高铬白口铸铁和7CrMnMoS磨损性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高铬白口铸铁因其优良的耐磨料磨损性能被广泛应用在抗磨料磨损的铸造设备上。国外进口的高铬白口铸铁钢管,具有好的耐磨料磨损性能,为了揭示其优良耐磨性的原因,对其组织进行了研究。金相和XRD研究发现其基体为马氏体,并含有大量弥散不连续分布高硬度合金碳化物。通过销-盘磨损实验,与正火态的45#钢对比,发现其相对耐磨性约为45#钢的2.5倍。并通过对磨损面形貌、磨屑形貌分析表明,高铬白口铸铁的破坏形式主要是基体的犁削和切削以及合金碳化物的断裂引起的磨损失效。
     实验室自主研发的7CrMnMoS易切削钢,需进行调质处理以期得到具有良好的综合力学性能并利于机加工的回火索氏体组织。本文设计旨在既保留回火索氏体组织又能细化晶粒的多次调质热处理工艺,以期使其耐磨性得到提高。通过销-盘、销-环实验对其磨料磨损性能进行了测试。结果表明,两种实验方法下,随着调质次数的增加,干、湿环境下7CrMnMoS的耐磨料磨损性呈增大趋势。利用单划痕模型对其做了较好的解释。除此之外,还对磨料磨损的机理进行了分析研究,结果表明磨料磨损的过程是微观切削、犁削、疲劳综合作用的过程。
     销-环情况下7CrMnMoS的干滑动磨损实验表明,干磨损条件下主要表现为剥层为主和氧化为辅的复合磨损形式。并通过对磨损面形貌、磨屑形貌、亚表层组织形貌、亚表层硬度分布的研究加以证实。结果还表明材料的干滑动耐磨性和磨损条件有着较大的关系。低载、低速下磨损量随着调质次数先增大后稍微降低。高载、高速下磨损量随着调质次数的增加而降低的趋势更加明显。出现上述现象的原因和磨损过程中材料强化机制的作用尺度效应有关。随着载荷和速度的增大,磨损亚表层变形层深度增加,细晶强化的效果表现的更明显。
Because of the high wear resistance to abrasives high chromium white cast iron is widely used in foundry equipments. In this paper, imported high chromium white cast iron pipe with perfect wear resistance was used as objective material. In order to interpret the reason to its high wear resistance, microstructure of the white cast iron was systematically studied. Metallurgical structure research and XRD research both demonstrate the high Cr white cast iron with high hardness martensite and alloy carbide rods. Pin-on-disk testing shows its relative wear resistance is 2.5 times higher than normalized 45# steel. Moreover, according to the research on wear surface morphology and wear particle morphology, the wear failure of high chromium is main caused by substrate micro-cutting and micro-ploughing and the fracture of alloy carbide rods.
     Free-cutting steel 7CrMnMoS independently researched and developed by laboratory was used as experimental material. As good machining performance and good mechanical properties is needed, 7CrMnMoS was quenched and tempered as tempered sorbite as the final microstructure. In this paper, repeated quenching and tempering processing was used to not only refine the grain size and but also keep the microstructure as tempered sorbite. Good wear resistance is also desired to be obtained by the processing. And then, pin-on disc and pin-on-ring machine were both used to test wear loss. And the results show that no matter dry or wet conditions the wear resistance of 7CrMnMoS increases with the quenching and tempering numbers. Single scratch experiment model was used to give a good explanation. In addition, abrasive wear mechanism was also studied, and micro-cutting, micro-ploughing and micro-fatigue were all discovered during wear process.
     Pin-on-ring dry sliding wear test results indicate that the wear mechanism is plastic deformation dominated and oxidation- supplemented combined wear mechanism. This mechanism was later proved by wear surface morphology, wear particle morphology, subsurface microstructure, subsurface hardness distribution. The results also show the dry sliding wear resistance has close relationship with wear condition. Under the condition of low load and speed, wear loss increases with the quenching and tempering numbers and then slightly decreases. When the load and speed reach a high level, wear loss obviously shows decreasing trend with the increase of quenching and tempering numbers. The reason to the results we observed is that the size effect strengthening mechanisms works during the wear process. With the increase of load and speed, the thickness of the worn surface caused by wear process will increase and the grain refinement strengthening mechanism will work effectively.
