酮洛芬酯类前体药物亚微乳剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酮洛芬(Ketoprofen)是一种苯丙酸类非甾体抗炎药衍生物,具有解热、抗炎、镇痛作用。与其它非甾体抗炎药一样,口服酮洛芬易引起胃肠道不良反应。本研究合成了两种酮洛芬酯类前体药物,通过体外水解动力学考察,筛选出适合于制备亚微乳剂的前体药物。系统的研究该前体药物的理化性质、稳定性,在此基础上成功的制备可供静脉注射的亚微乳剂,对该制剂的体内药动学行为、体内分布及药效学进行了研究,旨在探讨通过结构改造和剂型设计来提高药物疗效,降低毒副作用,拓宽药物的临床使用范围。
     以酮洛芬为原料,通过有机酸酯化反应合成了酮洛芬乙酸乙烯酯(KPA)和酮洛芬异丙酯(KPI)。该合成方法简单,目标化合物收率高,适合大批量生产。通过UV、IR、~1H-NMR、~(13)C-NMR及MS鉴定,确证了所合成的化合物的结构。
     建立了KPA和KPI体外高效液相色谱分析方法。对KPA和KPI的体外水解动力学进行了考察,结果显示,KPA表现出对体系的pH值及温度均较为敏感,在剂型制备过程中易于被催化水解。因此选择KPI进行进一步研究。
     KPI在不同pH条件下的溶解度及表观油水分配系数的测定结果表明,KPI在水中难溶,且受pH影响较小;LogP为4.26,具有较强的亲脂性;高温、高湿、光照实验结果表明,KPI稳定性良好;KPI在大鼠血浆及肝匀浆中的降解属酶促反应,均可迅速水解为原型药物酮洛芬,具备用作前体药物的条件。
     在处方前研究的基础上,采用高压均质法制备了KPI静脉注射亚微乳剂。考察了高压均质温度、压力及次数,卵磷脂的不同加入方法、载药量对亚微乳剂粒径及稳定性的影响,优化了乳化剂中卵磷脂与F68的比例和用量、油酸钠的用量,并考察了pH对亚微乳剂的影响。结果表明,乳化剂用量及卵磷脂与F68的比例等是影响亚微乳剂稳定性的主要因素。以卵磷脂—F68(2∶1)作为乳化剂,总量为1.2%时亚微乳剂稳定性较好且粒度分布均匀。确定了KPI亚微乳剂的最终处方及制备工艺为:以10%注射用大豆油为油相,乳化剂总量为1.2%(卵磷脂:F68=2:1),油酸钠0.1%,均质前调节pH至8.0,高压均质温度为40~50℃下,以800bar压力均质6~10次,充氮灌封,灭菌。以上方法制得的三批亚微乳剂的平均粒径为186.2nm,ζ电位为—30.34mv,含量为100.9%,包封率为98.8%。
     与稀释剂混合后考察亚微乳剂稳定性的结果显示,本品以生理盐水稀释后,ζ电位经时变化较大,提示制剂可能不稳定;以葡萄糖稀释后8h,粒径、ζ电位、包封率无显著变化。影响因素实验及长期稳定性结果显示在高温光照条件下放置10天以及在25±2℃及6±2℃条件下放置6个月本品的外观、pH、药物含量以及平均粒径、药物包封率等都没有显著变化。
     建立了大鼠血浆及组织匀浆中酮洛芬分析的高效液相色谱法。以自制酮洛芬溶液剂为参比制剂,考察了大鼠静脉注射KPI亚微乳剂的药动学过程,测定不同时间的血药浓度,以统计矩法计算体内药动学参数。结果表明,KPI亚微乳剂的药时曲线下面积为(903.28±240.66)μg·h/ml,为参比制剂的100.3%。两制剂的药时曲线相似,各药动学参数无显著性差异。KPI亚微乳剂静脉注射后,在大鼠肝、脾、脑中分布略高,与静脉注射酮洛芬溶液剂相比,酮洛芬在各主要组织中的分布无显著性差异。
     采用微渗析技术测定了大鼠静脉注射KPI亚微乳剂及酮洛芬注射液后血液及脑脊液中游离酮洛芬的浓度,以统计矩法计算游离酮洛芬的体内药动学参数。结果表明,两制剂静脉给药后,血液中游离酮洛芬的Ke分别为(0.0042±0.0004)和(0.0039±0.0003)min~(-1),t_(1/2)分别为(166.36±15.72)和(180.83±16.26)min,两制剂间无显著性差异。表明前体药物在血浆中短时间内水解为原型药物。酮洛芬溶液剂静脉注射后脑脊液中酮洛芬的AUC约为KPI亚微乳剂静脉注射后2.19倍,推测可能是由于剂型原因导致这种现象的出现。
     急性毒性实验结果显示,小鼠静脉注射KPI亚微乳剂的LD_(50)值为207.2mg/kg。安全性实验结果表明,KPI亚微乳剂体外不引起溶血,对家兔耳缘静脉无血管刺激性,豚鼠无过敏性;药效学实验结果表明,小鼠静脉注射给药时,KPI亚微乳剂对小鼠热板及热水致痛的镇痛效果好于或与酮洛芬相当,对由二甲苯引起的小鼠耳肿胀具有非常显著的抑制作用,效果好于等剂量阳性对照药物氢化可的松及酮洛芬。
Ketoprofen, a potent non-steroidal anti-inflammatory drug (NSAIDs), is a racemic proprionic acid derivative with well-recognized analgesic, anti-inflammatory and antipyretic properties. However, it is known that oral ketoprofen, like other NSAIDs, may cause gastrointestinal disturbances at a high incidence. In this study, two ester prodrugs of ketoprofen were synthesized. In vitro hydrolysis kinetics was investigated and the prodrug, which was suited to prepare the SE, was selected. Meanwhile the physical-chemical