多相多组分THCM耦合过程机理研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对地质科学领域中的温度-流体-化学-力(THCM)多场耦合问题,搜集国内外相关耦合理论,依据松弛耦合原理,利用FISH+FORTRAN语言,独立研发程序将TOUGHREACT与FLAC3D进行搭接,实现地质储存CO2及增强型地热系统领域多相多场耦合数值分析软件的开发。程序较为全面的考虑了耦合参数的种类及调整方式,能够比较真实的反映客观物理化学过程。利用研发程序,建立CO2地质储存理论算例、Salah场地模型,增强型地热系统中对井算例等数值模型,通过与监测资料及前人成果对比,对程序及相应界面在相关工程领域二维、三维模拟中的准确性、适用性、可移植性进行验证,并对工程中各关键参数的发展演化规律进行了分析。为相关领域实际工程中多场耦合数值模拟计算提供理论依据和技术方法。
In recent years, as for the increase of research on CO2geologic storage (CGS), oil andnatural gas underground storage, deep resources exploitation, high-level radioactive wastedisposal, and enhanced geothermal systems(EGS), more and more scholars found thermal-hydro-chemical-mechanical (THCM) multi-physical coupling problems have veryimportant effects on the normal operation and on the safety in the engineering design,construction and operation in these projects, which has very important research significance.
     Mechanics effect and the hydraulic conductivity characteristics of porous media areaffected by temperature, pore pressure, stress, and the influence of chemical forces. Open orclosed natural fracture have very important effects on CO2geological storage and disposal ofnuclear waste underground. Expansion or contraction caused by temperature change and thecorresponding thermal stress can affect the deformation characteristics of the structure orporous medium. In CGS projects, supercritical CO2is injected into the underground salineaquifer, which will result in the high pore pressure of reservoir and cap rock skeletondeformation, cause fracture as a new escape path, and endanger the stability of the caprock.And supercritical CO2may react with the surrounding rock for a long time, cause mineraldissolution or precipitation, change porosity and permeability of medium. In EGSengineerings, coupling of fluid and mechanics is the main consideration in the process offracturing. Cold water injection results in the decrease of temperature around the well atruntime, energy migration through the fluid flow in the fracture and pore, heat exchangebetween fluid and rock, rock and rock at the same time.There are both heat conduction, andheat convection, the change of the local stress field due to temperature varition also need to beconsidered in the whole process. In many geological science and engineering fields, therefore,people need to understand the coupling problems of its environment and to design andanalyze based on this.
     In the process of multi-physics problem calculation, however, due to the mutualrelationship between main factors is interactive and restrained, the coupling effect is verycomplex, it's tough to parse through a simple means of analysis. In view of its computationalcomplexity, related research has just started and under exploration. The main method is bytechnology of numerical simulation at home and abroad so far.
     Multi-phase multi-physics coupling numerical analysis has been an important technical means and tool to study CO2geological sequestration and enhanced geothermal systems. Dueto the deep drilling for CGS and EGS engineering and monitoring is difficult and costly, sonumerical simulation can be used as a kind of method that is very effective and economical.For CGS projects, through simulation we can study the physical and chemical changes effectsof supercritical CO2injection, and the capacity and penetration ability of storage formation.We can also study the mechanics change in the reservoir and cap rock by supercritical CO2injection which may lead to a series of safety issues,. For EGS projects, hydro-thermo-mechanical coupling numerical simulation are key points and difficulties in engineeringdesign and operation as well. Numerical simulation can be used to evaluate distribution anddevelopment of seepage and temperature field, to predict the heat transfer capacity andoperation efficiency, to analyze the characteristics of fluid stress, temperature stress andmutual coupling strength, as well as mechanical effects such as strain and displacement ofunderground and surface etc.
     Accordingly, aiming at multi-physics problems in geological science such as geologicalstorage of CO2, and enhanced geothermal systems etc, by the collection of multiphaseTHCM coupling theory, an independent simulator links TOUGHREACT with FLAC3Dwasdeveloped using FISH language plus FORTRAN90-95. They are linked because both thecodes have been widely used and have high recognition in their respective fields.
