监控视频编码与超分辨率重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着视频监控市场的迅速增长、网络视频监控系统的日益普及,迫切需要对海量数字化监控视频进行压缩存储和后处理与分析。高效率的视频编码技术是解决这些问题的关键。然而在视频监控系统的实际应用中产生了许多问题,主要包括以下三个方面:第一,当视频序列受到各类环境引起噪声的影响时,视频编码的效率明显下降;第二,虽然H.264/AVC等新一代视频编码标准获得了较高的压缩效率,但其编码控制模型非常复杂,至今还难以在硬件编码端上实现其全部特性;第三,由于新一代标准的复杂度较高,给视频监控系统的后处理和分析带来了更高的难度。本文围绕着实施监控视频编码方案时所遇到的编码噪声鲁棒问题、在计算资源受限系统上编码器的复杂度和编码速度问题、以及压缩视频后处理增强问题,开展了相关研究。
     本文研究了视频编码的基本原理和基于新一代混合编码框架的视频编码技术,包括我国针对视频监控系统制定的AVS-S标准中的关键技术。指出了目前研究的缺陷和遗漏之处,并说明了本文研究范围与这些技术的区别。
     监控视频序列中的噪声对H.264编码模型产生了影响,帧间预测编码受噪声干扰后的不准确性是带来其编码效率下降的根本原因。提出了一种基于联合匹配准则和运动矢量场时空滤波的宏块预分类方法。首先利用对噪声不敏感的匹配准则初步判断当前宏块的运动状态。其次对已编码帧的运动矢量场进行时域和空域滤波,消除噪声运动矢量并获得更能精确描述当前运动物体的运动矢量场。最后根据当前编码宏块的运动状态限定其编码模式。通过改进的匹配准则和运动矢量场滤波两方面帮助编码器提高其噪声鲁棒性,而且算法计算复杂度较小。对典型监控序列的仿真实验表明,本文算法同H.264中的高复杂度率失真优化算法相比较,获得了平均超过0.08dB的性能增益,并平均节约了1.67%的码流,与此同时还节约了平均62.86%的总编码时间。实验证明本文算法具有一定的性能优势和较大的编码速度优势。
     本文在总结当前快速算法研究现状的基础上,发现目前快速算法的缺陷在于算法复杂度过高,从而给编码器的硬件设计带来了更大负担。为了降低在硬件上实现新一代混合编码框架的难度,提出了一种基于统计判决的快速冗余预测模式消除方法。在遵循现有编码流程的基础上,通过提取部分已编码模式的编码块模式和帧间预测开销作为辅助判断信息,将各模式编码预测开销之间的比值进行了统计模型化,并作为是否采取当前编码模式的依据。利用统计分布规律快速消除可能性较低的编码模式。本文算法以极低的计算复杂度优化了H.264模型的编码流程。通过对国际通用视频序列的实验表明,本文算法在平均综合性能仅仅损失了0.037dB的情况下,整体编码时间缩减了12.3%。该方法几乎没有增加任何内存开销,为编码器整体框架优化提供了全新的解决思路。
     在压缩视频超分辨率重建方法方面,本文在总结了当前基于压缩视频超分辨率重建研究现状的基础上,指出现有基于MPEG域的方法难以运用到以H.264为代表的新一代视频编码技术上。另外本文研究了目前较好的一种空域变像元超分辨率重建模型,指出其更加适合于同一场景下视频序列的超分辨率重建。最后提出了一种基于宏块多重描述的变像元超分辨率重建算法,通过在编码端保存有效的宏块多重描述信息并传输至解码端,其中包括宏块在相邻帧之间的重要位移信息。在解码端首先提取宏块多重信息中的模式和运动矢量信息,在进行精确匹配和定位之后将相邻重建帧上的对应整像素点投影到超分辨率重建图像上,完成解码端视频图像的增强。分别通过对空间分辨率、客观重建性能和解码端视频序列超分辨率重建的实验证明了本文算法在主客观性能上有着较好表现。本文算法实际上为压缩视频后处理和分析提供了一种全新的解决思路,即在编码端对感兴趣的运动物体信息进行多重描述以便解码端进行后处理和分析。
     本文对面向视频监控的视频编码技术进行了比较全面和深入的研究,提出了一套监控视频编码的解决方案。编码端方面取得的研究成果对增强编码器的噪声鲁棒性和提高编码效率有一定的理论研究意义和实际应用价值。解码端视频后处理方面取得的研究成果则可以较好地解决压缩视频增强的问题,改善了解码图像质量。
With the rapid growth of video surveillance market and network video monitoring system, compression and post-processing analysis of massive digital surveillance video become more and more important. High efficient video coding technology is the key to solve these problems. However, there appeared many problems in the practical application of video surveillance system. First, when video noise increases, the video coding efficiency considerably decreases. Second, the new generation of video coding standard such as H.264/AVC can obtain higher compression efficiency, but it has a very complex coding control model and is difficult for hardware implementation. Third, as the complexity of the new generation of video coding standard is very high, the post-processing and analysis of video surveillance system become more and more difficult. So this thesis is focus on three problems:the noise robustness of video encoder, the complexity of video encoder in the resource-constrained system, compressed video post-processing and enhancement. The main contributions of this thesis are as follows:
     First, the basic theoretical knowledge of video coding and hybrid coding framework is deeply introduced. And the key technology of China's AVS-S standard which developed for video surveillance system is described. The dissertation pointed out the insufficiencies and omissions of the current research, and described the scope of this research.