properties and stability were also investigated. KPI can be applied to the SE for intravenous administration. The pharmacokinetics, distribution and pharmacodynamics of the formulation were examined in order to explore the possibility of increasing the curative effect, decreasing the side effect and enlarging the clinical serviceable range by structure transform and formulation design.Ketoprofen vinyl acetate (KPA) and ketoprofen isopropyl ester (KPI) were synthesized by organic acid esterification method using ketoprofen as raw materials. The method was simple and reproducible. It can be applied to mass production. The structures of KPA and KPI were confirmed by UV、IR、~1H-NMR、~(13)C-NMR and MS, respectively.HPLC method was developed for the assay of KPA and KPI. The in vitro hydrolysis kinectics of KPA and KPI were studied. KPA was sensitive to pH and temperature of the system and was easily hydrolyzed. So, KPI was selected to further investigation.The solubility and oil/water partition coefficient of KPI in different pH was determined. The solubility of KPI in water was very low, and was not affected by pH. The LogP was 4.26, showed that it was highly lipophilic. KPI shows its well stability by the results of the experiments in high temperature, humidity and light studies. The degradation of KPI in rat plasma and liver homogenate was belonged to enzymatic reaction, and KPI can be degraded to ketoprofen fastly.According to the results of pre-formulation study, high-pressure homogenization method was developed to prepared KPI intravenous SE. The homogenization temperature, pressure, times and the way of addition of lecithin was studied. The ratio of the emulsifiers and the dosage of sodium oleate were optimized, and the effect of pH was also detected. The result showed that the amount and composition hold the most distinct influence on the stability of KPI SE. The formula showed satisfactory stability character when the total amount of emulsifier was 1.2%with the lecithin-F68 (2:1). The formulation and preparation technology of emulsifier was: the oil phase was 10%soybean oil, the total amount of emulsifier was 1.2%with the lecithin-F68 (2:1), and the sodium oleate was 0.1%. pH was adjusted to 8.0 before homogenization, and the condition was 800bar, 6~10 times, sealed with nitrogen and sterilized. The mean particle size was 186.2nm,ζpotential was-30.34mv, drug content was 100.9%and the encapsulation efficiency was 98.8%.
