超高锰钢与高铬铸铁的性能研究及消失模技术在大型坩埚与水泵叶轮上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一章研究了ZGMn18Cr2Mo超高锰钢的在压缩变形时的加工硬化能力;同时,研究了时效处理工艺对超高锰钢的组织及小变形轴向压缩情况下的形变硬化能力的影响。结果表明,适当的时效处理可以提高超高锰钢的形变硬化能力,硬化速率与起始硬度无关。经时效处理的超高锰钢,其真应力—真应变分段符合Hollomon方程,具有双n力学行为,小变形即可获得较高形变硬化。在小压缩变形情况下,有高密度的位错、少量层错和大量的形变孪晶形成,并有一定数量的交叉孪晶和纳米尺寸的超微细碳化物。薄膜透射电镜观察和X射线衍射结构分析未发现形变诱发马氏体存在。说明超高锰钢加工硬化是位错强化、孪晶强化、层错强化及弥散析出的超微细碳化物颗粒强化综合作用的结果。
     本文第二章研究了淬火工艺(包括奥氏体化温度、保温时间及冷却速度)对KmTBCr26高铬铸铁的硬度和冲击韧性的影响;回火温度对KmTBCr26高铬铸铁的显微组织和力学性能的影响。结果表明,淬火工艺对试样硬度有显著地规律性地影响,得到最高硬度的最佳奥氏体化温度为980~1020℃,最佳保温时间与试样的原始组织有关;不同淬火工艺的试样冲击韧性数据无明确规律性。随回火温度升高,淬火后显微组织由马氏体与奥氏体的混合组织向铁素体-碳化物组织转变;回火温度对试样硬度和韧性有显著地规律性地影响,回火温度达到460℃时,此种材料综和力学性能最好。
     本文第三章论述了大型耐热铸钢坩埚与ZG20SiMn钢制水泵叶轮的消失模铸造生产技术及控制要点。对于大型薄壁铸件,要选用密度较高的泡沫塑料,这样一方面可以防止变形,另一方面可以防止塌箱。适当降低涂层的透气性也有助于避免垮塌缺陷。另外,对于半封闭腔体,设置辅助抽气筒是非常必要的。对于水泵叶轮这种薄壁复杂铸件来说,消失模铸造能够充分发挥其许多独特工艺优势。合理设计浇注系统、正确
The effect of ageing treatment on microstructure and strain hardening ability during the process of uniaxial small compressive deformation of Super—high manganese steel was investigated. The results showed that the strain hardening ability of super—high manganese steel could be enhanced by appropriate ageing treatment meanwhile the strain hardening ability was not relevant to initiative hardness. For the Super—high manganese steel treated by various ageing techniques , the relation between true stress and true strain accorded with Hollomon equation in sections, behaving as double n, getting excellent hardening under small compressive deformation. the microstructure of the dense dislocations, some stacking faults, the great amount of deformation twins, some intersecting twins and ultrafine carbides in a nano-scale has been observed under the condition of the uniaxial small scale compressive deformation. By thin film TEM observed and X-ray structure analysis no deformation-inducing martensite has been observed, and it is shown that the work hardening mechanism of Super-high manganese steel can be attributed to composite strengthening of dislocation , twin, stacking and precipitation of ultrafine carbides.
    The effects of quenching process (including austenitizing temperature, austenization holding time and quenching rate) and temper temperature on mechanical properties of KmTBCr26 high chromium cast iron have been investigated by measuring hardness and impact toughness. The results show that the quenching process has prominent well-regulated influence on the hardness of the samples, and the optimal austenitizing temperature which produce the highest hardness is 980~1020°C and the optimal austenization holding time is related to the original microstructure of samples, while the data of impact toughness of samples in various quenching process treatments is ruleless. The results also show the transformation of martensite and austenite after quenching to ferrite-carbides with temper temperature increasing, and that the temper temperature has
    prominent well-regulated effect on hardness and impact toughness, the results also indicated that the synthetic mechanical properties of the material became excellent when temper temperature was 460℃.
    In this paper, the technique and essentials of process control of ZG20SiMn water pump impeller and heat-resistant cast steel crucible in lost foam casting were discussed, it was pointed that a lot of superiority of LFC were exerted sufficiently for water pump impeller of the thin wall and the complicated shape. The relevant casting defects were relieved or eliminated through designing the casting system in reason, selecting conectly refractory coating and molding sand and increasing the filling density of molding sand, at the same time the quality of the complex and near net shape casting in LFC was improved. For the large thin wall casting, higher density foam was adopted to prevent the deformation as well as collapse. It is helpful to prevent collapse by decreasing appropriately permeability of coating. In addition, it is very necessary to adopt the assistant abstraction barrel for semi-closed cavity.
引文
[1] 李茂林.我国金属耐磨材料的发展和应用[J].铸造,2002
    [2] Voronenko BI. Morden Wcar-resistant Alloys for the Working Partsof Impact Crushers. Mctalloved. Term Obrab. Met., 1992, (11)1
    [3]. Yang KH, ChooWK. The Variants of the Orientatio Relationship Between Austenite and Cementitein Fe-30%Mn-1.0%C Alloy. [J] A cta. Metall. Mater., 1994, 42(1): 263.