引文
[1]温诗铸,黄平.摩擦学原理[M].第二版.北京:清华大学出版社, 2002.
    [2]刘家浚.材料磨损原理与耐磨性[M].北京:清华大学出版社, 1993.
    [3] Dowson D. History of Tribology [M]. UK: Professional Engineering Publishing Limited, 1998.
    [4]周仲荣.摩擦学发展前沿[M].科学出版社, 2007.
    [5] Standard terminology related to erosion and wear, Annual Book of Standards[S], Vol. 3.02, ASTM, Philadelphia, PA, 1993.
    [6]郭跃华,摩擦磨损微观形貌仿真[D].昆明理工大学博士论文, 2001.
    [7]机械工程手册编辑委员会,机械工程手册[M].第4卷,第22篇,机械工业出版社, 1982.
    [8] Peter J. Blau, fifty years of research on the wear of metals[J]. tribology international, Vol.30, No.5, pp.321-331, 1997.
    [9]刘家浚,材料磨损原理及其耐磨性[M].清华大学出版社, 1993(1).
    [10]何奖爱,王玉玮.材料的磨损与耐磨材料[M].东北大学出版社, 2001,4第一版.
    [11] A. D. Sarkar著,邵荷生译,金属磨损原理[M].煤炭工业出版社, 1980.
    [12]郝石坚.现代铸铁学[M].北京,冶金工业出版社, 2004年6月第一版.
    [13]孙志平.高铬铸铁亚临界热处理中的硬化行为、机制及其对耐磨性的影响研究[D],四川大学博士论文, 2004年11月.
    [14]郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社, 1993.
    [15]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社, 1988.
    [16] R. Elliott. Cast iron technology [M], 33.1988,London, Butterworths.
    [17] K.-H. Zum Gahr, wear by hard particles [J], Tribology international, Vol.31, No.10, pp. 587-596, 1998.
    [18] Rabinowicz, E., Dunn, L. A. and Russell, P. G.. A study of abrasive wear under three-body conditions [J]. Wear, 1961, 4, 345–355.
    [19] Fang, L., Kong, X. L., Su, J. Y. and Zhou, Q. D.. Movement patterns of abrasive particles in three-body abrasion [J]. Wear, 1993, 162–164, 782–789.
    [20] Xie, Y. and Bushan, B. Effects of particle size, polishing pad and contact pressure infree abrasive polishing [J]. Wear, 1996,200, 281–295.
    [21] Zum Gahr, K. H.. Microstructure and Wear of Materials[J]. Tribology Series 10, Elsevier, Amsterdam, 1987.
    [22] Zum Gahr, K.-H., Modelling of two-body abrasive wear[J]. Wear, 1988, 124, 87–103.
    [23]材料的磨料磨损[M].北京:机械工业出版社, 1990: 6, 9 .
    [24]武宏强等.多合金系白口铸铁にぉける晶出炭化物の种类と形态.铸物[J]. 1995, 67(1):49~55.
    [25] J. Xing, W. Lu, and X. Wang. In Proc. Conf.‘wear of materials’[C]. Reston, VA. April 1983 ASME, 45-61.
    [26] H. Lin and Z. Qingde. In Proc. Conf‘Wear of materials’[C]. Houston, TX,April 1987 ASME 653-659.
    [27] L. Fang, Q. Rao, and Q. Zhou. In Proc. Conf‘Wear of materials’[C], Houston, TX, April 1987 ASME 733-741.
    [28] K. H. Zum Ghar and G. T. Eldis [J]. Wear, 1980, 64:175-194.
    [29] S. Junyi and J. Yuding. In Proc. Conf‘Wear of materials’[J], Houston, TX, April 1987, ASME, 661-671.
    [30] L. I. TsyPin, V. I. Kantorovich, A.D.Zuev and V. A. Gold’shtein[J]. Met.Sci.Heat Treat., 1992, 33:759-761.
    [31] G. L. F. Powell. Met. Forum, Abrasion resistance of the columnar zone in high Cr white cast irons [C], 3 (1980) 37-46.
