铌微合金钢多道次热轧过程多尺度建模与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会对钢铁质量要求的不断提高,用户对钢材强度、韧性、可焊性、耐磨性和热稳定性等各项性能都有了更高要求。铌与钒、钛的微合金化相比,铌是最有效的细化晶粒的微合金化元素,通过控制轧制可在相当低的成本下提高钢的强度又改善钢的韧性,达到良好的强度、韧性、成型性及焊接性相结合的综合使用性能,因而在全世界范围内得到了充分利用;广泛应用于轿车、桥梁、建筑、船舶、车辆、压力容器、采油平台、输油管道等各种工程结构。特别在低碳经济和绿色冶金发展前提下,控制轧制工艺消除了昂贵的热处理工序,提高了生产效率,并实现减碳节能的目标。
     铌微合金钢板带材产品性能是由轧制过程铌微合金钢组织形态决定的,而组织形态又是由合金成分和轧制工艺来决定的。轧件的金属变形、传热、位错密度演变和微观组织演变过程(包括基体微观组织演变和第二相析出)之间存在着复杂的交互作用,变形过程主要通过内热源改变轧件内的热量和应变状态,从而改变组织演变的条件,来影响传热过程和组织演变过程;传热过程主要通过本构关系影响流变应力和改变轧件内的温度分布,以影响变形过程和组织演变过程;组织演变过程则主要通过本构关系改变流变应力,以影响变形过程和传热过程。
     论文基于固体与分子经验电子理论(EET)建立了微合金钢三元合金系价电子结构模型,在Fe-C-M(Nb, V, Ti)合金系价电子结构计算结果的基础上,将EET与离散点阵平面/最近邻断键(DLP/NNBB)模型相结合建立微合金钢界面能的价电子结构理论计算模型,对析出第二相与铁基体界面能进行理论计算与分析。
     考虑微观组织演变、析出相和晶粒尺寸对位错密度演变的影响,将微观组织演变和介观尺度的位错密度相结合,建立了铌微合金钢热轧过程微观组织演变模型、位错密度演变模型、第二相析出模型和晶粒尺寸模型的耦合计算模型。为进一步建立基于微观组织演变的材料非线性本构模型奠定了基础,并为最终实现热轧过程多尺度耦合有限元数值模拟提供材料组织演变的计算模型。
     通过对铌微合金钢Q345B进行热压缩实验,获得了一系列的流变曲线。基于实验结果,充分考虑热加工工艺参数(应变速率和变形温度)和动态软化机制(动态回复和动态再结晶)对高温流变应力的影响,将产生加工硬化的硬化阶段与发生动态回复或动态再结晶的软化阶段的流变应力通过位错密度看成是应变、应变速率及温度的函数,通过弹塑性力学理论,将流变应力模型与原有材料硬化函数等效,引入硬化-软化函数,将动态软化机制与弹塑性力学理论实现了统一;并给出了硬化-软化函数求解的方法,确定了函数关系式中与工艺参数相关的主要参数的定量关系式。最后对硬化-软化函数关系式进行了有效性分析,验证了硬化-软化函数是有效可行的,能够较准确地描述材料在发生动态再结晶的软化过程和进入稳定流变时的应力-应变关系。最后推导了用于有限元分析的弹塑性矩阵,为进一步进行有限元模拟分析提供本构关系模型。
     最后,在建立的多尺度模型基础上,通过MARC提供的开放接口和相应子程序系统,寻求到一种多尺度耦合分析的实现方法,将多尺度的计算模块集成在MARC2010和FORTRON10.1平台并实现了对某钢厂中厚板热轧生产线多道次轧制过程的多尺度耦合有限元数值模拟计算。对模拟结果中各场变量(温度场、应力应变场、微观组织演变和轧制力)在不同轧制道次的变化规律,进行了详细分析;并对本文模型和其他模型的流变应力计算值与实验值,及相应轧制力计算值与现场实测值进行了对比分析,和其他模型相比,证明了本文模型更接近实测值。
As industry develops so rapidly, the integrated service performance such as materialstrength, toughness, compactibility and weldability is eager to be called for. Nbmicroalloyed steel can obtain the performance, so we making use of it all over the world.In contrast to Ti, V, the grain refining effect of Nb is better. By control rolling Nbmicroalloyed steel can obtain the higher strength, toughness and the integrated serviceperformance at a low cost., so it can apply to different kinds of engineering structures suchas bridge, architecture, shipping, car, pressure reservoir, oil production platform, pipelineand so on. At the same time, control rolling technology can dispel the expensive heattreatment procedure, improve the production efficiency, reduce cost and achieve the targetfor energy saving.