     Coupling program of the simulator based on loose coupling principle, the first step is totransform grid form of different files into same distribution in space, then the total time willbe divided into several simulation time steps according to the calculation precision andefficiency of computer, control equation are calculated respectively in turn within one timestep, the next step is to adjust and transfer the parameters according to the related equations,then start the calculation of next time step until the total simulation time is reached. Theparameter types and the adjustment way to coupling are considered more comprehensive inour simulator. The correction of porosity due to modulus change is considered, as well aspressure solution. Simultaneously the synchronization of porosity, permeability in FLAC andTOUGH is realized, which will enhance the accuracy of calculation, and perfect couplingtheory. There are two ways for the transfer of coupling parameters, direct transfer orinterpolation. In directly transfer, the grid number and software version has certainrequirements, but leaves out the difference calculation. When interpolation is used, programusing three dimension Lagrange method, values of27points around a three-dimensionalinternal node are needed for calculation, which makes less amount of calculation and ensureshigh precision difference. Calculated results of the two kinds of parameter passing way are basically identical through a lot of model simulations.
     Because database of chemical and physical properties of CO2are embedded in the CO2module of TOUGHREACT code, it can simulate multi-phase multi-component reaction solutetransport, its temperature module supports high temperature phase change of the water. So oursimulator can realize THCM coupling simulation in engineering of CGS and EGS. Theprogram TOUGHREACT-FLAC3Dcan realize external data input and output, using openoutside control file, it has a good readability, generality and operability. Grid generation arecalculated by use of a one-click automatic identification, which avoids the complexity ofFLAC internal non-uniform grid generation. The development and testing of a primaryinterface for beginners was also completed.
     When the procedure is finished, some numerical models of CO2geological storage wereundertaken including theory and Salah site, by compared with the monitoring data andpredecessors' achievements, the accuracy, applicability and portability of the simulator thecorresponding interface in CGS projects were verified. Based on a coupled wells example ofenhanced geothermal systems simulation, to further verify the applicability of the couplingcalculation in geotechnical heat extraction of high temperature.
     Further analysis were done based on the results of above numerical simulations. Take amassive CO2geological storage engineering as the research point, we study the developmentrules of key factors of rock physics, mechanics, seepage evolutionary from the perspective ofgeology and mechanics. We also analyzed the influence of caprock fracture channels onmigration of CO2in storage environment, the variation of porosity, permeability under theinjection pressure, as well as the possibility of rock damage and the distribution of plasticzone. For enhanced geothermal systems, numerical simulations were done to study the hydro-thermal-mechanical coupling process of a coupled pumping and injection wells, to analyzethe distribution and evolution of seepage field and temperature field distribution, to reveal therule and influencing factors of coupling strength. These studies can provide reference forrelated theory research and actual projects.
引文
[1]陈益峰,周创兵,童富果,等.多相流传输THM全耦合数值模型及程序验证[J].岩石力学与工程学报,2009,28(4):649-665.
    [2] Jihoon Kim. Sequential methods for coupled geomechanics and multiphase flow[D]. Stanford:Stanford university,2010.
    [3] Biot M.A. General theory of three-dimensional consolidation[J]. Appl Phys,1941,12:155–164.
    [4] Park K.C.. Stabilization of partitioned solution procedure for pore fluid-soilinteraction analysis[J].Int J Numer Methods Eng,1983,19(11):1669–1673.
    [5] Borja R.I. and Alarc′on E.. A mathematical framework for finite strainelastoplastic consolidation Part1: Balance laws, variational formulation, andlinearization[J]. Comput Methods ApplMech Eng,1995,122:145–171.
    [6] Armero F. Formulation and finite element implementation of a multiplicativemodel of coupled poro-plasticity at finite strains under fully saturatedconditions[J]. Comput Methods Appl Mech Eng,1999,171:205–241.
    [7] Schrefler B.A. Multiphase flow in deforming porous material[J]. Int J NumerMethods Eng,2004,60:27–50.
    [8] White A.J. and Borja R.I. Stabilized low-order finite elements for coupledsoliddeformation/fluid-diffusion and their application to fault zone transients[J].Comput Methods Appl Mech Eng,2008,197:4353-4366.
    [9] Armero F.,Simo J.C. A new unconditionally stable fractional step method fornon-linear coupled thermomechanical problems[J]. Int J Numer Methods Eng,1992,35:737–766.
