热处理及合金元素对高铬铸铁微观组织和性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探讨了不同的热处理工艺及深冷处理相配合对高铬铸铁性能的影响。通过洛氏硬度试验、摆锤式冲击试验、滑动式磨损试验、滚筒式磨损试验等手段对材料的性能进行测试,结果表明:高铬铸铁空淬后,经深冷处理的硬度比未经深冷处理的提高8~10HRC,但冲击韧度有所下降。高铬铸铁经深冷处理后经250℃回火4h,可以获得较好的硬度和冲击韧度配合。经深冷处理的高铬铸铁回火时的硬度峰值出现在450℃左右,比未经深冷处理的提前了约100℃。高铬铸铁经过二次高温保温后无论有无经过深冷处理其硬度都在450℃回火时达到峰值,且具有较好的耐磨性。通过光学显微镜(OM)、环境扫描电镜(ESEM)、X射线衍射(XRD)、透射电子显微镜(TEM)等分析材料的微观组织,研究结果表明,深冷处理能使残余奥氏体进一步发生马氏体转变,因此硬度得到提高。但深冷处理对基体中的碳化物影响不大,所以经深冷处理和未经深冷处理的高铬铸铁,在滑动磨损和滚筒式磨损工况条件下表现出的抗磨性很接近。高铬铸铁经二次保温后奥氏体获得较为彻底的转变,残余奥氏体量极少,因此再进行深冷处理的作用不大。
    本文还探讨了锰、钛、氮等合金元素与深冷处理相结合对高铬铸铁性能的影响。研究结果表明,随着锰含量的增加,高铬铸铁中的残余奥氏体量增加,硬度降低,韧性提高,因此在微切削为主的磨料磨损条件下耐磨性变差,但在以疲劳破坏为主的磨料磨损条件下耐磨性提高,深冷处理能使残余奥氏体发生马氏体转变,提高高铬铸铁的耐磨性。钛的碳化物在高铬铸铁中起异质晶核的作用,细化了晶粒,能提高冲击韧度,但钛量过多会使基体中出现珠光体,使硬度下降,从而使材料的抗磨损能力和抗腐蚀能力下降。钛含量为0.2%的高铬铸铁表现出较好的耐磨性和耐腐蚀性。深冷处理能进一步提高其耐磨性,但对耐腐蚀性的影响不大。氮的加入可以对高铬铸铁基体进行固溶强化,对硬度的提高有明显的作用,能提高材料的耐磨性; 氮还能提高基体的电极电位,减小金属基体与碳化物间的电极电位差,提高高铬铸铁的耐腐蚀性。
In this paper, the effects of the different heat treatment technology coordinating with the cryogenic treatment on the properties of high chromium cast iron (short for HCCI) were studied. By the means of the Rockwell hardness test, pendulum impact test, sliding abrasion test, rolling abrasion test, the properties of the materials have been tested. The results showed that the hardness of HCCI with cryo-treating enhanced 8~10 HRC, but the impact toughness dropped. HCCI with cryo-treating may obtain the well coordination of hardness and impact toughness when tempered in 250 ℃ for 4 hours. The hardness peak of the HCCI with cryo-treating appeared as the tempering temperature was about 450℃. Compared to HCCI without cryo-treating, the temperature of hardness peak is ahead about 100 ℃. The hardness peak of the HCCI after secondary preservation appeared in 450℃ tempered whether cryo-treated or not, and the materials also had good wear resistance. The Optical Microscope (OM), Environment Scanning Electron Microscope (ESEM), X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM) are applied to analyze the microstructure of HCCI. The results indicated that cryogenic treatment can cause the remaining austenite to transform further into the martensite, therefore the hardness is improving after treatment. But cryogenic treatment do little influence on the carbides of the matrix, so HCCI have similar wear resistance whether cryo-treated or not. The remaining austenites of the HCCI after secondary preservation were extremely few, so the effects of cryogenic treatment were insignificant.
    This article has also discussed the effects of alloying elements, such as Manganese (Mn)、Titanium (Ti) and Nitrogen (N), coordinating with the cryogenic treatment on the properties of HCCI. The results showed that when Mn content increasing, the amount of the remained austenite in HCCI augmented, so that hardness reduced and toughness enhanced, and the sliding abrasion resistance became worse, but rolling abrasion resistance became better. It may caused by the increment of marstensite by cryogenic treatment. Titanium carbide can form heterogeneity crystal nucleus in melting HCCI, which can refine crystal grain and enhance the impact
    toughness. But too many Ti content resulted in the worse of hardness, wear resistance and corrosion resistance. The HCCI of 0.2%Ti had better wear resistance and corrosion resistance. The cryogenic treatment can enhance its wear resistance, but do not influence on the corrosion resistance. N can strengthen the matrix and enhance the hardness, so can improve the wear resistance. N can also boost the electrode potential of the matrix, and reduce the difference of electrode potentials between the metal matrix and the carbide, improve the corrosion resistance of HCCI.