    [32] O. N. Dogan and J. A. Hawk [J]. Wear, 1995, 189:136-142.
    [33] T. H. Kosel. In Proc.3rd Berkeley conf. on (Elevated temperature corrosion- erosion-wear[C]. Berkeley, CA, 1986, NACE, 285-298.
    [34] D. N. Hnalon, W. M. Rainforth and C. M. Sellars. Eeffect of spray forming on the microstruture and Properties of a high chromium white cast iron [J]. Source: Junral of Material Science, 1999, 34(10):2291-2301.
    [35] J. K. Fulcher. T. H. Kosel, and N. P. Fiore. A study of carbide removal mechanisms during quartz abrasion: II: Effect of abrasive particle shape [J]. Wear, 1983, 84: 313-325.
    [36] I. R. Sare. Met. Technology[J]. 1979, 6:412-419.
    [37] D.E. Diesburg and F. Borik. In Proc. Symp.‘Materials for mining industry’[J]. Vail, CO, July 1974.Climax Molybdenum Co., 15-38.
    [38] J. T. H. Pearce. Electron Microscopy Analysis on the Worn Surface of a High-Chromium White Iron During Dry Sliding Contact [J]. J. Mater. Sci. and Lett.1983, 2: 428-432.
    [39] N. Jost and I. Schmidt. In Proc.Conf‘wear of materials’[C]. Vancouver, BC, April 1985, ASME 205-211.
    [40] L. Xu, C. Vose, and D.St. John. Relationship between microstructure, hardness, impact toughness and wear performance of selected grinding media for mineral ore milling operations [J]. wear, 1993, 162-164: 820-832.
    [41] J. T. H. Pearee. Abrasive wear behaviour of alloy cast irons [J]. Br. Foudryman, 1985, 78: 13-23.
    [42] M. Fisej, G. Huard, and J. Masounave. J. mater. Sci. Lett. [J].1995, 9: 1456-1458
    [43] E.D. Rabinowicz. Friction and wear of materials [M]. John Wiley and sons, New york, (1965)168.
    [44]张永振,材料的干摩擦学[M],科学出版社, 2007年7月第一版.
    [45] So H..The mechanism of oxidational wear [J]. Wear, 1995, 184:161-167.
    [46] Y. Wang, T.C. Lei T.Q. Lei, J.J. Liu. Tribo-Metallographic Behavior of High Carbon Steels in Dry Sliding: I. Wear Mechanisms and Their Transition [J]. Wear. 231 (1999) 1–11.
    [47] Y. Wang, T.C. Lei T.Q. Lei, J.J. Liu. Tribo-metallographic behavior of high carbon steels in dry sliding: II. Microstructure and wear [J]. Wear. 231 (1999) 12–19.
    [48] Y. Wang, T.C. Lei T.Q. Lei, J.J. Liu. Tribo-metallographic behavior of high carbon steels in dry sliding: III. Dynamic microstructural changes and wear [J]. Wear. 231(1999) 20–37.
    [49] Y. Wang, M. McNallan, X. Zhang and T. Lei. wear resistance and energy consumption of eutechtoid steel during dry sliding [J]. Scripta materialia. 36 (1997) 213-217.
    [50] Y. Wang, L. Pan, T.C. Lei, Sliding wear behavior of pearlitic structures in eutectoidsteel [J], Wear 143 1 1991 57–69.
    [51] Y. Wang, T.C. Lei, M.F. Yan, C.Q. Gao. Frictional temperature field and its relationship to the transition of wear mechanisms of steel 52100 [J]. J. Phys. D: Appl. Phys. 25 1992 A165–A169.
    [52] Y. Wang, X.D. Li, Z.C. Fang. The relationship between the product of load and sliding speed with friction temperature and sliding wear of a 52100 steel [J]. Scr. Metall. Mater. 33 7 1995 1163–1168.
    [53] Y. Wang, C.Q. Gao, T.C. Lei, H.X. Lu. Amorphous structure of worn surface in 52100 steel[J]. Scr. Metall. 22 1988 1251–1254.
    [54]王铀, T8钢的干滑动磨损行为[J],机械工程学报, 1992, vol. 28, No.2 .