    [10] Morris J. Injection and Reservoir Hazard Management: The Role ofInjection-Induced Mechanical Deformation and Geochemical Alteration at InSalah CO2Storage Project[R]. Lawrence Livermore National Laboratory,2009
    [11] Morris J.P. Simulations of injection-induced mechanical deformation: A study ofthe In Salah CO2storage project. SEG2009Summer Research Work CO2SeqGeophy[C]. Banff Canada,2009.
    [12] Merle H.A., Kentie C.J.P., van Opstal G.H.C., and Schneider G.M.G. TheBachaquero Study-A composite analysis of the behavior of a compactiondrive/solution gas drive reservoir. JPT,1976:1107–1114.
    [13] Kosloff D., Scott R., and Scranton J. Finite element simulation of Wilmington oilfield subsidence: I. linear modelling[J]. Tectonophysics,1980,65:339–368.
    [14] Lewis R.W. and Schrefler B.A. The finite element method in the static anddynamic deforma-tion and consolidation of porous media[M]. Chichester,England: Wiley,2nd edition,1998.
    [15] Zuluaga E., Schmidt J.H., and Dean R.H. The use of a fully coupledgeomechanics-reservoir simulator to evaluate the feasibility of a cavitycompletion. SPE Ann Tech Conf Exhib (SPE109588),11-14,2007[C].AnaheimCA:2007.
    [16] Zoback M.D.2007. Reservoir Geomechanics[M]. Cambridge, UK: CambridgeUniversity Press.
    [17]谭贤君,陈卫忠,贾善坡等.含相变低温岩体水热耦合模型研究[J].岩石力学与工程学报,2008,27(7):1455-1461.
    [18]杨更社,周春华,田应国.寒区软岩隧道的水热耦合数值模拟与分析[J].岩土力学,2006,27(8):1258-1262
    [19]孙福宝,杨大文,刘志雨等.基于Budyko假设的黄河流域水热耦合平衡规律研究[J].水利学报,2007,38(4):409-416
    [20]韩松俊,胡和平,田富强.基于水热耦合平衡的塔里木盆地绿洲的年蒸散发[J].清华大学学报(自然科学版),2008,48(12):2070-2073
    [21]孟春雷.陆面过程模式中土壤蒸发与水热耦合传输的进一步研究[D].北京:北京师范大学地理学与遥感科学学院,2006.
    [22]王成.群井抽灌地下TH耦合模型极影响因素研究[D].长春:吉林大学,2010.
    [23]孙昭萱,张强,王胜.土壤水热耦合模型研究进展[J].干旱气象,2009,27(4):373-380
    [24]Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J].Water Resources Research,1973,9(5):1314–1323.
    [25]Taylor G S,Luthin J N. A model for coupled heat and moisture transfer duringsoil freezing[J]. Canadian Geotechnical Journal,1978,15(4):548–555.
    [26] Anderson D M,Pusch R,Penner E. Physical and thermal properties of frozenground:geotechnical engineering for cold regions[C]. Ottawa:McGra-Hill,1978:143-169.
    [27] Chiasson A D,Rees S J,Spiter J D.A preliminary assessment of the effects ofgroundwater flow on closed-loop ground-source heat pump systems[J].ASHRAE Transactions,2000.106(1):380-393.
    [28] H.J.L.Witte,Geothermal Response Tests with Heat Extraction and Heat Injection:Example of Application in Research and Design of Geothermal Ground HeatExchangers,2001,Proceed-ings Workshop “Geothermische Response Tests”,Lausanne.
    [29] Min LI, Nai-ren DIAO,Zhao-hong FANG.Analysis of seepage flow in a confinedaquifer with a standing column well [J]. Journal of Hydrodynamics,2007.19(1):84-91.
    [30] Hikari Fujii, Tadasuke Inatomi, Ryuichi Itoi,Youhei Uchida. Development ofsuitability maps for ground-coupled heat pump systems using groundwater andheat transport models[J].Geothermics,2007.36(5):459-472.
    [31]薛禹群.地下水动力学[M].北京:地质出版社,1997.
    [32] Wang H F. Theory of linear poroelasticity[M]. Princeton:Princeton University,2000.