     The product performance of Nb microalloyed steel is determined by themicrostructure morphology, alloying component and rolling process. The metaldeformation, heat transfer, dislocation density evolution and microstructure evolution(including matrix microstructure evolution and second-phase precipitates) of rolled piecehave a complex mutual effect. Deformation process can change the heat quantity by theinternal heat source in rolled piece and state of strain, then the condition of microstructureevolution is changed to effect the heat transfer and microstructure evolution. Heat transfercan change the flow stress and temperature distribution by the constitutive relationship asto effect deformation process and microstructure evolution. Microstructure evolution canchange the flow stress by the constitutive relationship as to effect deformation process andheat transfer. Because of all above, it is necessary to coupling calculate the metaldeformation, heat transfer, dislocation density evolution and microstructure evolution.
     The valence electron structures of crystal cells in Fe-M-C alloy system (M=Nb, Ti orV) were calculated using the Empirical Electron Theory in Solid and Molecules(EET).Based on the calculational results, the coherent interfacial energy between second phaseand iron matrix in Fe-M-C alloy system (M=Nb, Ti or V) was calculated by intergratingEET into discrete lattice plane, nearest neighbor broken bond(DLP/NNBB) methodthrough covalence bond energy.
     Considering the effect of microstructure evolution, second phase precipitates andgrain size on dislocation density evolution, the way to calculate the microstructureevolution, second phase precipitates and grain size is proposed during Nb microalloyedsteel hot rolling. The microstructure evolution are integrated with mesoscopic dislocationdensity evolution in order to establish the nonlinear constitutive model based on themicrostructure evolution next chapter and provide the microstructure evolution model formulti-scale finite element numerical simulation during hot rolling.
     The flow stress curves of Nb microalloyed steel Q345B during hot compressiondeformation were obtained on Gleeble-3500thermo-simulation machine. Based on theexperimental results, the constitutive model of Nb microalloyed steel during hightemperature deformation was established to describe the stress-strain relationship duringdynamic softening (dynamic recovery and dynamic recrystallization) and in the steadyflow state, in which the influences of the thermal deformation parameters (strain rate anddeformation temperature) and dynamic softening mechanism (dynamic recovery anddynamic recrystallization) on the flow stress were considered. Through elasto plasticitymechanics theory, the original work-hardening function is considered as flow stress curvesequivalently. The work-hardening and softening function is propounded. A method wasprovided to solve the work-hardening and softening function and establish the mathematicexpressions of the correlation coefficients. It is shown that the calculated results by themodel are in good agreement with the experimental results, and can represent accuratelythe flow stress during dynamic softening (dynamic recovery and dynamic recrystallization)and in the steady flow state. At last, the elastic-plastic matrix is derived as to calculate theconstitutive relationship during finite element numerical simulation during hot rollingnext.
     Finally, based on the multi-scale models established above, an approach to realize thecoupling analysis is found. The multi-scale computer modules are integrated on theplatform of MARC2010and FORTRON10.1. The case of Ansteel3450medium plateproduction line is analyzed on the platform. Based on the simulated results, thedistribution of the fields, such as the strain, the strain rate and temperature and the changesof austenite grain size and recrystallization volume fraction in muti-pass hot rolling process is precited and anlyzed. Finally, the calculated flow stress curves and rolling forceby paper’s model and others’ model are compared with the experimental flow stresscurves and rolling force. it is shown that the calculated results by the paper’s model are inbetter agreement with the experimental results than other’s model.
引文
[1]齐俊杰.微合金化钢[M].北京:冶金工业出版社,2006:1,37.
    [2]曹荫之.低合金及微合金高强度钢[J].材料科学与工程学报,1985,(4):14-22.
    [3]雍歧龙,马鸣图,吴宝榕.微合金钢-物理和力学冶金[M].北京:机械工业出版社,1989:328.
    [4]付俊岩. Nb微合金化和含铌钢的发展及技术进步[J].钢铁,2005:40(8):1-6.
    [5]东涛,付俊岩.铌微合金化技术的魅力和广阔前景[C]//2006全国低合金钢、微合金非调质钢学术年会论文集.北京:冶金工业出版社,2006:45-54.
    [6]东涛,付俊岩.我国微合金化技术应用和微合金化钢开发的调查[C]//中国钢铁年会论文集.北京:冶金工业出版社,2001:719-721.
    [7]付俊岩,孟繁茂.汽车工业用含铌钢的技术与发展[J].汽车工艺与材料,2004,(6):26-31.
    [8]郭奕铃,沉慧君.物理学史[M].北京:清华大学出版社,1993:403.
    [9]马文蔚.物理学发展史上的里程碑[M].南京:江苏科学技术出版社,1992:256.
    [10] Pauling L. The Resonating-valence-bond Theory of Metals[M]. Physica,1949,15(1-2):23-28.
    [11] Pauling L. The Nature of the Chemical Bond[M]. Third Edition. Ithaca N Y: Cornell UniversityPress,1960:393-346.
    [12]国家自然科学基金委员会.金属材料科学[M].北京:科学出版社,1995:133-140.
    [13] Hume-Rothery W, Raynor G V. The Structure of Matals and Alloys[M]. London: Inst. Met.,1954:8-21.