引文
[1] 王洪发.金属耐磨材料的现状与发展[J] .铸造,2000,(49):577-591.
    [2] T.S.Eyre.Review of abrasive study[J].Tribology International,1978,(11):91-98.
    [3] 邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [4] 周庆德,饶启昌,苏俊义.铬系抗磨铸铁(论文汇编).西安:西安交大出版社,1987:3.
    [5] 全永昕,施高义.摩擦磨损原理.浙江大学出版社,1986:190.
    [6] J.T.Burwell.Survey of possible wear mechanisms[J].Wear,1957,1(2):119~141.
    [7] 材料耐磨抗蚀及其表面技术丛书编委会.材料的磨料磨损[M].北京:机械工业出版社,1990.
    [8] 欧阳习科,蒋业华,周荣.磨料磨损理论发展[J].水利电力机械,2004,Vo1.26,No.6 :25-28.
    [9] 黄淑菊.金属腐蚀与防护[M] .西安:西安交通大学出版社,1988.
    [10] 刘家浚.材料磨损原理及其耐磨性[M] .北京:清华大学出版社.1993.
    [11] 付昌会.锰对 28Cr 铸铁性能的影响:[长安大学硕士学位论文].长安:材料学,2003.
    [12] 邓世萍,林孙洪,吕振林.中铬白口铸铁的磨损特性.水利电力机械.2005,Vol.27(6):28~30.
    [13] 姜晓霞,李诗卓,李曙.金属的腐蚀磨损.北京:化学工业出版社,2003.3:1.
    [14] 饶启昌,吕振林,周平安.腐蚀磨损及耐磨蚀材料的选择.铸造.2000,vol.49(1):585~591.
    [15] 西安交大耐磨课题组.磨粒磨损与耐磨合金.北京:电力工业出版社,1984.
    [16] 郝石坚.高铬耐磨铸铁.北京:煤炭土业出版社,1993,87.
    [17] 苏俊义编,周庆德校.铬系耐磨白口铸铁.北京:国防工业出版社,1990.101.
    [18] 李卫,朴东学,姜炳焕.马氏体一贝氏体一奥氏体复相基体高硅碳比中铬铸铁及马氏体基体高铬铸铁磨损特性的研究.铸造,1992 ( 9): 16~21.
    [19] 王兆昌,周年.奥氏体白口铸铁与马氏体白口铸铁的磨料磨损行为及抗磨性能.铸造,1993,(9):24~28.
    [20] Zum GahrKH.Abrasive wear of White Cast Iron[J].Wear,1980,64:176-194.
    [21] Berza JM.Wear and impact resistant White Cast Irons[J].The British Found fry man,1981,(10):250-211.
    [22] Sare R.Abrasion resistance and Fracture Toughness of White Cast Iron[J].Metals Technology,1979,(11):412-419.
    [23] 周庆德,饶启昌,苏俊义,等.铬系白口铸铁的磨损与断裂韧性[A] .铬系抗磨铸铁(论文汇编)[C].西安:西安交通大学出版社,1986.1-4.
    [24] 马永新,张立珊,段凯禄,等.高铬铸铁在不同工作条件下磨粒磨损耐磨性的研究[J] .北京联合大学学报,1994,(3):28-38.
    [25] 符寒光等.多元合金高铬铸铁蓖条的研制和应用.现代铸铁,2004(5):32~35.
    [26] Kootsookos A,Gates J D. The effect of the reduction of carbon content on toughness of hi chromium white iron in the as-cast state[J]. JoumaI of Materials Science,2004,39(1):73~84.
    [27] MPS 型磨煤机 Cr20 高铬铸铁磨辊鉴定文件,电力部的耐磨材料试验研究中心华北电力学院建平铸钢厂(93)电鉴字 1993.9.
    [28] 武宏强等.多合金系白口铸铁にぉける晶出炭化物の种类と形态.铸物,1995,67(1):49~55.
    [29] 冈本平,香川明男.铸锻造と热处理.1983(2):1~8.
    [30] 段汉桥. 锰对高铬铸铁凝固过程和组织的影响[J].热加工工艺.2001(3):23~25.