    [4] 吴俊忠.90Kg级超高锰钢大锤头的研究与应用[J].水利电力机械,2001.(4):20~22.
    [5] 张敬澈,杨云成,胡文庆.超高锰钢风扇磨煤机打击板的耐磨性[J].水利电力机械,2003.(4):25~27.
    [6] 周严栋,魏成富,栾道成。影响铸钢ZGMn18型超高锰钢性能因素的探讨[J].铸造,2001.(10):632~633.
    [7] 吕宇鹏,李士同,陈方生.变质超高锰钢的冲击磨料磨损行为研究[J].金属学报,1999,(6).[9]
    [8] 李树索,陈希杰.超高锰钢铸造性能研究[J].铸造技术,1997,(4):38~41。
    [9] 朝志强,吕宇鹏,董玉平等.奥氏体耐磨锰钢的研究现状与进展[J].钢铁研究学报,1998,10(5):59~62.
    [10] 张增志.耐磨高锰钢[M].北京:冶金工业出版社,2002.
    [11] 刘云旭.金属热处理原理[M].北京:机械工业出版社,1981.
    [12] 《金属机械性能》编写组 金属机械性能[M].北京:机械工业出版社,1982.
    [13] 张保昌,何民副,王士洪.有色金属及其热处理[M].北京:国防工业出版社,1981.
    [14] 王豫,斯松华.高锰钢加工硬化规律和机理研究[J].钢铁.2001,(10):54~56.
    [15] Zhang F C, Zheng Y Z. Chin Sci Bull, 1991; 27; 382
    [16] 陈希杰.高锰钢[M].北京:机械工业出版社,1989.114.
    [17] 李士同,吕宇鹏,朱瑞富等.浅论高锰钢的加工硬化机制[J].兵器材料科学与工程,1999,22(5):61~65.
    [18] Robert W N. Transactions of the Metallurgical Society of AIME. 1964, 230(4): 373
    [19] 李树索,陈希杰.超高锰钢加工硬化和耐磨性性的研究[J].钢铁研究学报,1997,(4):38~ 41.
    [20] G. L. F. Powell: Morphology of Eutectic M_3C and M_7C_3 in White Iron Casting[J], materials Fomm, vol. 3, No.1, 1980, 37~46.
    [21] S. C. Panigrahi: Driectional Solidification of High ChrominmCast Iron[J],The paper for 48 th International Foundry Congress, 1981, 10
    [22] 徐志明,等.高铬铸铁铸态奥氏体的亚临界热处理研究[J].金属热处理,1993,(4):10~15.
    [23] 李为,等.等温淬火处理对中铬铸铁组织及性能的影响[J].金属热处理,1993,(4):6~9.
    [24] 郝石坚.高铬耐磨铸铁[M].北京:煤炭工业出版社,1993:132~157.
    [25] 周庆得,等.铬系耐磨铸铁[M].西安:西安交通大学出版社,1986:113~124。
    [26] 安江英,等.热处理对Cr20高铬铸铁组织和性能的影响[J].钢铁研究学报,1996,(2):50~53.
    [27] 苏俊义.铬系耐磨铸铁[M].北京:国防工业出版社,1990:73~77.
    [28] 符寒光.回火工艺对高铬铸铁组织和性能的影响[J].金属热处理,1994(12):7~9.
    [29] 黄四亮.高铬白口铸铁(10%~28%Cr)热处理工艺研究与探讨[J].铸造技术,2000(6):m 43~46.
    [30] 张松,王佳华,宋长芹.复合铸造高铬铸轮锤的应用[J].铸造,1996(3):41~43.
    [31] 朴东学,齐笑冰,李惠玉.改进材质提高高锰钢高铬铸铁件的使用性能[J].铸造,1998(6):43~45.
    [32] J. M. Beteza: Wearand Impact Resistant White Castlrons[J], The BritisFoundryman, OCT. 1981, 205~211.
    [33] 杜家林.高铬铸铁的热处理新工艺[J].金属热处理.1996,(10):33~34.
    [34] W.费赫斯特,K.勒赫里格:耐磨高铬铸铁[M],《磨料磨损与耐磨合金(译文集)》,电力工业出版社,1980,100~127.
    [35] L. Fang, Q. Rao, Q, Zhou: Abrasive gear Resistance of Chromium Family of White Cast Irons[J], Wear of Material, 1987, 733~741.
    [36] 西安交大耐磨课题组:高铬铸铁热处理的研究,西安交通大学学报[J],1980,(4),15~28.
    [37] D. E. Diesburg, EBorik: Optimizing Abrasion Resistance and Toughness in Steels and Iron for the Mining Industry, Symposium, Materials for the Mining industry, 1974.
    [38] Jiantong Xing, Wenhua Lu, Xiaotong Wang: An Investigation on the Wear Risistance of High Chromium Cast iron[J], wear of Material, 1983, 45~61.
    [39] 段汉桥.锰对高铬铸铁奥氏体化过程的的影响[J].铸造,2001,(9):545~549.