    [14] Hume-Rothery W. Note on the Self-diffusion in Iron[J]. Acta Metallurgica,1963,11(6):630-635
    [15] C. T. Sims. Superalloys1984[C]. Warrendale, Pa: The Society,1984:399-411.
    [16] Hohenberg P. Microscopic Theory of Superfluid Helium[J]. Annals of Physics,1965,34(2):291-359.
    [17] Kohn W. Motion of Electrons and Holes in Semiconductors from a Many-electron Point ofView[J]. Journal of Physics and Chemistry of Solids,1959,8:45-47.
    [18] Rosen A, Ellis D E. Interpretation of Noncharacteristic M X-rays in Heavy Colliding Systems bySelfconsistent Relativistic Molecular Calculations[J]. Physics Letters A,1976,59(5):375-378.
    [19] Painter G S, Jennings P J, Jones R O. Electronic Structure of Stepped Transition Metal Surfaces[J].Journal of Physics C: Solid State Physics,1975,7(10):199-202.
    [20] Guo C X, Ellis D E. Energy levels, Luminescence and Electronic Structure of ZnS:Tm3+[J].Journal of Luminescence,1985,33(4):345-367.
    [21]胡壮麒.电子和原子层次材料行为的计算机模拟[J].材料研究学报,1998,12(1):1-19.
    [22] Daw M S, Bakers M I. Calculation of Hydrogen Dissociation Pathways on Nickel Using theEmbedded Atom Method[J]. Journal of the Less-common Metals,1986,130(3):465-473.
    [23]刘志林,李志林,刘伟东.界面电子结构与界面性能[M].北京:科学出版社,2002:7-29.
    [24] Yu S H. The Empirical Electron Theory of Solid and Molecules-the Hypothesis of EquivalentValence Electron[J]. Chinese Science Bulletin,1981,26(7):506-513.
    [25]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993:275-427.
    [26] Guo Y Q, Yu R H, Zhang R L, et al. Calculation of Magnetic Properties and Analysis of ValenceElectron Structures ofLaT13x Alx,(T=Fe, Co) Compounds[J]. J. Phys. Ch. B,1998,102(1):9-16.
    [27] Liu Z L, Li Z L, Sun Z G. Catalysis Mechanism and Catalyst Design of Diamond Growth[J].Metallurgical and Materials Transactions,1999,30A(11):2757-2765.
    [28] Wang C Y. Electron Structure of the Light-impurity (Boron)-vacancy Complex in Iron[J]. Phys.Rev.,1988, B38(6):3905-3915.
    [29] Wang C Y. Electronic Structure of the Yba2Cu3O7-y Superconductor Containing TwinBoundaries[J]. Phys. Rev.,1990, B41(10):6591-6599.
    [30] Wang C Y. Electronic Structure of the Impurity Boron-vacancy Complex in Transition Metalγ-Fe[J]. J. Apply. Phys,1992,71(1):239-242.
    [31] Wang C Y. Electronic Structure of ReCo5Type in Termetallic Compound[J]. Chinese ScienceBulletin,1990,35(3):197-208.
    [32] Wang C Y. Electronic Structure of Impurity (Oxygen)–stacking Fault Complex in Nickel[J]. Phys.Rev.,1990, B41(3):1359-1368.
    [33] Wang C Y. Localized Electronic Structure of Boron Impurity Vacany Complex in Ni[J]. Phys.Rev.,1992, B46(5):2693-2701.
    [34] Wang C Y, Zeng Y P. Electron Structure of Grain Boundary in Transition Metal Ni[J]. Science inChina,1992, A35(12):1466-1471.
    [35] Zhang J S. Design and Development of Hot Corrosion-resistant Nickel-base Single-crystalSuperalloys by the Electrons Alloy Design Theory-PartⅠ. Characterization of the PhaseStability[J]. Metallurgical Transactions(A),1993,24:2443-2450.
    [36] Zhang J S. Design and Development of Hot Corrosion-resistant Nickel-base Single-crystalSuperalloys by the Electrons Alloy Design Theory-Part Ⅱ. Effect of Refractory Metals Ti, Ta andNb on Microstructures and Properties[J]. Metallurgical Transactions(A),1993,24:2451-2458.
    [37] Meng C G. Mechanism of Macroalloying-induced Ductility in Ni3Al[J]. J. Mater. Sci. Technol.,1994,10:279-285.
    [38]王鲁红.金属及合金快速凝固过程微观结构演化的分子动力学模拟[D].沈阳:中国科学院金属研究所博士论文,1997:1-25.
    [39]谢佑卿.固体中多原子相互作用的新势能函数[J].中国科学(A辑),1992,22(8):880-887.
    [40]谢佑卿.金属Cu的电子结构和物理性质[J].中国科学(A辑),1993,23(5):545-551.
    [41]谢佑卿,张晓东. Ag-Cu合金的原子体积和体积函数[J].中国科学(E辑),1998,28(1):12-17.
    [42]高英俊,陈振华,黄培云,等.有序Al-Li金属间化合物的电子结构与结合能[J].中国有色金属学报,1997,7(4):141-144.