    [33] Terzaghi K. Die Berechnung der Durchlassigkeitziffer des Tones aus dem Verlaufder hydrodynamischen Spannungserscheinungen. Akad Wissensch WienSitzungsber Mathnaturwissensch Klasse IIa,1923,142(3/4):125–138
    [34] Biot MA Theory of elasticity and consolidation for a porous anisotropic solid[J].Appl Phys,1955,26:182–185
    [35]Biot MA General solutions of the equation of elasticity and consolidation for aporous material[J].Appl Phys,1956,27:240–253
    [36]Biot MA, Willis DG The elastic coefficients of the theory of consolidation [J].Appl Mech,1957,24:594–601
    [37] Geertsma J.Problems of rock mechanics in petroleum production engineering[C].In: Proc1st Int Congr Rock Mechanics,25September–1October1966, Lisbon.Lab Nac Eng Civil,Lisbon, vol I, pp585–594,1966.
    [38] Verruijt. Elastic storage of aquifers. In: DeWiest RJM Flow through porousmedia[M]. New York:Academic Press,1969.
    [39] Rice J R, Cleary MP.Some basic stress diffusion solutions of fluid saturationelastic porous media with compressible constituents [J]. Rev Geophys SpacePhys,1976,14:227–241
    [40] Hubbert M K, Willis DG. Mechanics of hydraulic fracturing[J]. Petrol Tech,1957,9:153–168.
    [41] Fairhurst C. Measurements of in situ rock stresses with particular reference tohydraulic fracturing[J]. Rock Mech Eng Geol,1964,2:129–147.
    [42] Haimson B C, Fairhurst C. Initiation and extension of hydraulic fractures in rocks[J]. Soc Petrol Eng J,1967:310–318
    [43] Perkins T K, Kern L R. Widths of hydraulic fractures[J]. Petrol Tech Sept,1961:937–949
    [44] Geertsma J, Deklerk F. A rapid method of predicting width and extent ofhydraulically induced fractures. J Petrol Tech,1969,21:1571–1581
    [45] Londe P, Sabarly F. La distribution des permeabilites dansla fondation desbarrages voutes en fonction du champ de contrainte[C]. In: Proc1st Int CongrRock Mechanics,1966, Lisbon. Lab Nac Eng Civil, Lisbon, volII, pp517–522.
    [46] Louis C, Maini Y (1970) Determination of in situ hydraulic parameters in jointedrock[C]. In: Proc2nd Int Congr Rock Mechanics,21–26September1970,Belgrade. Inst Dev Water Resour, Belgrade, vol I, pp235–245
    [47] Snow D T. A parallel plate model of fractured permeable media[D]. Berkeley:University of California,1965.
    [48] Sandhu R S, Wilson E L. Finite-element analysis of seepage in elastic media[J].Eng Mech Div ASCE,1969,95:641–652.
    [49] Noorishad J. Finite element analysis of rock mass behavior under coupled actionof body forces, fluid flow, and external loads. Berkeley: University of California,1971.
    [50] Ghaboussi J, Wison E L. Flow of compressible fluids in porous elastic media[J].Int J Numer Methods Eng,1973,5:419–442.
    [51] Gambolati GP, Freeze A. Mathematical simulation of the subsidence of Venice. I.Theory[J]. Water Resour Res,1973,9:721–733
    [52] Noorishad J, Ayatollahi MS, Witherspoon PA. A finite element method forcoupled stress and fluid flow analysis of fractured rocks[J]. Int J Rock MechMining Sci Geomech,1982,19:185–193
    [53] Jing L, Hudson J A. Numerical methods in rock mechanics[J]. Int J Rock MechMining Sci,2002,39:409–427.
    [54] Barton N R, Bandis S, Bakhtar K. Strength, deformation and conductivitycoupling of rock joints[J]. Int J Rock Mech Mining Sci Geomech Abstr,1985,22:121–140
    [55] Walsh J B. Effects of pore pressure and confining pressure on fracturepermeability[J]. Int J Rock Mech Mining Sci Geomech Abstr,1981,18:429–435
    [56] Oda M. Fabric tensor for discontinuous geological materials[J].Soils Found,1982,22:96–108
    [57]Lanru Jing. Fluid Flow and Coupled Hydro-Mechanical Behavior of RockFractures[J]. Developments in Geotechnical Engineering, Volume85,2007:111–144.
    [58] Jonny Rutqvist,Ove Stephansson. The role of hydromechanical coupling infractured rock engineering[J].Hydrogeology Journal,2003,11(1):7-40
    [59]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展,2003,A18(4):419-426.