     Dilution test revealed that the sodium chloride injection (0.9%) diluted samples turned to unstable withζpotential changing markedly. The samples diluted with glucose injection (5.4%) showed good stability within 8 h. The influencing factor test showed that KPI SE has no significant change in 10 days under high temperature and illumination, and long-term stability study showed that KPI SE was stable after 6 months under 25±2℃and 6±2℃.
     The in vivo pharmacokinetic behavior of KPI SE was studied utilizing HPLC method. The pharmacokinetic study of KPI SE after intravenous administration in rats was performed. The pharmacokinetic parameters were studied according to non- compartment model. The result showed that the AUC value of KPI SE was (903.28+240.66)/μg·h/ml and 100.3%compared to ketoprofen solution. The concentration-time curves were alike and pharmacokinetic parameters showed no distinct difference. The distribution study after intravenous administration in rats of KPI SE indicated that no significant different of ketoprofen concentration in main tissues of rat compared to ketoprofen solution.
     Microdialysis technique was used to determine the concentration of free ketoprofen in rat plasma and CSF after intravenous administration of KPI SE and ketoprofen solution. The results showed that Ke and t_(1/2) of free ketoprofen in rat plasma of KPI SE were (0.0042±0.0004) min~(-1) and (166.36±15.72) min. Those of ketoprofen solution were (0.0039±0.0003)min~(-1) and (180.83±16.26)min. The AUC value of free ketoprofen in CSF of solution was 2.19 times larger than that of KPI SE.
     Acute toxicity result suggested that the LD_(50) of KPI SE for intravenous formulation were 201.2 mg/kg. The pharmaceutical safety test results indicated that haemolysis, stimulation and hypersensitiveness, none of these negative effects was found. The analgesic activity of KPI SE was better or the same as the ketoprofen in mice utilizing hot plate method and hot water method after intravenous administration in pharmacodynamics test. Inhibitory effect of KPI SE highly significant by using dimethylbenzene induced ear swelling in mice. And the effect was better than the same dosage of hydrocortisone and ketoprofen.
引文
[1] David SS. Pharmaceutical aspects of intravenous fat emulsion. J Hosp Pharm. 1974, 32(8&9): 149-171.
    [2] MacFie J. The development of fat emulsion. Nutrition, 1999, 15(7-8): 641.
    [3] 曹伟新.脂肪乳剂的特点和应用.腹部外科,2000,13(4):206-209.
    [4] 黄义昆,梁建成,彭年秀,等.电解质对“全合一”中脂肪乳稳定性影响.中国药房,2002,13(11):696-697.
    [5] 陈亭苑,张思源.静脉脂肪乳剂的应用和进展.肠外与肠内营养,1995,2(4):247-252.
    [6] Collins-Gold LC, Lyons, RT, Bartholow LC. Parenteral emulsions for drug delivery. Adv Drug Deliv Rew, 1990, 5: 189-208.
    [7] 孟玉芳,龚明涛,张钧寿.含药静脉注射用脂肪乳剂的研究进展.中国医药工业杂志,2004,35(9):558-561.
    [8] 陆彬.药物新剂型与新技术.人民卫生出版社,1998:56.
    [9] Magdassi S and Siman-Tov A. Formation and Stabilization of Perfluorocarbon Emulsions, Int J Pharm, 1990, 59: 69-72.
    [10] Groves MJ and Herman CJ. The redistribution of bulk aqueous phase, phospholipids during thermal stressing of phospholipid-stabilized emulsions. J Pharm Pharmacol, 1993, 45: 592-596.
    [11] 董泽民.乳剂给药系统药物的靶向输送与释放.中国医药工业杂志,1995,26(12):558-563.
    [12] 齐可民.脂肪乳剂的研究与应用进展.国外医学儿科学分册,2003,30(5):251-253.