     Second, a noise robustness video coding method for video surveillance system is proposed. By analyzing the noise impact of the H.264 coding model, the thesis pointed out the video coding efficiency decreases caused by the inter-frame predictive coding accuracy rate has dropped. And this paper presents a pre-classification method based on co-matching criteria and motion vector field spatial and temporal filtering. The method uses the co-matching criteria to judge the current macroblock in order to eliminate the noise impact and use the temporal and spatial filtering of the motion vector field of encoded frames to eliminate the noise motion vectors. Finally, according to the motion information of current macroblock, the method limits the coding mode of current macroblock. The proposed algorithm can improve the noise robustness of the H.264 encoder. Simulations show that this approach can result in a time savings of over 62.86% for several typical surveillance sequences. And it also reduces the average Bjontegaard delta bit rate by about 1.67% and increases the average Bjontegaard delta peak signal-to-noise ratio by about 0.08dB when compared with the algorithm of H.264. Experiments prove that this algorithm improves the coding performance and coding speed.
     Third, this thesis summarizes researches of fast algorithms of H.264 and finds out that many fast algorithms bring a higher computational complexity for the video encoder. In order to reduce the difficulty of the hardware realization of the new generation hybrid coding framework, this thesis propose a fast method based on statistical judgments for fast elimination of redundant prediction modes. This method use the coded block pattern and inter prediction coding cost as the auxiliary information to determine whether to take the current coding mode. And it also uses the statistical distribution for rapid elimination of the coding modes with low probability. This algorithm has a very low computational complexity and optimized the H.264 encoding process. Simulation results reveal that the proposed algorithm can reduce the encoding time by 12.3% on average with the limited performance loss of about 0.037dB. The memory using of this method is very small. And it provides some novel thoughts for designing the video encoder.
     Finally, a compressed video super-resolution reconstruction algorithm is presented. This paper summarizes researches on compressed video super-resolution reconstruction and points out that the existing MPEG-based approaches are difficult to apply to the new generation video coding technology. The proposed algorithm is based on the variable-pixel reconstruction algorithm which is more suitable for super-resolution reconstruction of video sequence. The algorithm collects the effective macroblock coding side information on the encoder and retains the macroblock information between adjacent frames. In the decoder side, it uses the macroblock mode and motion vector information of the macroblock coding side information to projected the pixels of the adjacent reconstruction frames onto the super-resolution reconstruction image. The spatial resolution, objective performance, and the decoder reconstruction of super-resolution reconstruction of video sequence experiments proved that this algorithm has a better performance of the objective and subjective performance. And this algorithm provides a novel solution idea for compressed video post-processing and analysis:to save the information of the moving object in encoder side for the post-processing and analysis of decoder side.