    [43] Gao Y J, Chen Z H, Huang P Y. Bond Parameters and Electronic Structure of V, Nb and TaMetals[J]. Trans. Nonferrous Met. Soc. China,1998,8(1):20-23.
    [44]高英俊,陈振华,黄培云,等.结构图及其在材料设计中的应用[J].稀有金属材料科学与工程,1997,26(4):1-8.
    [45] Cheng K J. Application of the TFD Model and Yu's Theory to Material Design[J]. Progress inNatural Science.1993,3(3):211.
    [46]程开甲,程漱玉.论少子对材料特性的影响[J].材料研究学报,1996,10(l):1-7.
    [47] Cheng S Y, Cheng K J. Computation on Heat of Formation and EOS of Alloy by a Refined TFDModel[J]. Acta Physica Sinica(Overseas Edition),1993,2(6):439-448.
    [48]刘志林.合金的价电子结构与成分设计[M].长春:吉林科学技术出版社,1990:1-14.
    [49]小指军夫.控制轧制·控制冷却[M].李伏桃,译.北京:冶金工业出版社,2002:4-9.
    [50] Sellars C M, Whiteman J A. Recrystallization and Grain Growth in Hot Rolling[J]. Metal Science,1979,13(3-4):187-194.
    [51] Sellars C M. Dynamic Recrystallization[J]. Metal Forum,1981,4(1-2):75-80.
    [52] Sellars C M. Static Recrystallization and Precipitation During Hot Rolling of MicroalloyedSteels[C]//Deformation, Processing, and Structure, Papers presented at the1982ASM MaterialsScience Seminar. OH, USA: ASM,1984:245-277.
    [53] Sellars C M. Computer Modelling of Hot-Working Processes[J]. Material Science and Technology,1985,1(4):325-332.
    [54] Roberts W, Sandberg A, Siwecki T, et al. Prediction of Microstructure Development DuringRecrystallization Hot Rolling of Ti-V Steels[C]//HSLA Steels Technology and Application,Conference Proceedings of International Conference on Technology and Applications of HSLASteels. OH, USA: ASM,1984:67-81.
    [55] Dutta B, Sellars C M. Effect of Composition and Process Variables on Nb(C, N) Precipitation inNiobiu-microalloyed Austenite[J]. Materials Science and Technology,1987,3(3):197-206.
    [56] McQueen H J, Jonas J J. Role of the Dynamic and Static Softening Mechanisms in Multistage HotWorking. Journal of Applied[J]. Metalworking,1985,3(4):410-420.
    [57] F. H. Samuel, S. Yue, J. J. Jonas, et al. Modeling of Flow Stress and Rolling Load of a Hot StripMill by Torsion Testing[J]. ISIJ international,1989,29(10):878-886.
    [58] Bowden J W, Samuel F H, Jonas J J. Effect of Interpass Time on Austenite Grain Refinement byMeans of Dynamic Recrystallization of Austanite. Metallurgical transactions[J]. A, Physicalmetallurgy and materials science,1991,22A(12):2947-2957.
    [59] Laasraoui A, Jonas J J. Prediction of Temperature Distribution, Flow Stress and MicrostructureDuring the Multipass Hot Rolling of Steel Plate and Strip[J]. ISIJ International,1991,31(1):95-105.
    [60] Maccagno T M, Jonas J J, Hodgson P D. Spreadsheet Modelling of Grain Size Evolution DuringRod Rolling[J]. ISIJ International,1996,36(6):720-728.
    [61] Minami K, Siciliano F J, Maccagno T M, et al. Mathematical Modeling of Mean Flow StressDuring the Hot Strip Rolling of Nb Steels[J]. ISIJ International,1996,36(12):1507-1515.
    [62] Devadas C, Samarasekera I V, Hawbolt E B. Thermal and Metallurgical State of Steel Strip DuringHot Rolling: PartⅠ. Characterization of HeatTransfer[J]. Metallurgical Transactions A,1991,22A(2):307-319.
    [63] Devadas C, Baragar D, Ruddle G., et al. Thermal and Metallurgical State of Steel Strip During HotRolling: Part Ⅱ. Factors Influencing Rolling Load[J]. Metallurgical Transactions A,1991,22A(2):321-333.
    [64] Devadas C, Samarasekera I V, Hawbolt E B. Thermal and Metallurgical State of Steel Strip DuringHot Rolling: Part Ⅲ. Microstructural Evolution[J]. Metallurgical Transactions A,1991,22A(2):335-349.
    [65] Gibbs R K, Parker B A, Hodgson P D. Prediction of Ferrite Grain Size in Niobium MicroalloyedControlled Rolled Steels[C]//Proceedings of the International Symposium on Low-Carbon Steelsfor the90's. Warrendale, PA, United States: Minerals, Metals&Materials Soc.,1993:173-179.
    [66] Pietrzyk M. Finite Element Based Model of Structure Development in the Hot Rolling Process[J].Steel Research,1990,61(2):603-607.