    [31] J.H.Pewee "Abrasie wear behavior of Allog Cast ivbns",《The British Foundry mon》1985 No.l:3
    [32] 陈宗民,栾振涛,叶以富. 现代铬系抗磨白口铸铁的应用与发展. 山东工程学院学报,2000, Vol.14.N0.3:43~45.
    [33] 陆文华,李隆盛,黄良余.铸造合金及其熔炼.北京:机械工业出版社,1997:121~122.
    [34] 陈德华.热处理对高铬铸铁韧性的影响:[福州大学硕士学位论文].福建:福州大学机械系,2002.
    [35] 张茂勋,大城桂作. 铬系白口铸铁二体磨粒磨损的试验研究. 福州大学学报(自然科学版),1991,19(1):87~91.
    [36] 陈正斌. 合金元素对高铬铸铁性能的影响:[福州大学学士学位论文]. 福建:福州大学机械系,2001.
    [37] 王玉玮,石雯. 钒在高铬铸铁中的作用. 铸造,1989(5):9-12.
    [38] 王笑天.金属材料学[M] .北京:机械工业出版社,1987.
    [39] Owaku S. Cryonenic treatment[J].Heating Treatment,1981,21(1):44-48.
    [40] Thomas P.Sweeney.Jr.Deep cryogenics:The great cold debate [J].Heat Treatment . 1986,30(2):28~32.
    [41] Shen Liqun.Deep cryogenic treatment of tool steel and mould steels[J].Heat Treatment of Metals,1985,12(2):3-5.
    [42] Earl A. Carlson, Lindberg Heat Treating Company. Cold treatment and cryogenic: treatment of steel[J].Heat Treating of Steel. ASM Handbook, 1991,4:203-206.
    [43] Collins DN,Donmer ,J. Deep cryogenic treatment of a D2 Cold-work tool steel [J].Heat Treatment of Metals, 1997,24(3):71-74.
    [44] LuoKT,KaoPW,GanD.Low temperature mechanical properties of Fe-28Mn-5Al-1C alloy [J].Materials Science and Engineering,1992,A151:L15-L18.
    [45] Pete Paulin. Mechanism and applicability of heat treatment at cryogenic temperatures [J].Industrial Heating, 1992,59( 8):24-57.
    [46] Leonard L. Enhancing metals properties with super cold [J]. Materials Engineering, 1985,102(7):29-32.
    [47] 大和久重雄.热处理.1981(l):44~47.
    [48] 李雄.深冷处理对高速钢力学性能及摩擦磨损影响机理的研究:[甘肃工业大学硕士学位论文].甘肃:材料学,2000.
    [49] 林晓聘,董允,王亚红.高速钢深冷处理及其机理研究.金属热处理学报,1998,vo1 .19,No.2.
    [50] 胡华南,张发英,伍益谆.一种提高产品性能的新技术—低温深冷处理.1996(3):18~21.
    [51] 黎文献,龚浩然,柏振海等.金属材料的深冷处理.材料导报,2000,Vol.14,No.3.
    [52] 张茂勋, 郭帅, 何福善.深冷处理对 440A铸造不锈钢性能的影响.机械工程材料,2004,28(9):29~31.
    [53] 何福善,尤华平,张茂勋. 用深冷处理改善高铬铸铁的性能[J]. 现代铸铁.2004(2):17~20.
    [54] 何福善.深冷处理与高铬铸铁性能:[福州大学硕士学位论文].福建:福州大学机械系,2003.
    [55] Sun Zhiping,Zuo Rulin,Li Cong,et al.TEM Study on Precipitation and Transformation of Secondary Carbides in 16Cr-1Mo-1Cu White Iron Subject to Sub-critical Treatment [J] .Materials Characterization,2004,53(5): 403-409.
    [56] 西安交通大学耐磨课题组译.磨料磨损与耐磨合金.北京:电力出版社,1980.1.
    [57] 周庆德.铬系抗磨铸铁.陕西:西安交通大学出版社,1986,12.
    [58] 野见山,田村.25%Cr 铸铁ォ一ステナィト化温度にょゐ冲击摩耗性の制御[J].铸物,1995,67:696-698.
    [59] 朴东学,齐笑冰,闫平.提高高铬白口铸铁件性能的研究与生产实践[J].现代铸铁,2005,2:1-4.
    [60] Wiengmoon A,Chairuamgsri T,Pearce J T H. A Microstructural Study of Destlabilizd 30wt%Cr-2.3wt%C High Chromiurn Cast Iron[J].ISIJ International. 2004.44(2):396-403.