    [60]张玉军.核废料地质处置概念库HM耦合和THM耦合过程的二维离散元分析与比较[J].工程力学,2008,25(4):219-223.
    [61]喻萌.基于ANSYS的输流管道流固耦合特性分析[J].中国舰船研究,2007,2(5):54-57
    [62]李地元,李夕兵,张伟等.基于流固耦合理论的连拱隧道围岩稳定性分析[J].岩石力学与工程学报,2007,26(5):1056-1064.
    [63]钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,14(1):3-15.
    [64]朱万成,魏晨慧,张福壮等.流固耦合模型用于陷落柱突水的数值模拟研究[J].地下空间与工程学报,2009,5(5):928-933.
    [65]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99
    [66]孙可明,潘一山,梁冰.流固耦合作用下深部煤层气井群开采数值模拟[J].岩石力学与工程学报,2007,26(5):994-1001
    [67]吴云峰.双向流固耦合两种计算方法的比较[D].天津:天津大学,2009.5
    [68]刘晓丽,梁冰,王思敬等.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412
    [69]李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401
    [70]周创兵,陈益峰,姜清辉等.岩体结构面HM耦合分析的界面层模型[J].岩石力学与工程学报,2008,27(6):1081-1093
    [71]陈颙,吴晓东,张福勤.岩石热开裂的实验研究[J].科学通报,1999,44(8):880–883.
    [72]李连崇,唐春安,杨天鸿等.岩石破裂过程THMD耦合数值模型研究[J].计算力学学报,2008,25(6):764-769
    [73]许锡昌.花岗岩热损伤特性研究[J].岩土力学,2003,24(增):188-191
    [74]于庆磊,郑超,杨天鸿等.基于细观结构表征的岩石破裂热–力耦合模型及应用[J].岩石力学与工程学报,2012,31(1):42-51
    [75]左建平,满轲,曹浩等.热力耦合作用下岩石流变模型的本构研究[J].岩石力学与工程学报,2008,27(增1):2610-2616
    [76]王铁行,李宁,谢定义.土体水热力耦合问题研究意义、现状及建议[J].岩土力学,2005,26(3):488-493
    [77]高小平,杨春和,吴文等.温度效应对盐岩力学特性影响的试验研究[J].岩土力学,2005,26(11):1775-1778
    [78]高小平,盐岩力学特性时温效应实验研究及其本构方程[D].武汉:中国科学院武汉岩土力学研究所,2005.
    [79]刘泉声,许锡昌.温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19(4):408-411
    [80]付俊鹏马贵阳.饱和含水冻土区埋地管道水热力耦合数值模拟[J].油气储运,2012,31(10):746-749
    [81] Wallner M, Bundesanstalt fur Geowissenscltaften wid Rohstoffe, A.WULF et al.Thermomechanical calculations concerning the design of a radioactive wasterepository in rock salt[C].Germany: International Society for RockMechanics,1982.
    [82] Wallner M. Analysis of thermo-mechanical problems related to the storage ofheat producing radioactive waste in rock salt[A]. Langer, the MechanicalBehavior of Salt Proceedings of the first Conference[C]. Germany:Trans TechPublications,1984.739-763.
    [83] Albrecht H., Langer M., Wallner M. Thermomechanical effects and stabilityproblems due to nuclear waste disposal in salt rock[C]. Stockholm: InternationalSociety for Rock Mechanics,1980.
    [84] Seipold U. Temperature dependence of thermal transport properties of crystallinerocks-a general law[J]. Tectono physics,1998,291:161-171
    [85] Sibbitt W L, Dodson J G, Tester J W. Thermal conductivity of crystalline rocksassociated with energy extracion from hot dry rock geothermalsysterms[J].Geophys Res,1979,84:1117-1124
    [86] Hans-Dieter Vosteen, Rudiger Schellschmidt. Influence of temperature onthermal conductivity, capacity and thermal diffusivity for different types of rock.Physics and Chemistry of the Earth,2003,28:499-509
    [87] Taras V. Gerya, David A. Yuen. Robust characteristics method for modellingmultiphase visco-elasto-plastic thermo-mechanical problems[J].Physics of theEarth and Planetary Interiors,2007,163(1-4):83–105.
    [88] Masanori Kameyama, David A.Yuen, Shun-Ichiro Karato. Thermal-mechanicaleffects of low-temperature plasticity (the Peierls mechanism) on the deformationof a viscoelastic shear zone[J]. Earth and Planetary Science Letters,1999,168:159–172.
