, 183(2): 231-238.
    [123] Zahnow J C, Maerz J, Feudel U. Particle-Based Modeling of Aggregation and Fragmentation Processes: Fractal-Like Aggregates[J]. Physica D: Nonlinear Phenomena, 2011, 240(9-10): 882-893.
    [124] Yeung A K C, Pelton R. Micromechanics: A New Approach to Studying the Strength and Breakup of Flocs[J]. Journal of Colloid and Interface Science, 1996, 184(2): 579-585.
    [125] Yukselen M, Gregory J. The Reversibility of Floc Breakage[J]. International Journal of Mineral Processing, 2004, 73(2-4): 251-259.
    [126]王补宣,盛文彦,彭晓峰,等.剪切力作用下颗粒的絮凝与破碎[J].热科学与技术, 2007, 6(3): 189-192.
    [127] Wang D, Wu R, Jiang Y, et al. Characterization of Floc Structure and Strength: Role of Changing Shear Rates under Various Coagulation Mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 379(1-3): 36-42.
    [128]付英,于水利,于衍真,等.聚硅酸铁混凝剂絮凝与破碎的定量研究[J].环境科学, 2008, 29(1): 92-98.
    [129] Harada S, Tanaka R, Nogami H, et al. Dependence of Fragmentation Behavior of Colloidal Aggregates on Their Fractal Structure[J]. Journal of Colloid and Interface Science, 2006, 301(1): 123-129.
    [130] Bache D H, Johnson C, McGilligan J F, et al. A Conceptual View of Floc Structure in the Sweep Floc Domain[J]. Water Science and Technology, 1997, 36(4): 49-56.
    [131] Wei J C, Gao B Y, Yue Q Y, et al. Strength and Regrowth Properties ofPolyferric-Polymer Dual-Coagulant Flocs in Surface Water Treatment[J]. Journal of Hazardous Materials, 2010, 175(1-3): 949-954.
    [132] Zhao Y X, Gao B Y, Cao B C, et al. Comparison of Coagulation Behavior and Floc Characteristics of Titanium Tetrachloride (TiCl4) and Polyaluminum Chloride (PACl) with Surface Water Treatment[J]. Chemical Engineering Journal, 2011, 166(2): 544-550.
    [133] Li T, Zhu Z, Wang D, et al. The Strength and Fractal Dimension Characteristics of Alum–Kaolin Flocs[J]. International Journal of Mineral Processing, 2007, 82(1): 23-29.
    [134] Kobayashi M. Breakup and Strength of Polystyrene Latex Flocs Subjected to a Converging Flow[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 235(1-3): 73-78.
    [135] Yukselen M A, Gregory J. Breakage and Re-Formation of Alum Flocs[J]. Environmental Engineering Science, 2002, 19(4): 229-236.
    [136]郭齐胜,董志明,单家元,等.系统仿真[M].北京:国防工业出版社, 2006: 5-12.
    [137]李华,余阳君,王润岗.基于数据挖掘的坦克分队作战毁伤仿真[J].火力与指挥控制, 2010, 35(5): 72-73.
    [138]彭晓源.系统仿真技术[M].北京:北京航空航天大学出版社, 2006: 12-18.
    [139]沈瑜,罗维薇,王小鹏,等.一种新的车道线快速识别算法[J].计算机应用研究, 2011, 28(4): 1544-1546.
    [140] Sander L M. Diffusion-Limited Aggregation: A Kinetic Critical Phenomenon[J]. Contemporary Physics, 2000, 41(4): 203-218.
    [141] Mathiesen J, Procaccia I, Swinney H L, et al. The Universality Class of Diffusion-Limited Aggregation and Viscous Fingering[J]. Europhysics Letters, 2006, 76(2): 257-263.
    [142] Kovács T, Bárdos G. Cluster Growth by Diffusion-Limited Aggregation in Shear Flow[J]. Physica A: Statistical and Theoretical Physics, 1997, 247(1-4): 59-66.
    [143] Vicsek T. Pattern Formation in Diffusion-Limited Aggregation[J]. Physical Review Letters, 1984, 53(24): 2281-2284.