    [67] Pietrzyk M, Kedzierski Z, Kusiak H, et al. Evolution of the Microstructure in the Hot RollingProcess[J]. Steel Research,1993,64(11):549-556.
    [68] Senuma T, Yada H. Microstructural Evolution of Plain Carbon Steels in Multiple Hot Working[C]//Proceedings of the Riso International Symposium on Metallurgy and Materials Science7th.Roskilde, Denmark: Riso Natl Lab,1986:547-552.
    [69] Senuma T, Suehiro M., Yada H. Mathematical Models for Predicting Microstructural Evolutionand Mechanical Properties of Hot Strips[J]. ISIJ International,1992,32(3):423-432.
    [70] Karhausen K, Kopp R, Souza M M. Numerical Simulation Method for DesigningThermo-mechanical Treatments, Illustrated by Bar Rolling[J]. Scandinavian Journal of Metallurgy,1991,20(6):351-363.
    [71] Karhausen K, Kopp R. Model for Intergrated Process and Microstructure Simulation in HotForming[J]. Steel Research,1992,63(6):247-256.
    [72] Yanagimoto J, Karhausen K, Brand A J, et al. Incremental Formulation for the Prediction of FlowStress and Microstructural Change in Hot Forming[J]. Journal of Manufacturing Science andEngineering,1998,120(5):316-322.
    [73] Yanagimoto J, Liu J. Incremental Formulation for the Prediction of Microstructural Change inMultipass Hot Forming[J]. ISIJ International,1999,39(2):171-175.
    [74] Liu J, Yanagida A, Sugiyama S, et al. The Analysis of Phase Transformation for the Prediction ofMicrostructure Change after Hot Forming[J]. ISIJ International,2001,41(12):1510-1516.
    [75]刘振宇,许云波,王国栋.热轧钢材组织-性能演变的模拟和预测[M].沈阳:东北大学出版社,2002:8-36.
    [76]刘振宇,王昭东,王国栋.热轧板带宽向组织不均匀的定量分析[J].钢铁,1994,29(9):34-38.
    [77]刘振宇,王国栋,张强. C-Mn钢板带热连轧过程中再结晶行为的模拟计算[J].钢铁研究学报,1995,7(6):27-31.
    [78]曲锦波,王昭东,刘相华,等. HSLA钢板控轧控冷生产中组织性能的预测模型[J].钢铁,1999,34(1):35-38.
    [79]赵辉,鹿守理,窦晓峰,等.低碳钢轧后冷却过程中的晶粒长大模型[J].钢铁,1999,34(2):51-53.
    [80]赵辉,鹿守理.热轧微观组织的计算机模拟及性能预报(一)[J].轧钢,1997,(5):56-59.
    [81]崔振山. H型钢热轧过程变形和微观组织演变的计算机模型[D].秦皇岛:燕山大学工学博士学位论文,1999:12-80.
    [82]王健,肖宏.流变应力逆分析确定静态再结晶动力学模型[J].金属学报,2008,44(7):837-842.
    [83] Wang J, Xiao H. Determination of the Kinetics for Dynamic and Static Recrystallization by Usingthe Flow Curves[J]. Materials Science Forum,2008,575-578(2):904-909.
    [84] Wang M T, Li X T, Du F S, et al. Hot Deformation of Austenite and Prediction of MicrostructureEvolution of Cross-wedge Rolling[J]. Materials Science and Engineering A,2004,379(1-2):133-140.
    [85] Wang M T, Li X T, Du F S, et al. A Coupled Thermal–mechanical and Microstructural Simulationof the Cross Wedge Rolling Process and Experimental Verification[J]. Materials Science andEngineering A,2005,391(1-2):305-312.
    [86]李学通,杜凤山,藏新良.板带粗轧过程热、力、组织耦合三维有限元模拟[J].中国机械工程,2006,17(1):92-95.
    [87]王东城,彭艳,刘宏民.基于位错密度的热轧含Nb钢平均变形抗力模型[J].钢铁,2006,41(增刊2):343-347.
    [88] Ma B, Peng Y, Jia B, et al. Static Recrystallization Kinetics Model after Hot Deformation ofLow-alloy Steel Q345B[J]. Journal of Iron and Steel Research, International,2010,17(8):61-68.
    [89] MA B, Peng Y, Liu Y F, et al. Modeling of Metadynamic Recrystallization Kinetics after HotDeformation of Low-Alloy Steel Q345B[J]. Journal of Central South University of Technology,2010,17(5):911-917.
    [90] Lin Y C, Chen M S, Zhong J. Study of Metadynamic Recrystallization Behaviors in a LowSteel[J]. Journal of Materials Processing Technology,2009,209:2477-2482.
    [91]蔺永诚,陈明松,钟掘.42CrMo钢形变奥氏体的静态再结晶[J].中南大学学报(自然科学版),2009,40(2):411-416.