    [89] J.Y.Cognard, P. Ladeveze,P. Talbot. A large time increment approach forthermo-mechanical problems[J]. Advances in Engineering Software,1999,30,(9–11):583–593.
    [90] Regenauer-Lieb, K.,Yuen, D. Positive feedback of interacting ductile faults fromcoupling of equation of state, rheology and thermal-mechanics[J]. Physics of theEarth and Planetary Interiors,2004,142(1-2):113-135.
    [91]方振.温度-应力-化学(TMC)耦合条件下岩石损伤模型理论与实验研究[D].长沙:中南大学,2010.05.
    [92]张强林,王媛.岩体THM耦合模型控制方程建立[J].西安石油大学学报(自然科学版),2007,22(2):139-145.
    [93]张强林,王媛.岩体THM耦合应用研究现状综述[J].河海大学学报(自然科学版),2007,35(5):538-541
    [94]卢应发,吴延春,罗先启[J].高放废物处置中的THM耦合理论及分析.岩石力学与工程学报,2007,第26(增2):3939-3945.
    [95]刘亚晨.核废料贮存围岩介质THM耦合过程的力学分析[J].地质灾害与环境保护,2006,17(1):54-57.
    [96]陶云奇,含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆:重庆大学,2009.
    [97] Bower KM, Zyvoloski G. A numerical model for thermo-hydro-mechanicalcoupling in fractured rock. Int J Rock Mech Min Sci1997;34(8):1201–11.
    [98] Gawin D, Schrefler BA. Thermo-hydro-mechanical analysis of partially saturatedporous materials. Eng Comput1996;13(7):113.
    [99]Thomas Nowaka, Herbert Kunza, David Dixonb,et al. Coupled3-Dthermo-hydro-mechanical analysis of geotechnological in situ tests[J].International Journal of Rock Mechanics and Mining Sciences, Volume48, Issue1, January2011, Pages1–15
    [100] Rutqvist J, Wu Y-S, Tsang C-F, et al. A Modeling Approach for Analysis ofCoupled Multiphase Fluid Flow, Heat Transfer, and Deformation in FracturedPorous Rock [J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:429–442.
    [101]C.F. Tsang, J.D. Barnichonc, J. Birkholzera.et al. Coupledthermo-hydro-mechanical processes in the near field of a high-level radioactivewaste repository in clay formations[J]. International Journal of Rock Mechanicsand Mining Sciences, Volume49, January2012, Pages31–44.
    [102]冯夏庭,潘鹏志,丁悟秀等.结晶岩开挖损伤区的THMC研究[C].武汉:《第九届全国岩土力学数值分析与解析方法讨论会》,2007.
    [103]冯夏庭,丁梧秀.应力–水流–化学耦合下岩石破裂全过程的细观力学试验[J].岩石力学与工程学报,2005,24(9):1465-1473.
    [104]申林方,冯夏庭,潘鹏志.单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J].岩石力学与工程学报,2010,29(7):1379-1388.
    [105]鲁祖德,丁梧秀,冯夏庭等.裂隙岩石的应力–水流–化学耦合作用试验研究[J].岩石力学与工程学报,2008,27(4):796-804.
    [106] T.S. Nguyena, L. Borgessonb,M. Chijimatsuc,et al. Hydro-mechanical responseof a fractured granitic rock mass to excavation of a test pit—the Kamaishi Mineexperiment in Japan[J]. International Journal of Rock Mechanics and MiningSciences, Volume38, Issue1, January2001, Pages79–94.
    [107]Guvanasen V, Chan T. A New Three-Dimensional Finite-Element Analysis ofHysteresis Thermohydromechanical Deformation of Fractured Rock Mass withDilatance in Fractures. Proceedings of the Second Conference on Mechanics ofJointed and Faulted Rocks. Technical University of Vienna,347–442.1995[C].Vienna:1995.
    [108] Kohl T, Hopkirk R J. The Finite Element Program ‘‘Fracture’’ for theSimulation of Hot Dry Rock Reservoir Behavior [J]. Geothermics,1995,24:345–359.