    [144] Gaylord R J, Tyndall W. Diffusion-Limited Aggregation[J]. Mathematica in Education, 1992, 1(3): 6-10.
    [145] Tolman S, Meakin P. Off-Lattice and Hypercubic-Lattice Models for Diffusion-Limited Aggregation in Dimensionalities 2-8[J]. Physical Review A, 1989, 40(1): 428-437.
    [146] Halsey T C, Duplantier B, Honda K. Multifractal Dimensions and Their Fluctuations in Diffusion-Limited Aggregation[J]. Physical Review Letters, 1997, 78(9): 1719-1722.
    [147] Barra F, Davidovitch B, Levermann A, et al. Laplacian Growth and Diffusion Limited Aggregation: Different Universality Classes[J]. Physical Review Letters, 2001, 87(13): 4501-4504.
    [148] Saberi A A. Linear Relationship Statistics in Diffusion Limited Aggregation[J]. Journal of Physics: Condensed Matter, 2009, 21(46): 46-51.
    [149] Menshutin A Y, Shchur L N, Vinokur V M. Probing Surface Characteristics of Diffusion-Limited-Aggregation Clusters with Particles of Variable Size[J]. Physical Review E, 2007, 75(1): 401-404.
    [150] Meakin P. Noise-Reduced and Anisotropy-Enhanced Eden and Screened-Growth Models[J]. Physical Review A, 1988, 38(1): 418-426.
    [151] Ball R C, Brady R M, Rossi G, et al. Anisotropy and Cluster Growth by Diffusion-Limited Aggregation[J]. Physical Review Letters, 1985, 55(3): 1406-1409.
    [152] Tao R. Diffusion-Limited Aggregation with Surface Tension[J]. Physical Review A, 1988, 38(2): 1019-1026.
    [153]庞寿全,陈乐,郑容森.多集团聚集生长的模拟研究[J].安徽农业科学, 2008, 36(22): 9358-9360.
    [154]井敏娜.基于MATLAB平台的絮凝体分形仿真模拟[D].西安:西安建筑科技大学市政工程学科硕士学位论文, 2008: 25-47.
    [155]陈乐,翁甲强.粒子运动区域和粒子源距离对局部区域聚集生长的影响[J].广西物理, 2007, 28(2): 4-7.
    [156]秦朝燕,邱祖民,陈文有.絮凝体的三维DLA模型分形模拟[J].南昌大学学报, 2010, 32(2): 122-126.
    [157] Ochieng A, Onyango M. Homogenization Energy in a Stirred Tank[J]. Chemical Engineering and Processing, 2008, 47(9-10): 1853-1860.
    [158] Bridgeman J, Jefferson B, Parsons S A. The Development and Application of CFD Models for Water Treatment Flocculators[J]. Advances in Engineering Software, 2010, 41(1): 99-109.
    [159] Harvey P S, Greaves M. Turbulent Flow in an Agitated Vessel (Part I): A Predictive Model[J]. Chemical Engineering Research and Design, 1982, 60(a): 195-200.
    [160] Harvey P S, Greaves M. Turbulent Flow in an Agitated Vessel (Part II): Numerical Solution and Model Predictions[J]. Chemical EngineeringResearch and Design, 1982, 60(a): 201-210.
    [161] Aubin J, Fletcher D F, Xuereb C. Modeling Turbulent Flow in Stirred Tanks with CFD: The Influence of the Modeling Approach, Turbulence Model and Numerical Scheme[J]. Experimental Thermal and Fluid Science, 2004, 28(5): 431-445.
    [162] Jahoda M, Mostek M, Kukukova A, et al. CFD Modeling of Liquid Homogenization in Stirred Tanks with One and Two Impellers Using Large Eddy Simulation[J]. Chemical Engineering Research and Design, 2007, 85(5): 616-625.
    [163]邹琳.水处理絮凝动力学的试验研究和数值模拟[D].南京:河海大学环境工程学科硕士学位论文, 2007: 40-67.
    [164]张国娟,闵健,高正明.涡轮桨搅拌槽内混合过程的数值模拟[J].北京化工大学学报, 2004, 31(6): 24-27.
    [165]周国忠,聂毅强,包雨云.搅拌槽内非牛顿流体流动场的数值模拟[J].北京化工大学学报, 2002, 29(4): 4-7.