     To sum up, this paper digs into the video coding technology for video surveillance system and proposed a set of surveillance video coding solution. On the encoder side, the solution enhanced the encoder noise robustness and improved the coding efficiency. And on the decoder side, it can effectively solve the issue of compressed video enhancement.
引文
[1]毕厚杰.新一代视频压缩标准-H.264.北京:人民邮电出版社,2005.1~148
    [2]徐志斌.浅析2009年视频监控市场发展.中国安防,2009,(3):62~65
    [3]徐鹏.中国安防电子产业发展现状与展望.电子产品世界,2009,16(5):9~12
    [4]Yazbeck, S. The US road to 3G:an overview of telecom regulations, carrier strategies, and the consumer market. In:IEEE.10th International Conference on Telecommunications. USA:IEEE,2003.25~32
    [5]Miah, A., Tan, K. An overview of 3G mobile network infrastructure. In:IEEE. Student Conference on Research and Development. USA:IEEE,2002.228~232
    [6]公安部第一研究所.AVS-S应用和技术需求.见:数字视音频编解码技术标准化工作组.第二十次会议.北京:AVS工作组,2007.AVS-M2028.doc.
    [7]ISO/IEC 11172-2:Information technology-Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s-Part 2:Video.1993.
    [8]ISO/IEC DIS 13818-2:Information technology-Generic coding of moving pictures and associated audio information:Video.2000.
    [9]ISO/IEC JTC1/SC29/WG11 N4668:Overview of the MPEG-4 Standard. In: http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm,2002.
    [10]ITU-T Rec. H.262|ISO/IEC 13818-2. Information technology-Generic coding of moving pictures and associated audio information:Video.2000.
    [11]Moving Picture Experts Group (MPEG) MPEG Video. in http://wwwam. hhi.de/mpeg-video/#MPEG1-Ref.2004.
    [12]ITU-T H.261. Video codec for audiovisual services at P*64kbit/s. Helsinki,1993. 1~30
    [13]ITU-T H.263. Video codec for low bit rate communication. Helsinki,1996:1~40.
    [14]ITU-T H.263+(Draft). Video coding for low bit rate communication. Helsinki,1998. 24~35
    [15]ITU-T Draft for H.263++. Annexes U, V and W to recommendation H.263. Helsinki, 2000.
    [16]黄铁军,高文.AVS标准制定背景与知识产权状况.电视技术,2005,(7):4~7
    [17]Fan L., Ma S.H., Wu F. Overview of AVS video standard. In:IEEE. International Conference on Multimedia and Expo. USA:IEEE,2004.423~426
    [18]虞露.音视频编码技术标准AVS-视频技术概述.中国多媒体视讯,2004,(3):34~35
    [19]中国国家标准GB/T 20090.2.信息技术-先进音视频编码-第二部分:视频.2006.
    [20]Sullivan G., Hibi K. Draft call for proposals for H.26L vedio coding. In:ITU-T. SG16. Geneva:IEEE,1998.
    [21]MPEG video group, Anticipatory Joint Mode (JM) of enhanced compression video coding. In:ISO/IEC JCC1/SC29/WG11,N-4355,2001.
    [22]ITU-T Recommendation. H.264-ISO/IEC 14496-10 (AVC):Advanced Video Coding for generic audiovisual Services.2003.
    [23]ITU-T Recommendation H.264/ISO/IEC 11496-10. Advanced Video Coding. Final committee draft document, JVT-G050.2003.
    [24]ITU-T and ISO/IEC JTC 1. Joint Draft ITU-T Rec. H.264|ISO/IEC 14496-10/Amd. 3 Scalable video coding.2007.
    [25]Schwarz H., Marpe D., Wiegand T. Overview of the scalable video coding extension of H.264/AVC. IEEE Transactions on circuits and systems for video technology, 2007,17(9):1103~1120
    [26]Schierl T., Stockhammer T., Wiegand T. Mobile video transmission using scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2007,17(9):1204~1217
    [27]Cazoulat R., Graffunder A., Hutter A., et al. Real-time system for adaptive video streaming based on scalable video coding. IEEE Transactions on Circuits and Systems for Video Technology,2007,17(9):1227~1237
    [28]Cryoichi K., KDD I. Multi-view video sequences for MPEG 3DAV use. In:JVT:68 the MPEG Meeting DOC. Munich:MPEG Video Group,2004.