    [109] Ohnishi Y, Kobayashi A. THAMES [C]//Stephansson O, Jing L, Tsang C-F.Coupled Thermo-Hydro-Mechanical Processes of Fractured MediaDevelopments in Geotechnical Engineering. Amsterdam: Elsevier Science,1996:545–549.
    [110] Noorishad J, Tsang C-F, Witherspoon P A. CoupledThermal–Hydraulic–Mechanical Phenomena in Saturated Fractured PorousRocks: Numerical Approach [J]. Journal of Geophysical Research,1984,89:10365–10373.
    [111] Nguyen, T.S.,1996. Description of the computer code FRACON. In:Stephansson, O., Jing, L., Tsang, C.-F.(Eds.), CoupledThermo-Hydro-Mechanical Processes of Fractured Media. Developments inGeotechnical Engineering, vol.79. Elsevier, pp.539–544.
    [112] Bower K M, Zyvoloski G. A Numerical Model for Thermo-Hydro-MechanicalCoupling in Fractured Rock [J]. International Journal of Rock Mechanics andMining Sciences,1997,34:1201–1211.
    [113] Swenson D V, DuTeau R, Sprecker T. A Coupled Model of Fluid Flowin JointedRock Applied to Simulation of a Hot Dry Rock Reservoir [J]. InternationalJournal of Rock Mechanics and Mining Sciences,1997,34:308.
    [114] Rohmer J, Seyedi D M. Coupled Large Scale Hydromechanical Modelling forCaprock Failure Risk Assessment of CO2Storage in Deep Saline Aquifers [J].Oil&Gas Science and Technology: Rev IFP,2010,65(3):503-517.
    [115] Liu, Q., Zhang, C., Liu, X.,2006. A practical method for coupled THMsimulations of the Yucca Mountain and FEBEX case samples for task D of theDECOVALEX-THMC Project[C]. Proceedings of GEOPROC2006Internationalsymposium: Second International Conference on Coupled Thermo-hydro-mechanical-che-mical processes in Geosystems and Engineering, HoHaiUniversity, Nanjing, China,2006, pp:220–225.
    [116] Alonso, E.E., Alcoverro J, Coste F, et al. The FEBEX Bechmark test. Casedefinition and comparison of modelling approaches[J]. International Journal ofRock Mechanics and Mining Sciences,2005,42:611–638.
    [117]Chijimatsu M, Nguyen T S, Jing L, et al. Numerical study of the THM effects onthe near-field safety of a hypothetical nuclear waste repository—BMT1of theDECOVALEX III project. Part1: conceptualization and characterization of theproblems and summary of results[J]. International Journal of Rock Mechanicsand Mining Sciences,2005,42:720–730.
    [118] A. Gens, L. do N. Guimar es, S. Olivella1et al.Modellingthermo-hydro-mechano-chemical interactions for nuclear waste disposal[J].Journal of Rock Mechanics and Geotechnical Engineering.2010,2(2):97–102
    [119]于子望.桩埋管技术试验及THM耦合理论研究[D].长春:吉林大学,2009.
    [120] Xu, T., E.L. Sonnenthal, N. Spycher, and K. Pruess,2006. TOURGHREACT: Asimulation program for non-isothermal multiphase reactive geochemicaltransport in variably saturated geologic media. Computer&Geosciences32,145-165.
    [121] Pruess K, Oldenburg C, Moridis G. TOUGH2User’s Guide, Version2.0, ReportLBNL-43134[R]. Berkeley: Lawrence Berkeley National Laboratory:198.
    [122] Itasca, FLAC3D, Fast Lagrangian Analysis of Continuain3Dimensions,Version4.0[M]. Minneapolis: Itasca Consulting Group:438.
    [123] Davis J P, Davis D K. Stress-dependent permeability: characterization andmodeling[R]. Society of Petroleum Engineers, SPE Paper,1999.
    [124] Leverett M C. Capillary behavior in porous media[M]. Trans, AIME,1941.
    [125] Steefel, C.I., and A.C. Lasaga. A coupled model for transport of multiplechemical species and kinetic precipitation/dissolution reactions with applicationsto reactive flow in single phase hydrothermal system[J]. Amer J Sci,1994,294:529-592.
    [126] Bear. Dynamics of fluids in porous media[M]. New York:Elsevier,1972.
    [127] Min, K.-B., J. Rutqvist, and D. Elsworth. Chemically and mechanicallymediated influences on the transport and mechanical characteristics of rockfractures[J]. Int J Rock Mech Min Sci,2008,46(1):80-89.