    [166]丁美兰.旋流扰流絮凝池流场数值模拟[D].哈尔滨:哈尔滨工业大学水力学及河流动力学学科硕士学位论文, 2006: 37-54.
    [167]杨志浪,黄克文,周洋洋.基于计算流体力学的往复式隔板絮凝池流场模拟分析[J].给水排水, 2009, 35(增刊): 365-368.
    [168]张秉斌,杨开明,杨小林,等.折板絮凝池内流场数值模拟和絮凝效果分析[J].环境工程, 2008, 26(6): 47-49.
    [169]武道吉,谭风训,马军,等.混凝试验搅拌器的研制[J].环境工程学报, 2007, 1(3): 130-132.
    [170] Coufort C, Dumas C, Bouyer D, et al. Analysis of Floc Size Distributions in a Mixing Tank[J]. Chemical Engineering and Processing, 2008, 47(3): 287-294.
    [171] Javed K, Mahmud T, Zhu J. Numerical Simulation of Turbulent Batch Mixing in a Vessel Agitated by a Rushton Turbine[J]. Chemical Engineering and Processing, 2006, 45(2): 99-112.
    [172] Simate G, Lyuke S, Ndlovu S, et al. The Heterogeneous Coagulation and Flocculation of Brewery Wastewater Using Carbon Nanotubes[J]. Water Research, 2012, 46(4): 1185-1197.
    [173]上海市政工程设计研究院.给水排水设计手册(第3册):城镇给水[M].第2版.北京:中国建筑工业出版社, 2004: 470-498.
    [174] Duan J, Gregory J. The Influence of Silicic Acid on Aluminium HydroxidePrecipitation and Flocculation by Aluminium Salts[J]. Journal of Inorganic Biochemistry, 1998, 69(3): 193-201.
    [175] Alcamo R, Micale G, Grisafi F, et al. Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine[J]. Chemical Engineering Science, 2005, 60(8-9): 2303-2316.
    [176]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004: 1-22.
    [177]韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社, 2004: 14-26.
    [178]丰存礼,刘成,张敏华.商业软件GAMBIT和FLUENT在化工中的应用[J].计算机与应用化学, 2005, 22(3): 231-234.
    [179] Ranade V V, Bourne J R, Joshi J B. Fluid Mechanics and Blending in Agitated Tanks[J]. Chemical Engineering Science, 1991, 46(8): 1883-1893.
    [180] Xu Y, Mcgrath G. CFD Predictions of Stirred Tank Flows[J]. Chemical Engineering Research and Design, 1996, 74(4): 471-475.
    [181] Brucato A, Ciofalo M, Grisafi F, et al. Numerical Prediction of Flow Fields in Baffled Stirred Vessels: A Comparison of Alternative Modelling Approaches[J]. Chemical Engineering Science, 1998, 53(21): 3653-3684.
    [182]王瑞金,张凯,王刚. FLUENT技术基础与应用实例[M].北京:清华大学出版社, 2007: 33-49.
    [183] Aubin J, Kresta S, Bertrand J, et al. Alternate Operating Methods for Improving the Performance of Continuous Stirred Tank Reactors[J]. Chemical Engineering Research and Design, 2006, 84(7): 569-582.
    [184]蒋新. MATLAB平台上的DLCA过程模拟[J].计算机仿真, 2003, 20(6): 68-70.
    [185]薛定宇,陈阳泉.基于MATLAB/SIMULINK的系统仿真技术与应用[M].北京:清华大学出版社, 2002: 6-13.
    [186]陈杰. MATLAB宝典[M].北京:电子工业出版社, 2007: 1-7.
    [187]高睿,谢淑云,陶继东.在MATLAB平台下实现DLA分形聚集生长的模拟[J].西南师范大学学报, 2005, 30(1): 83-86.
    [188] Bourke P. Constrained Diffusion-Limited Aggregation in 3 Dimensions[J]. Computers & Graphics, 2006, 30(4): 646-649.
    [189] Shaikh Y H, Khan A R, Pathan J M, et al. Fractal Pattern Growth Simulation in Electrodeposition and Study of the Shifting of Center of Mass[J]. Chaos, Solitons & Fractals, 2009, 42(5): 2796-2803.