    [92] Yoshie A, Fujita T. Formulation of the Decrease in Dislocation Density of Detormed Austenite dueto Static Recovery and Recrystallization[J]. ISIJ International,1996,36(4):474-480.
    [93] Yoshie A, Fujita T. Formulation of Flow Stress of Nb Added Steels by ConsideringWork-hardening and Dynamic Recovery[J]. ISIJ International,1996,36(4):467-473.
    [94] Zurob H S, Hutchinson C R, Brechet Y, et al. Modeling Recrystallization of MicroalloyedAustenite: Effect of Coupling Recovery, Precipitation and Recrystallization[J]. Acta Materialia,2002,50:3076-3092.
    [95]苑少强,杨善武,聂文金,等. Fe-Ni-Nb-Ti-C合金变形后等温弛豫过程中位错与析出的相互作用[J].金属学报,2004,40(8):887-890.
    [96]刘红,王西涛,陈冷.含铌微合金钢的再结晶组织演化模拟[J].北京科技大学学报,2008,30(12):1333-1337.
    [97]刘红,王西涛,陈冷.含Nb微合金钢应变诱导析出的模拟[J].物理学报,2009,58(6):151-155
    [98]谢甘霖,王西涛,陈冷.微合金钢位错上析出Nb(C,N)的模拟[J].中国科技论文在线,2009,4(4):248-252.
    [99] Ebrahimi R, Zahiri S H, Najafizadeh A. Mathematical Modelling of the Stress-strain Curve ofTi-IF Steel at High Temperature[J]. Journal of Materials Processing Technology,2006,171:301-305.
    [100]王孟,洪慧平,王晓明.37Mn5钢热变形行为与流变应力模型研究[J].武汉科技大学学报,1999,33(2):134.
    [101]蔺永诚,陈明松,钟掘.42CrMo钢的热压缩流变应力行为[J].中南大学学报(自然科学版),2008,39(3):549-553.
    [102]Xu G, Xu C S, Zhao J R. Flow Stress Constitutive Model of Ultra Low Carbon Steel in WarmDeformation[J]. ISIJ International,2006,46(1):166-168.
    [103]Nnakata N, Militzer M. Modelling of Microstructure Evolution during Hot Rolling of a780MPaHigh Strength Steel[J]. ISIJ International,2005,45(1):82-90.
    [104]Najafizadeh A, Jonas J J. Predicting the Critical Stress for Initiation of DynamicRecrystallization[J]. ISIJ International,2005,46(11):1679-1684.
    [105]林武,李红英,曾翠婷,等.一种低碳微合金管线钢的热变形行为[J].中南大学学报(自然科学版),2010,41(3):940-947.
    [106]张红英,张鸿冰,陈浩时.应变速率对不同钢压缩真应力-应变曲线的影响[J].机械工程材料,2007,31(4):92-94.
    [107]Pu Z J. Development of Constitutive Relationships for the Hot Deformation of BoronMicroalloying TiAl-Cr-V Alloys[J]. Materials Science and Engineering A,1995,192/193:780-787.
    [108]Laasraoui A, Jonas J J. Prediction of Steel Flow Stresses at High Temperatures and Strain Rates[J].Metallurgical Transaction A,1991,22A:1545-1558.
    [109]何宜柱,陈大宏,雷廷权.热变形动态软化本构模型[J].钢铁,1999,34(9):29-34.
    [110]田村今男.高强度低合金钢的控制轧制与控制冷却[M].王国栋,译.北京:冶金工业出版社,1992:4.
    [111]范长刚,董瀚,雍岐龙,等.低合金超强度钢的研究进展[J].机械工程材料,2006,30(08):1-4.
    [112]鲁茨·迈耶.带钢轧制过程中材料性能的优化[M].赵译,译.北京:冶金工业出版社,1996:1-7.
    [113]余瑞璜. α-Fe,γ-Fe和Fe_4N的价电子和磁矩结构分析——α-Fe→γ-Fe相变、高温渗氮表面硬化、渗碳体石墨化及其它材料的电子理论[J].金属学报,1982,18(03):336-349.
    [114]余瑞璜.固体与分子经验电子理论[J].科学通报,1978,(04):217-225.
    [115]刘志林,戴天时,屈庸博.类拖曳效应的价电子理论模型[J].科学通报,1989,(01):15-17.
    [116]余瑞璜,刘志林. A_Ⅰ型多元固溶体价电子结构的计算[J].材料科学与工艺,1988,7(02):1-7.
    [117]余瑞璜,张瑞林,金冶.铁-碳、铁-氮系中几种固溶体的研究(Ⅰ)——γ-Fe-C固溶体的价电子结构与α~X曲线[J].吉林大学自然科学学报,1984,(01):15-23.
    [118]Yang Z G, Enomoto M. Calculation of the Interfacial Energy of B1-type Carbides and Nitrideswith Austenite[J]. Metall Mater Trans,2001,32A:267-274.