    [128] Hashin Z.The elastic moduli of heterogeneous materials[J].Journal of AppliedMechanics,1962,29:143-150.
    [129] Sam Holloway. An Overview of the Underground Disposal of Carbon Dioxide[J]. Energy Convers Mgmt,1997,38: S193-S198.
    [130] Bachu S. Sequestration of CO2in Geological Media Inresponse to ClimaticChange: Road Map for Site Selection Using the Transform of the GeologicalSpace into CO2Phase Space [J]. Energy Conversion and Management,2002,43:87-102.
    [131]中华人民共和国科学技术部,《“十二五”国家碳捕集利用与封存科技发展专项规划》[Z].2003
    [132] Pruess K, Garcia J.Multiphase flow dynamics during CO2injection into salineaquifers[J]. Environmental Geology,2002,42,(2-3):282-295.
    [133] Jonny Rutqvist,Chin-Fu Tsang. A study of caprock hydromechanical changesassociated with CO2-injection into a brine formation[J]. Environmental Geology(2002)42:296–305
    [134]于子望,张延军,张庆,许天福. TOUGHREACT搭接FLAC3D算法[J].吉林大学学报(地球科学版),2013,43(1):199-206
    [135] Jonny Rutqvist, D W Vasco, Larry Myer. Coupled Reservoir-GeomechanicalAnalysis of CO2Injection and Ground Deformations at In Salah, Algeria[J].International Journal of Greenhouse Gas Control,2010,4:225–230.
    [136] Matthias Preisig, Jean H Pr é vost. Coupled Multi-PhaseThermo-Poromechanical Effects. Case Study: CO2Injection at In Salah, Algeria[J]. International Journal of Greenhouse Gas Control,2011,5:1055–1064.
    [137] Takumi Onuma, Shiro Ohkawa. Detection of Surface Deformation Related withCO2Injection by DInSAR at In Salah, Algeria [J]. Energy Procedia,2009,1:2177–2184.
    [138] Mark D. Zobacka, Steven M. Gorelickb. Earthquake triggering and large-scalegeologic storage of carbon dioxide[J].National Academy of Sciences of theUnited States of America,2012,109:10164-10168.
    [139]陈墨香,汪集旸,邓孝.中国地热资源-形成特点和潜力评估[M].北京:科学出版社,1994.
    [140]杨国强,苏小四,杜尚海等.松辽盆地CO2地质储存适宜性评价[J].地球学报,2011,32(5):570-580.
    [141]李小春,刘延锋,白冰等.中国深部咸水含水层CO2储存优先区域选择[J].岩石力学与工程学报,2006,25(5):963-968.
    [142]陈树民,钟延秋,赵洪文.松辽盆地北部岩石主要物理参数变化特征[J].大庆石油地质与开发,1995,14(1):66-67.
    [143]刘文苹.某区域岩石力学参数试验研究[J].中外能源,2012,6,(17):35-38
    [144]赵国泉.松辽盆地深层储层岩石学特征及次生孔隙形成热力学机制[D].北京:中国地质大学,2005.
    [145]巫润建,李国敏,黎明等.松辽盆地咸含水层埋存CO2储存容量初步估算[J].工程地质学报,2009,17(1):100-104.
    [146]康玲,王时龙,李川.增强地热系统EGS的人工热储技术[J].机械设计与制造,2008(9):141-143.
    [147] Brown D. The US hot dry rock program-20years of experience in reservoirtesting[C]. Proceedings of World Geothermal Congress, Italy,1995:2607-2611.
    [148] Joshua Taron. Geophysical and geochemical analyses of flow and deformationin fractured rock[D]. Pennsylvania: Pennsylvania State University,2009.
    [149] Kovac, K.M., T. Xu, K. Pruess, and M.C. Adams (2006), Reactive chemicalflow modeling applied to injection in the Coso EGS experiment, in: Proceedingsof the31st Workshop on Geothermal Reservoir Engineering, Stanford University.
    [150] Sheridan, J.M., and S.H. Hickman (2004), In situ stress, fracture, and fluid flowanalysis in well38C-9:An enhanced geothermal system in the Coso geothermalfield, in: Proceedings of the29th Workshop on Geothermal ReservoirEngineering, Stanford University.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700