    [61] 杨宏山,王均,沈保罗,等. 深冷处理对 13Cr-2Mn-2V 高铬白口铸铁显微组织和硬化行为的影响[J] .热加工工艺.2005(5):17~20.
    [62] 孙志平,沈保罗,高升占,等.Cu 对高铬铸铁组织和亚临界热处理硬化行为影响[J] .金属热处理.2004.29(8):8~12.
    [63] 程本培,任连治.W6Mo5Cr4V2高速钢低温强化机理[J] .科学通报,1995.40(16):1526~1530.
    [64] 陈鼎,陈吉华,严红革,等. 深冷处理原理及其在工业上的应用[J] .兵器材料科学与工程.2003,26(3):68~71.
    [65] Qichang Bao,B.M.He,Qingde zhou.A Study of The Impact Fatigue of Grinding Balls一 Matrices and Retain Austenite.Wear,1991,151:13~21.
    [66] C.P.Tabrett,I.R.Sare.The Effect of Heat Treatment On Abrasive Resistance of Alloy White Iron.Wear,1997,203:206~219.
    [67] 中国机械工业学会热处理专业学会.热处理手册(第 1 卷)—一工艺基础.机械工业出版社,1991.
    [68] 苏应龙,张学昆. 高铬抗磨铸铁韧性的提高. 现代铸铁.2000(4):56~59
    [69] 子澎.高铬白口铸铁热处理工艺的改进.现代铸铁 2005(2):5~8.
    [70] 董俊编译.工具钢的深冷处理.国外金属热处理,1997(2):8~10.
    [71] 高玉苓,赵树强,时海芳,等. 提高高铬铸铁耐磨性的热处理工艺. [J]. 煤矿机械. 2004(12):102~103.
    [72] 张茂勋,何福善,郭帅,等.深冷处理技术在铸造合金材料中的应用及进展[J]. 特种铸造及有色合金,2004,(4):8~10.
    [73] 笹栗信也,牟田口達也,横溝雄三,等.高クロム铸铁にぉけゐ残留ォ-ステナィト分解舉動[J].铸造工学,2004,76(3):198~204
    [74] 石德珂. 位错与材料强度. 西安交通大学出版社,1988
    [75] 日本金属学会. 非铁材料[M]. 日本东京:丸善株式会社,1987.
    [76] 王振廷,孙昌立.以锰代钼高铬铸铁牙板的研制及应用.煤矿机械.2002 年第 3 期:38~39.
    [77] 陈蕴博,马炜,金康.强韧微合金非调质钢的研究动向.[J]机械工程材料,2001,25(3):l~6
    [78] 姚三九,赵津立. 抗磨锰钛白口铸铁. 钢铁研究学报. 2002. Vol.14,No.5:58~61.
    [79] 黄四亮,赵金华.Cr24VTi 高铬铸铁磨球试验研究.[J]铸造,2000,49(Sl):669~671.
    [80] L oper C R,Baik H K.Influence of Molybdenum and Titanium on the Microstructure of Fe-C-Cr-Nb White Cast lron [J」.Trans A FS,1989,97:1001~1008.
    [81] 中国机械工程学会铸造分会编.铸造手册(铸钢).机械工业出版社,2002.
    [82] 林化春.氮对 Fe-Cr-Ni 高温合金组织与性能的影响.铸造,1995(9):20.
    [83] 李四年,曹逢春,张友寿,等.氮对铬白口铸铁组织和性能的影响.湖北工学院学报; 1997,12(3):16~19.
    [84] 李四年.微量元素氮对中铬白口铸铁的强韧化作用.现代铸铁,1997(2):7.
    [85] 宋余九.金属的晶界与强度.西安交通大学出版社.1988.
    [86] 张茂勋,大城桂作.高铬铸铁耐磨粒磨损特性.机械工程材料.1991(4):15~22.
    [87] 张安峰,邢建东,高义民,等.铬系白口铸铁相间腐蚀机理的探讨[J] .西安交通大学学报,2001,35(1):83~86.
    [88] 刘国宇,邢建东,高义民.铬系耐磨铸铁的研究与展望[J]. 水利电力机械,2003,vol25(1):31~34.
    [89] 须藤.日本金属学会会报.1988,27.8.
    [90] 朴东学,孙超英,李卫,等.湿态磨料磨损用抗磨铸铁及磨损特性的研究[J].水利电力机械,1999(10):16~27.
    [91] 李树棠.金属 X 射线衍射与电子显微分析技术.冶金工业出版社,1980:235~236.
    [92] 孟庆昌.透射电子显微学.哈尔滨工业大学出版社,1998:160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700