    [119]雍岐龙,李永福,孙珍宝,等.微合金碳氮化物与奥氏体之间的半共格界面比界面能的理论计算[J].金属学报,1988,24(5):A373-A375.
    [120]Borchers C, Bormann R. Determination of Low-temperature Interfacial Energies from a PairInteractiom Model[J]. Acta Meter.,2005,53:3695-3701.
    [121]Cahn J W, Hilliard J E. On the Equilibrium Segregation at a Grain Boundary[J]. Acta Metall.,1959,7(3):219-221.
    [122]Lee Y W, Aaronson H I. Anisotropy of Coherent Interphase Boundary Energy[J]. Acta Metall.,1980,28:539-548.
    [123]Mackenzie J K, Moore A J W, Nicholas J F. Bonds Broken at Atomically Flat Crystal Surfaces—I:Face-centred and Body-centred Cubic Crystals[J]. J Phys. Chem. Solids,1962,23(3):185-196.
    [124]Mackenzie J K, Nicholas J F. Bonds Broken at Atomically Flat Crystal Surfaces—II: CrystalsContaining Many Atoms in a Primitive Unit Cell[J]. J Phys. Chem. Solids,1962,23(3):197-205.
    [125]Nicholas J F. Rearrangement of a Flat Surface without Altering the Number of Broken Bonds[J]. JPhys. Chem. Solids,1963,24(11):1279-1284.
    [126]Ramanujan R V, Lee J K, LeGoues F K, et al. Discrete Lattice Plane Analysis of the Energy ofCoherent {0001}h.c.p.∥{111}f.c.c.,{1120}h.c.p.∥{110}f.c.c. Interfaces[J]. ActaMetall.,1989,37(11):3051-3059.
    [127]Ramanujan R V, Lee J K, Aaronson H I. Discrete Lattice Plane Analysis of the Interfacial Energyof Coherent F.C.C.: H.C.P. Interfaces and its Application to the Nucleation of γ in Al-Ag Alloys[J].Acta Metall. Meter.,1992,40(12):3421-3432.
    [128]Dregia S A, Wynblatt P. Equilibrium Segregation and Interfacial Energy in MulticomponentSystems[J]. Acta Metall. Meter.,1991,39(5):771-778.
    [129]Yang Z G, Enomoto M. Discrete Lattice Plane Analysis of Coherent f.c.c./B1Interfacial Energy[J].Acta Meter.,1999,47(18):4515-4524.
    [130]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学,1988,(03):323-330.
    [131]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:224-466.
    [132]Yang Z G, Enomoto M. Discrete Lattice Plane Analysis of Baker-Nutting Related B1Compound/Ferrite Interfacial Energy[J]. Mat Sci Eng,2002, A332:184-192.
    [133]雍岐龙,李永福,孙珍宝,等.微合金碳氮化物与铁素体之间的半共格界面比界面能的理论计算[J].科学通报,1989,(06):467-470.
    [134]肖纪美.合金相与相变[M].北京:冶金工业出版社,2004:289-296.
    [135]Tailor K A. Solubility Products for Titanium-, Vanadium-, and Niobium-carbides in Ferrite[J].Scripta Metall. Mater.,1995,32:7-12.
    [136]雍岐龙,吴玉榕,白埃民,等.铌微合金钢中碳氮化铌化学组成的计算与分析[J].钢铁研究学报,1990,2(2):37-42.
    [137]Gladman T. The Physical Metallurgy of Microalloyed Steels[M]. London: Institute of Materials,2002:26.
    [138]Zurob H S, Brechet Y, Purdy G.. A Model for the Competition of Precipitation andRecrystallization in Deformed Austenite[J]. Acta Materialia,2001,49:4183-4190.
    [139]Hutchinson R, Zurob H S, Sinclair C W, et al. The Comparative Effectiveness of Nb Solute andNbC Precipitates at Impeding Grain-boundary Motion in Nb Steels[J]. Scripta Materialia,2008,59:635-637.
    [140]Manohar P A, Ferry M, Chandra T. Five Decades of the Zener Equation[J]. ISIJ International,2001,38(9):913-924.
    [141]陈国安,杨王胡,郭守真,等.低碳微量铌钢形变过程中动态相变的特点[J].材料热处理学报,2006,27(6):89-94.
    [142]陈国安,杨王胡,郭守真,等.低碳微量铌钢形变强化相变的组织演变[J].金属学报,2004,40(10):1079-1084.
    [143]周晓光,刘振宇,吴迪,等. FTSR热轧含Nb钢动态再结晶数学模型中参数的确定[J].金属学报,2008,44(10):1188-1192.
    [144]何建中,刘雅政,史秉华,等. Q345含Nb低碳钢CSP轧制时动态再结晶的研究[J].特殊钢,2005,26(3):9-11.
    [145]Hodgson P D, Gibbs. R K A Mathematical Model to Predict the Mechanical Properties of HotRolled C-Mn and Microalloyed Steels[J]. ISIJ International,1992,32(12):1329-1338.