    [29]Shun H.Y., Kang S.B., Chan S. C. Survey of Algorithms used for multi-view video coding. In:MPEG2005 Meeting DOC. Hong Kong:MPEG Video Group,2005.
    [30]Flierl M., Girod B. Multi-view video compression. IEEE Signal Processing Magazine,2007,24(6):1~21.
    [31]Joint Video Team of ITU-T VCEG and ISO/IEC MPEG. Joint Scalable Video Model (JSVM) 1.0 reference encoding algorithm description. Doc:JVT-N6899, 2005.
    [32]ISO/IEC JTC1/SC29/WG11, Application and requirements for 3DAV. Doc: N-5877.doc, Trondheim, Norway, July,2003.
    [33]ISO/IEC JTC1/SC29/WG11, Report on 3DAV exploraion. Trondheim, Norway, July,2003.
    [34]ISO/IEC JTC1/SC29/WG11, Call for proposals on multi-view video coding. Doc. N-7327.doc, Poznan, Poland, July,2005.
    [35]ISO/IEC JTC1/SC29/WG11, Survey of algorithms used for multi-view video coding(MVC), MPEG2005, N-6909.doc, Hong Kong, China, January,2005.
    [36]ISO/IEC JTC1/SC29/WG11. Subjective test results for the cfp on multi-view video coding. In:MPEG2006, N-7779.doc, Bangkok, January,2006.
    [37]ISO/IEC JTC1/SC29/WG11, MPEG2006/W8019. Description of core experiments in MVC. Montreux, April,2006.
    [38]ISO/IEC MPEG & ITU-T VCEG, Common test condition for multiview video coding, JVT-U211.doc, Oct.2006.
    [39]ISO/IEC MPEG & ITU-T VCEG, Joint Draft 1.0 on Multiview Video Coding. JVT-U209.doc, Nov.2006.
    [40]ISO/IEC MPEG & ITU-T VCEG, Joint Multiview Video Model (JMVM) 3.0. JVT-V207.doc, Jan.2007
    [41]曾遂全.AVS与视频监控:际遇之后的期待.中国安防,2008(9):53~56
    [42]AVS视频专题组.信息技术-先进音视频编码.AVS-N1063,北京:AVS数字音视频编解码技术标准工作组,2003.
    [43]黄铁军.AVS-S为视频监控量身定做的标准.中国安防,2008,9:57~60
    [44]胡瑞敏.面向视频监控的视频编解码技术.电视技术,2008,32(5):68~71
    [45]Sendur L., Selesnick I. W. Bivariate shrinkage functions for wavelet-based denoising exploring interscale dependency. IEEE Trans. Signal Proc.2002,50(11):2744-2756
    [46]Yin H.B., Fang X.Z., Wei Z., et al. An improved motion-compensated 3-D LLMMSE filter with spatio-temporal adaptive filtering support. IEEE Trans. Circuits Syst.& Video Technol.,2007,17(12):1714-1727
    [47]Hachicha K., Garda P. Noise-robustness improvement of the H.264 video coder. J. of Electronic Imaging,2008,17(3):033019 1-11
    [48]王熹微,刘亚莉,崔慧娟等.以H.264算法为平台的高效率图像增强算法.清华大学学报(自然科学版).2005,45(7):904~907
    [49]Jeon B., Lee J. Fast mode decision for H.264. In:ISO/IEC MPEG and ITU-T VCEG Joint Video Team,2003, Doc. JVT-J033.
    [50]祝徐敏,方厚辉.一种适用于视频监控系统的快速模式选择算法.计算机应用.2007,27(12):3069~3071
    [51]杨志伟,李枚毅,刘东华.面向视频监控的AVS帧间预测模式快速选择算法.计算机应用研究,2008,25(8):2407~2408
    [52]黄铁军.AVS-S为视频监控量身定做的标准.中国安防,2008,(9):57~60
    [53]胡瑞敏.面向视频监控的视频编解码技术.电视技术,2008,32(5):68~71
    [54]Meng B. Efficient Intra-Prediction Mode Selection for 4x4 blocks in H.264. In: IEEE ICME 2003,3:389~392
    [55]Lim K.P. Fast Inter Mode Selection. In:Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG,2003, Doc JVT-Ⅰ020.