    [40] Liming Lu, Hiroshi Soda, Alexander Mclean. Microstructure andmechanical propertys of Fe—Cr—C eutectic composites[J]. Material Science Engineering, 2003, (A347): 214~222.
    [41] 关迎风,刘良先,龚润生,等。不同处理态高铬白口铸铁显微组织与性能[J].中南工业大学学报,1998,(4):161~164.
    [42] 甘宅平。高铬铸铁组织及元素分布的研究[J].钢铁研究[J],2003,(4):41~42.
    [43] 傅其蔼,喻德顺真空实型铸造[M],北京:新时代出版社,1991.
    [44] 黄乃瑜,叶升平,樊自田.消失模铸造原理及质量控制[M].武汉:华中科技大学出版社,2004.
    [45] 廖希亮,等 消失模铸铁件碳黑形成机理的探讨[J],铸造,1994.(4).
    [46] Sun Y, Tsai H L, Askeland D R. Investigation of Wetting and Wicking Properties of Refractory Coating in the EPC Process[J].AFS Trans, 1992, 100: 297~308.
    [47] S. G. Sharman, EPSceramic shell process improves As-cast steel quality (Part1),Foundry M&T1998(4)
    [48] S. S. S Abayarathna, Modeling of EPC Part Ⅲ Heat/Mass Transfer in sand mold and its Effect on Casting Solidication. AFS Transaction, 1999: 653~659.
    [49] S. S. S. Abayarathna and H. L. Tsai; Modeling of Evaporative Pattern Process PartⅡ: Determination of Possible Carbon Pickup[J], AFS Transactions, pp645-652 (1989).
    [50] Yu A. Stepanov and V. G. Moskalev; Quality of Iron Casting Made with Gasifiable Patterns: [J], Russian Castings Production, pp 257-260 (1972).
    [51] 用消失性泡沫塑料铸件的增碳防止法。日本专利,1968年3月1日公布.
    [52] 林尤栋,袁中岳,消失模铸钢件抑制增碳的研究p),特种铸造及有色合金 1993 No.5.
    [53] 王忠柯,黄乃瑜,罗吉荣等,金属的引入位置及涂料层性质对消失模铸钢件增碳的影响[J],铸造,1997,NO.3.
    [54] 袁洪祥,等 论消失模铸钢件从根本上解决增碳[J],消失模铸造技术国际会议即第五届实型铸造年会.
    [55] 王忠柯,等 消失模铸钢件碳缺陷的研究现状及展望[J].铸造,1996.(11):44~48.
    [56] 袁子洲,匡毅,仇珊.消失模铸造模型顶部型砂稳定条件的理论分析[J].兰州理工大学学报,2004.(1):35~38
    [57] 武晓峰.消失模铸造充型与凝固期间型壁移动机理的研究[J].铸造,2002,(3):162~166.
    [58] 马幼平 许云华 贾刘卡 负压实型铸造及铸件质量[M],北京,冶金工业出版社,2002.
    [59] 杨方飞.水泵叶片三维造型原理与工程应用[J].农业机械学报,2003(1):95~97。
    [60] 铸工手册编写组.铸钢手册[M].北京:机械工业出版社,1977。
    [61] 赵万勇,张祯年提高引黄用泵的使用寿命的研究[J].水泵技术,1998{3}:14~16.
    [62] 周贵清.消失模铸造不锈钢叶轮的工艺设计[J].特种铸造及有色合金,2002(2):42.
    [63] 白天申.消失模铸造工艺设计[J].消失模铸造技术培训班,北京,2003.
    [64] Donald R A. Effect of Casting Size and Geometry on the Critical Gate Area in Aluminum Loat Foam Castings[J]: AFS Transaction, 02-089: 1~8.
    [65] Hill M W. Influence of Gating and other Processing Parameters on Mold Filling in the LFC Process[J]. AFS Transactions, 1997, 105: 443~450.
    [66] Hill. M. W. Effect of metal Velocity on Defect Formation in Al LFCs [J]. AFS Transation. 1998, 106: 365~374:
    [67] 高申明.消失模铸造用橄榄石涂料粉产品研制与应用[J].第六届中国消失模铸造学会论文集,武汉:2004.
    [68] 王忠柯,黄乃瑜,佟天夫.消失模铸造涂料的研究现状及发展[J].特种铸造及有色合金,1996(3):20-23.
    [69] 王忠柯,黄乃瑜,罗吉荣.模样材料对气化模铸钢件表面增碳影响的研究[J].特种铸造及有色合金,1998(3):13~15.
    [70] 王忠柯,黄乃瑜,罗吉荣.气化模铸钢件增碳的形式及其规律研究[J].铸造,1998(9):6~9
    [71] Liu X, Ramsay C W, Askeland D R. Study on mold filling control mechanisms in the EPC process[J]. AFSTransactions, 1994, 148: 903~91.
    [72] 袁子洲,陈秀娟,仇珊.消失模铸造充型阶段干砂型壁的稳定准则[J].铸造,2003,(5):340—344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700