    [146]Manohar P A, Kyuhwan L, Rollett A D, et al. Computational Exploration of MicrostructuralEvolution in a Medium C-Mn Steel and Applications to Rod Mill[J]. ISIJ International,2003,43(9):1421-1430.
    [147]李立新.热轧板带的数值模拟,组织预报及工艺优化[D].重庆:重庆大学工学博士学位论文,2003:34-26.
    [148]Cho S H, Kang K B, Jonas J J. The Dynamic, Static and Metadynamic Recrystallization of aNb-microalloyed Steel[J]. ISIJ International,2001,41(1):63-69.
    [149]谭静.铌的碳氮化物对奥氏体静态再结晶的影响.武汉:武汉科技大学工学博士学位论文,2006:26-28.
    [150]Medina S F, Mancilla J E. Static RecrystaIIization Modelling of Hot Deformed Steels ContalnlngSeveral Alloying Elements[J]. ISIJ International,1996,36(8):1070-1076.
    [151]Senuma T, Takemoto Y. Model for Predicting the Microstructural Evolution of Extralow CarbonSteels[J]. ISIJ International,2008,48(11):1635-1639.
    [152]Sellars C M, Davies G J. Hot Working and Forming Processes, Proceedings of an InternationalConference,1979[C]. London: Met Soc.,1980:3.
    [153]Cuddy L J. Microstructures Developed during Thermomechanical Treatment of HSLA Steels[J].Metallurgical Transactions,1981,12A(7):1313-1320.
    [154]Pereda B, Rodriguez J M, Lopez B. Improved Model of Kinetics of Strain Induced Precipitationand Microstructure Evolution of Nb Microalloyed Steels during Multipass Rolling[J]. ISIJInternational,2008,48(10):1457-1466.
    [155]Suh D W, Cho J Y, Oh K H, et al. Evaluation of Dislocation Density from the Flow Curves of HotDeformed Austenite[J]. ISIJ International,42(5):564-566.
    [156]Sandstrom R. On Recovery of Dislocations in Subgrains and Subgrain Coalescence[J]. ActaMetallurgica,1977,25(8):897-904.
    [157]向嵩,刘国权,韩庆礼,等. CSP变形过程中碳化铌析出的动力学模型[J].材料研究学报,2007,21(3):250-254.
    [158]刘国勋.金属学原理[M].北京:冶金工业出版社,2002:246-250.
    [159]Anan G, Nakajima S, Miyahara M, et al. A Model for Recovery and Recrystallization of HotDeformed Austenite Considering Structural Heterogeneity[J]. ISIJ International,1992,32(3):261-266.
    [160]Yoshie A, Morikawa H, Onoe Y, et al. Formulation of Static Recrystallization of Austenite in HotRolling Process of Steel Plate[J]. Transactions ISIJ,1987,27:425-431.
    [161]雍岐龙.微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算[J].钢铁研究学报,2006,18(03):30-32.
    [162]张良哲.微合金钢等温沉淀析出动力学模型[J].钢铁研究学报,2006,18(04):41-43.
    [163]Shewmon P G. Diffusion in Solid[M]. London: Mc Graw Hill,1963:53.
    [164]岳尔斌,仇圣桃,干勇.低合金高强度钢奥氏体相中碳氮化物的析出模型[J].钢铁研究学报,2006,18(08):49-52.
    [165]Park S H, Yue S, Jonas J J. Continuous-cooling-precipitation Kinetics of Nb(CN) inHigh-strength Low-alloy Steels[J]. Metall Trans,1992,23A:1641-1644.
    [166]周记华,管克智.金属塑性变形阻力[M].北京:机械工业出版社,1989:21-72.
    [167]朱维,韩志强,贾湛湛,等.挤压铸造铝合金弹粘塑性本构模型[J].金属学报,2008,44(4):440-444.
    [168]孙朝阳,方刚,雷丽萍,等.温度和相变影响的弹塑性本构关系及应用[J].材料热处理学报,2008,29(1):162-166.
    [169]柳百成,许庆彦,熊守美,等.铸造过程的多尺度模拟研究进展[J].机械工程学报,2003,39(10):53-63.
    [170]蒋友谅.非线性有限元法[M].北京:北京航空学院出版社,1990:59-81.
    [171]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003:174-204.
    [172]孟凡中.弹塑性有限变形理论和有限元法[M].北京:清华大学出版社,1985:105-131.
    [173]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社,1990:163-175.
    [174]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990:52-61.
    [175]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999:268-408.
    [176]杨伯源,张义同.工程弹塑性力学[M].北京:机械工业出版社,2003:176-197.
    [177]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].中国建筑工业出版社,2002:41-156.
    [178]郑颖人,孔亮.广义塑性力学及其运用[M].中国工程科学,2005,7(11):21-36.
    [179]曹鸿德.塑性变形力学基础与轧制原理[M].北京:机械工业出版社,1981:173-181.
    [180]Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena[M]. Oxford:Pergamon Press,1995:13-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700