    [56]Hosur P.I., Ma K.K.. Motion vector field adaptive fast motion estimation. In:Proc. 2nd Int. Conf. Information, Communications and Signal Processing (ICICS'99), Singapore,1999:7~10
    [57]Alexis M., Oscar C., Liou M. Predictive motion vector field adaptive search technique:enhancing block based motion estimation. In:Proc. of International Society for Optical Engineering, San Jose, CA,2001:378~384
    [58]Tourapis A.M., Au O.C., Liou M.L. Highly efficient predictive zonal algorithms for fast block-matching motion estimation. IEEE Transactions on circuits and systems for video technology,2002,12(10):934~947
    [59]Chen Z., Zhou P., He Y. Fast Integer and Fractional Pel Motion Estimation for JVT. In:Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG 6th Meeting, Awaji, Island, Japan,2002, Doc. JVT-F017r.
    [60]苏秉华,金伟其,牛利红等.超分辨率图像复原及进展.光学技术,2001,27(1):6-9
    [61]郝鹏威.数字图像空间分辨率改善的方法研究[博士学位论文].北京:中国科学院遥感应用研究所,1997.
    [62]张新明,沈兰荪.超分辨率复原技术的发展.测控技术,2002,21(5):33-35
    [63]Schultz P.R., Stevenson R.L. Extraction of high-resolution frames from video sequences. IEEE Trans. IP,1996,5(6):996-1011
    [64]Reeman W.T., Jones T.R., Pasztor E.C. Example-based super-resolution. IEEE Comptuer Graphies and Applications,2002,22(2):56-65
    [65]Shechtman E., Caspi Y., Irani M. Space-time super-resolution. IEEE Trans. Pattern Anal Machine Interll,2005,27(4):531-545
    [66]Robertson M.A., Stevenson R.L. Temporal resolution enhancement in compressed video sequences. EURASIP Journal on Applied Signal Processing 2001, (4): 230-238
    [67]Gunturk B.K., A ltunbasak Y, Mersereau R.M. Multiframe resolution enhancementmethods for compressed video. IEEE Signal Processing Letters,2002, 9(6):170-174
    [68]Altunbasak Y, Patti A.J., Mersereau R.M. Super-resolution still and video reconstruction from MPEG coded video. IEEE Trans. Circuits and System for Video Technology,2002,12(4):217~226
    [69]Park S.C., Kang M.G, Katsaggelos A.K. Spatially adaptive high-resolution image reconstruction of low-resolution DCT-based compressed images. IEEE Trans. Image Processing,2004,13(4):573~585
    [70]徐忠强,朱秀昌.压缩图像空时自适应正则化超分辨率重建.中国图像图形学报,2008,13(11):2087~2092
    [71]Wee S.J., Apostolopoulos J.Q. Efficient processing of compressed video. In: Conference Record of the Thirty-second Asilomar Conference on Signals, Systems & Computers. Palo Alto, CA:Hewlett-Packard Co,1998.853-857
    [72]Tekalp A.M. Digital video processing. Englewood Cliffs:Printice Hall,1995:1~50
    [73]樊昌信、詹道庸、徐炳祥等.通信原理.北京:国防工业出版社,1995:20~50
    [74]Ahmed N., Natarajan T., Rao K.R. Discrete Transform. IEEE Transaction on Computation,1974,23:90~93
    [75]Daubechies I. Orthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,1988,41(11):909~996
    [76]Gray R. M., Neuhoff D. L. Quantization. IEEE Trans. Inform. Theory,1998,44(6): 2325~2383
    [77]Gersho A. Asymptotically optimal block quantization. IEEE Trans. Inform. Theory, 1979.373~380
    [78]Elias P. Bounds on performance of optimum quantizers. IEEE Trans. Inform. Theory, 1970,172~184.