    [55]王铀,潘俐. T8钢干滑动磨损表面形貌和磨损颗粒特征[J],机械工程材料, 1990, vol.5.
    [56] Y. Y. Yang, H. S. Fang and W. G. Huang. A study on wear resistance of the white layer [J]. Tribology International. Vol. 29.No. 5, pp. 425-428, 1996.
    [57] Griffiths B.J. Mechanisms of white layers generation with reference to machining and deformation processes [J]. J. Tribol. 1987, 109, 525-530.
    [58] Griffiths B.J. and Furze D.C. Tribological advantages of white layers produced by machining [J]. Trans.ASME 1987, 109, 338-342.
    [59] Yang Y.Y., Fang H. S., Zheng Y. K., Yang Z.G. and Jiang Z.L. The failure models induced by white layers during impact wear [J]. Wear 1995, 185, 17-22.
    [60] A.Bahrami, S.H.Mousavi Anijdan. Effects of conventional heat treatment on wear resistance of AIAI H13 tool steel [J]. Wear 258(2005) 846-851.
    [61]马嘉谟,王铀. GCr15钢中的残余奥氏体对于干滑动磨损行为的影响[J].哈尔滨工业大学学报, 1997,18(4):63-68.
    [62]刘喜明,邬占田,于长山,赵宇.摩擦磨损中的马氏体相变及对材料磨损特性的影响[J].金属热处理, 1997,(3):8-12.
    [62] Peter J, Blau. Fifty years of research on the wear of metals [J]. Tribology International Vol. 30, No. 5, pp. 321-331. 1997.
    [63]李爱娜, Ni-Cr-Mo钢的干摩擦磨损特性的研究[D].河南科技大学硕士论文, 2006.
    [64]刘佐民, M50高速钢高温摩擦磨损性能的研究[J].摩擦学学报, 1997(,1):38-44.
    [65]罗霞, M50高速钢的高速干摩擦学特性研究[D].河南科技大学硕士论文, 2004.
    [66] N. P. Suh. An overview of the delamination theory of wear [J]. Wear. 44 (1977) 1-16.
    [67] S. ahanmir, N.P. Suh. Mechanics of subsurface void nucleation in delamination wear [J]. Wear. 44 (1977) 17-38.
    [68] J. R. Fleming, N. P. Suh. The relationship between crack propagation rates and wear rates [J]. Wear. 44(1977) 57-64.
    [69] P.C. Paris, F. Erdogan. A critical analysis of crack propagation laws [J], J. Basic Eng. 85 (1961) 528–534.
    [70]崔忠圻,覃耀春,金属学与热处理[M],机械工业出版社, 2007,第二版.
    [71]樊东黎,徐跃明,热处理工程师手册[M],机械工业出版社, 2005第二版.
    [72]刘俞铭,金属热处理常见工艺技术五百种与质量缺陷分析防治及最新标准应用、常用参数速查实用手册[M],北方工业出版社, 2006年第一版.
    [73]苏阳, 7CrMnMoS新型易削钢的研究[D],华中科技大学硕士论文, 2009.
    [74] N.J. Petch [J]. J. Iron Steel Inst. 174 (1953) 25.
    [75] A. Lasalmonie, J.L. Strudel. Influence of grain size on the mechanical behaviour of some high strength materials [J]. J. Mater. Sci. 21 (1986) 1837.
    [76] R.W. Davidge, F.L. Riley. Grain-size dependence of the wear of alumina [J]. Wear. 186-187 (1995) 45-49.
    [77] A.K. Prasada Rao, Karabi Das, B.S. Murty. Effect of grain refinement on wear properties of Al and Al–7Si alloy [J]. Wear. 257 (2004) 148–153.
    [78] G. Bregliozzi, A. Di Schino, S.I.-U. Ahmed J.M. Kenny, H. Haefke. Cavitation wear behaviour of austenitic stainless steels with different grain sizes [J]. Wear. 258 (2005) 503-510.
    [79] E.ARZT. Size effects in materials due to microstructural and dimensional constraints: a comparative review [J]. Acta mater. 46 (1998) 5611±5626.
    [80] Maratray F, Poulalion A. Austenite Retention in high Cr White Iron AFS Trans. [J]. 1982:795-804.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700