    [190]张建华,屈世显,刘振华,等.分形生长DLA模型及其在流体驱替中的应用[J].西安石油学院学报, 1995, 10(1): 63-67.
    [191]谢云霞,罗文峰,李后强.大气颗粒物的分形特征[J].世界科技研究与发展, 2004, 26(6): 24-29.
    [192]金鹏康,王晓昌,郭坤.絮凝体的DLA分形模拟及其分形维数的计算方法[J].环境化学, 2007, 26(1): 5-9.
    [193] Colomer J, Peters F, Marrase C. Experimental Analysis of Coagulation of Particles under Low-Shear Flow[J]. Water Research, 2005, 39(13): 2994-3000.
    [194] Salem A, Okoth G, Th?ming J. An Approach to Improve the Separation of Solid-Liquid Suspensions in Inclined Plate Settlers: CFD Simulation and Experimental Validation[J]. Water Research, 2011, 45(11): 3541-3549.
    [195]袁祖强,景荣荣,倪受东.基于FLUENT的陶瓷浆料搅拌槽的结构优化[J].机械设计与制造, 2009, (3): 23-25.
    [196] Soos M, Moussa A S, Ehrl L, et al. Effect of Shear Rate on Aggregate Size and Morphology Investigated under Turbulent Conditions in Stirred Tank[J]. Journal of Colloid and Interface Science, 2008, 319(2): 577-589.
    [197] Forrest S R, Witten T A. Long-Range Correlations in Smoke-Particle Aggregates[J]. Journal of Physics A: Mathematical and General, 1979, 12(5): 109-117.
    [198] Hanan W G, Heffernan D M. Geometrical Multifractality of the Perimeter of DLA Clusters[J]. Chaos, Solitons & Fractals, 2001, 12(1): 193-195.
    [199]武道吉,王新文,谭风训.再论紊流絮凝动力学致因[J].水处理技术, 2001, 27(1): 19-21.
    [200]谭风训,武道吉,崔红兰.絮凝动力学机理研究[J].山东建筑工程学院学报, 1998, 13(1): 91-93.
    [201] Rumpf H. The Strength of Granules and Agglomerates[M]. New York: Industrial Public House, 1962: 379-418.
    [202] Kendall K. Agglomerate Strength[J]. Powder Metallurgy, 1988, 31(1): 28-31.
    [203]邵雷霆.剪切取向下粘性聚合物系中团聚体分散的研究[D].杭州:浙江大学化学工程学科硕士学位论文, 2005: 10-13.
    [204] Jackson G A. Comparing Observed Changes in Particle Size Spectra with Those Predicted Using Coagulation Theory[J]. Deep Sea Research, 1995, 42(1): 159-184.
    [205] Mietta F, Chassagne C, Winterwerp J C. Shear-Induced Flocculation of aSuspension of Kaolinite as Function of pH and Salt Concentration[J]. Journal of Colloid and Interface Science, 2009, 336(1): 134-141.
    [206]李冬梅,谭万春,黄明珠,等.絮凝体的分形特性研究[J].给水排水, 2004, 30(5): 5-10.
    [207] Selomulya C, Amal R, Bushell G, et al. Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates[J]. Journal of Colloid and Interface Science, 2001, 236(1): 67-77.
    [208] Coufort C, Bouyer D, LinéA. Flocculation Related to Local Hydrodynamics in a Taylor-Couette Reactor and in a Jar[J]. Chemical Engineering Science, 2005, 60(8-9): 2179-2192.
    [209] Vassileva N D, Ende D, Mugele F, et al. Fragmentation and Erosion of Two-Dimensional Aggregates in Shear Flow[J]. Langmuir, 2007, 23(5): 2352-2361.
    [210] Becker V, Schlauch E, Behr M, et al. Restructuring of Colloidal Aggregates in Shear Flows and Limitations of the Free-Draining Approximation[J]. Journal of Colloid and Interface Science, 2009, 339(2): 362-372.
    [211] Thomas D N, Judd S J, Fawcett N. Flocculation Modeling: A Review[J]. Water Research, 1999, 33(7): 1579-1592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700