    [79]Shannon C.E. A mathematical theory of communication. In:Claude Elwood Shannon:Collected Papers. N. J. A. Sloane and A. D. Wyner, Eds. Piscataway, IEEE Press,1993.5~83
    [80]Sullivan G, Wiegand T. Video compression-from concepts to the H.264/AVC Standard. In:Proceedings of the IEEE. USA:IEEE,2005.93(1):19~31
    [81]Marpe D., Schwarz H., Wiegand T. Context-adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol., 2003.620~636.
    [82]傅祖芸.信息论与编码.北京:高等教育出版社,2006.227~228
    [83]Avaro O., Eleftheriadis A. MPEG-4 systems:Overview. Signal Process:Image Communication,2000,15(4):281~298
    [84]Ebrahimi T., Home C. MPEG-4 natural video coding-An overview. Signal Process: Image Communication,2000,15(4):365~385
    [85]高文,吴枫.MPEG-4编码的现状和研究.计算机研究与发展,1999,36(6):641~652
    [86]Brady N., Bossen F. Shape compression of moving objects using contest-based arithmetic encoding. Signal Processing:Image communication,2000,15(7): 601~617
    [87]Izquierdo E., Ghanbari M. Key components for an advanced segmentation system. IEEE Trans Multimedia,2002,4(1):97~113
    [88]Perez D.G, Gu C., Sun M. Semantic video object extraction using four-band watershed and partition lattice operators. IEEE Trans. Circuits Syst. Video Technol., 2001,11(5):603~618
    [89]Choi H., Baraniuk R.G Multiscale image segmentation using wavelet-domain hidden Markov models. IEEE Trans. Image Processing,2001,10(9):1309~1312
    [90]LI S., LI W. Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual object coding. IEEE Trans. Circuits Syst. Video Technol.,2000,10(5):725~743
    [91]Xing G, Li J., Li S, et al. Arbitrarily shaped video-object coding by wavelet. IEEE Trans. Circuits Syst. Video Technol.,2001,11(10):1135~1139
    [92]Minami G, Xiong Z., Wang A., et al.3-D wavelet coding of video with arbitrary regions of support. IEEE Trans. Circuits Syst. Video Technol,2001, 11 (9):1063~1068
    [93]Kassim A.A, Zhao L. Rate-scalable object object-based wavelet codec with implicit shape coding. IEEE Trans Circuits Syst Video Technol,2000,10(7):1068~1079.
    [94]Watson A.B. Digital images and human vision. Cambridge, MA:MIT Press,1993.
    [95]Torres L., Kunt M. Video Coding-The Second Generation Approach. Dordrecht, The Netherlands:Kluwer Academic Publisher,1996.
    [96]Do M.N., Vetterli M. The finite ridgelet transform for image representation. IEEE Transactions on Image Processing,2003,12(1):16~28
    [97]Ramos M.G, Hemami S.S, Activity selective SPIHT coding. In:Proceedings of SPIE-The International Society for Optical Engineering,1999,3653(1):315~326.
    [98]Lo K.T., Zhang X.D, Feng J and Wang D.S. Universal perceptual weighted zerotree coding for image and video compression. IEE Proceedings:Vision, Image and Signal Processing,2000,147(3):261~265
    [99]Zeng W., Daly S., et al. Point-wise extended visual masking for JPEG-2000 image compression. In:IEEE International Conference on Image Processing, Vancouver, BC:Institute of Electrical and Electronics Engineers Computer Society,2000. 657~660
    [100]Lan T.H., Tewfik A.H., Kuo C.H. Low bit rate sigma filtered perceptual image coding. In:IEEE International Conference on Image Processing,1999,2:371~375
    [101]Kopilovic I., Sziranyi T. Non-linear scale-selection for image compression improvement obtained by perceptual distortion criteria. In:Proc. ICIAP 1999. 197~202
    [102]Sun X.D., Jonathan F., Don K., et al. Region of intereset extraction and virtual camera control based on panoramic video capturing. IEEE Transactions on multimedia,2005,7(5):981~990
    [103]Tan S.H., Pang K.K., Ngan K.N. Classified perceptual coding with adaptive quantization. IEEE Transactions on Cicuits and Systems for Video Technology, 1996,6(4):375~388
    [104]Hontsch I., Karam L.J. Adaptive image coding with perceptual distortion control. IEEE Transactions on Image Processing,2002,11(3):213~222
    [105]Taubman D. High performance scalable image compression with EBCOT. IEEE Transactions on Image Processing,2000,9(7):1158~1170
    [106]Ramos M.G, Hemami S.S. Preceptual quantization for wavelet-based image coding. In:IEEE International Conference on Image Processing, Vancouver, BC:Institute of Electrical and Electronics Engineers Computer Society,2000.645~648
    [107]Grzegorz S., Piotr D. Identification of regions of interest in video for a traffic monitoring system. In:Proceedings of international conference on information technology, IT 2008.
    [108]Nikolaos D., Athanasios T., Anastasios D., et al. Low-bitrate coding of image sequences using regions of interest and neural networks. In:Proceedings of IWISP 1996.561~570
    [109]Gibson D., Spann M., Sandra I., et al. A Wavelet-based Region of Interest Encoder for the Compression of Angiogram Video Sequences. IEEE Transactions on Information Technology in Biomedicine,2004,8(2):103~113
    [110]Mingchieh C., Meijuan C., Chiahung Y, et al. Region-of-interest video coding based on rate and distortion variations for H.263+. Signal Processing:Image Communicatoin 2008,23(1):127~142
    [111]Sivanantharasa P., Fernando W.A.C., Arachchi H.K. Region of Interest Video coding with flexible macroblock ordering. In:Proceedings of the 1st international conference on industrial and information systems, ICIIS 2006.596~599
    [112]AVS需求组.面向监控应用的技术需求.见:数字音视频编解码技术标准化工作组.第二十一次会议.哈尔滨:AVS工作组,2007,AVS-M2103.
    [113]郑建铧,郑萧桢,赖昌材.监控场景模式编码.见:数字音视频编解码技术标准化工作组.第二十六次会议.天津:AVS工作组,2008,AVS-M2462.
    [114]孙莉.AVS-S参考软件维护报告.见:数字音视频编解码技术标准化工作组.第二十七次会议.北京:AVS工作组,2008,AVS-M2485.
    [115]Wang R.G, Ren Z., Wang H.L. Background picture and background-predictive picture for surveillance video coding.见:数字音视频编解码技术标准化工作组.第二十二次会议.北京:AVS工作组,2007,AVS-M2119.
    [116]唐慧明,张玉洁,虞露.动态背景帧生成方法及其在视频监控编码中的应用.见:数字音视频编解码技术标准化工作组.第二十二次会议.北京:AVS工作组,2007,AVS-M2132.
    [117]Wang R.G, Zhang Y.J., Xia Y., et al. AhG report for background picture.见:数字音视频编解码技术标准化工作组.第二十三次会议.上海:AVS工作组,2007,AVS-M2190.
    [118]唐慧明,张玉洁,戚华飞等.动态背景帧在AVS视频监控编码中的应用.见:数字音视频编解码技术标准化工作组.第二十三次会议.上海:AVS工作组,2007.AVS-M2195.
    [119]毛振,吴仲谋,许晓中等.AVS-S灵活条带集.见:数字音视频编解码技术标准化工作组.第二十四次会议.丽江:AVS工作组,2008,AVS-M2305.
    [120]唐慧明,楼洛阳,虞露等.嵌入强制帧内编码块的视频编码方法.见:数字音视频编解码技术标准化工作组.第二十五次会议.厦门:AVS工作组,2008,AVS-M2378.
    [121]夏洋,刘琼.基于感兴趣区域的质量增强编码方法.见:数字音视频编解码技术标准化工作组.第二十二次会议.北京:AVS工作组,2007,AVS-M2126.
    [122]夏洋,刘琼,屠增辉.一种基于感兴趣区域的质量增强编码方法.见:数字音视频编解码技术标准化工作组.第二十三次会议.上海:AVS工作组,2007,AVS-M2233.
    [123]屠增辉,夏洋.基于感兴趣区域的空域分辨率可调整方法.见:数字音视频编解码技术标准化工作组.第二十六次会议.天津:AVS工作组,AVS-M2448,2008.
    [124]Sukmarg O., Rao K.B. Fast object detection and segmentation in MPEG compressed domain. In:IEEE TENCON 2000,3:364~368.
    [125]Venkatesh B.R., Ramakrishnan K.R., Srinivasan S.H. Video object segmentation:A compressed domain approach. IEEE Trans. Circuits Syst.& Video Technol.,2004, 14(4):462~474
    [126]Porikli F. Real-time video object segmentation for MPEG encoded video sequences. In:SPIE Conference on Real-Time Imaging,2004,5297:195~203
    [127]Yu X.D., Ling Y.D., Qi T. Robust moving video object segmentation in the MPEG compressed domaion. In:ICIP 2003,3:933~936
    [128]Zeng W., Du J., Gao W., et al. Robust moving object segmentation on H.264/AVC compressed video using the block-based MRF model. Real-Time Image,2005,11: 290~299
    [129]赵锟,张文俊,李蔚.应用递归最短生成树算法实现H.264压缩域运动对象分割方法.中国图像图形学报,2009,14(10):2154~2158
    [130]Heitou Z., Tameharu H.W. Moving object dectection from MPEG coded picture. In: ICIP 1999,4:25~29
    [131]Lim K.P. Fast Inter Mode Selection. In:Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG,2003, Doc JVT-Ⅰ020.
    [132]Bjontegaard G Calculation of average PSNR differences between RD-curves. In: ITU-T Q.6/SG16 (VCEG),2001, Doc. VCEG-M33.
    [133]Huang Y.W., Hsieh B.Y., Chen T.C, et al. Analysis, fast algorithm, and VLSI architecture design for H.264/AVC intra frame coder. IEEE Trans. Circuits and System for Video Tech.,2005,15(3):378~401
    [134]张刚,苏海冰.H.264帧内预测和模式判断的并行硬件结构设计.电视技术,2009,33(1):33~50
    [135]刘海鹰,张兆扬,沈礼权.基于FPGA的H.264变换量化高性能的硬件实现.中国图象图形学报,2006,11(11):1636~1639
    [136]Bendat, J.S., Piersol, A.G Random data:analysis & measurement procedures. John Wiley & Sons Inc., NY, USA,1986.
    [137]胡学龙.数字图像处理.北京:电子工业出版社,2006.22~24
    [138]Andres A., Sylvain D., Bernard R. Measuring and improving image resolution by adaption of the reciprocal cell. Journal of Visual Communication and Image Representation,2000,11:17~40
    [139]刘新平,王虎,汶德胜.亚像元线阵CCD焦平面的光学拼接.光子学报,2002,31(6):781~784
    [140]Seguela D., Fratter C., Munier P. SPOT-5 System. In:Part of the SPIE Conference on Earth Observing Systems Ⅳ. Denver, Colorado,1999,3750:212~220
    [141]周峰,王世涛,王怀义.关于亚像元成像技术几个问题的探讨.航天返回与遥感,2002,12(4):26~33
    [142]刘新平,高瞻等.面阵CCD作探测器的亚象元成象方法及实验.科学通报,1999.8:1603~1605
    [143]Alam M.S., Bognar J.G, Hardie R.C., et al. Infrared image registration and high resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Transaction on Instrumentation and Measurement,2000,49(5):915~923
    [144]Cabnski W, Breiter R., Mauk K.H., et al. Miniaturized high performance starring thermal imaging system. Proceedings of SPIE, Infrared Detector s and Focal Plane Arrays Ⅵ,2000,4028:208~219.
    [145]Fruchter A., Hook R.N. Drizzle:A method for linear reconstruction of undersampled images. Publ. Astron. Soc. Pacific,2001,114(792):144-152
    [146]Nunez J., Merino M.T. Super-resolution of remotely sensed images using drizzle and wavelets. In:25th ACRS 2004, Chiang Mai, Thailand,2004.262~267
    [147]Merino M.T., Nunez J. Super-resolution of remotely sensed images with variable-pixel linear reconstruction. IEEE Trans. Geoscience and Remote Sensing., 2007,45(5):1446~1457
    [148]Merino M.T., Nunez J. Super-resolution of remotely sensed images using SRVPLR and SRASW. In:IEEE IGARSS 2007, Barcelona.,2007.4866~4869

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700