    [13] Singh M and Ravia LJ. Parenteral emulsions as drug carrier systems. J Parenter Sci Technol, 1986, 40(1): 34-41.
    [14] Constantinides PP, Lambert KJ, Tustian AK, et al. Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res, 2000, 17(2): 175-182.
    [15] Brime B, Moreno MA, Frutos G, et al. Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation. J Pharm Sci, 2002, 91(4): 1178-1185.
    [16] Jumaa M, Muller BW. Development of a novel formulation for tetrazepam using a fipid emulsion. Drug Dev Ind Pharm, 2001, 27(10): 1115-1121.
    [17] Akkar A, Muller RH. Intravenous itraconazole emulsions produced by SolEmuls technology. Eur J Pharm Biopharm, 2003, 56(1): 29-36.
    [18] Wang Y, Cory AL. A novel stable supersaturated submicron lipid emulsion of tirilazad. Pharm Dev Technol, 1999, 4(3): 333-345.
    [19] Norden TP, Siekmann B, Lundquist S, et al. Physicochemical characterization of a drug-containing phospholipid-stailised o/w emulsion for intravenous administration. Eur J Pharm Sci, 2001, 13(4): 393-401.
    [20] Nasirideen S. Naproxen incorporated lipid emulsion. Ⅰ. Fomulation and stability study. J clinical pharm and therap, 1998, 23: 57-65.
    [21] Medina J, Salvado A, del Pozo A. Use of ultrasound to prepare lipid emulsion of lorazepam for intravenous injection. Int J Pharm, 2001, 216(1-2): 1-8.
    [22] Rodrigues DG, Covolan CC, Coradi ST, et al. Use of chiolesterol-rich emulsion that binds to lowdensity lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol, 2002, 54(6): 765-772.
    [23] 余翠琴.凯时的制剂特点.中国医院药学杂志,2002,22(11):691-692.
    [24] 白彦平,张立新,龙立平,等.前列腺素E1脂肪乳注射也治疗下肢静脉病8例.中日友好医院学报,1998,8(12):3.
    [25] 高晓黎,程利勇,孙殿甲,等.定量评价去氢骆驼蓬碱注射用乳剂的组织靶向性.药学学报,2000,35(2):142-146.
    [26] Wang JP, Maitani Y, Takayama K. Antitumor effects and pharmacokinetics of aclacinomycin A carried by injectable emulsions composed of vitamin E, cholesterol and PEG-lipid. J Pharm Sci, 2002, 91(4): 1128-1134.
    [27] 全东琴,崔光华,董华进,等.醋酸地塞米松静注乳剂的抗炎活性及动物组织分布研究.中国药学杂志,2002,37(8):591-594.
    [28] Ohmukai O. Lipo-NSAID preparation. Adv Drug Deli Rev, 1996, 20: 203-207.
    [29] Lundberg BB, Griffiths G, Hansen HJ. Conjugation of an anti-B-cell lymphoma monoclonal antibody, LL2, to long-circulating dmg-carrier lipid emulsions. J Pharm Pharmacol, 1999, 51(10): 1099-1105.
    [30] Kawakami S, Yamashita F, et al. Disposition characteristics of emulsions and incorporated drugs after systemic or local injection. Adv Drug Deliv Rev, 2000, 45: 77-88.
    [31] Chung H, Kim TW, Kwon M, etal. Oil components modulate physical characteristics and function of the natural oil emulsions as drug or gene delivery system. J Controlled Release, 2001, 71(3): 339-350.
    [32] 陈瑞珠,汪国玮,马晋隆,等.萵甲醚靶向性静脉乳剂的研究.上海医药,1997,1:28-30.
    [33] David F, Driscoll. The significance of particle/globule-sizing measurements in the safe use of intravenous lipid emulsions. J Disper Sci Tech, 2002, 23(5): 679-687.
    [34] Sliverstein FE, Graham DY, Senior JR, et al. Misoprostol reduces serious gastrointestinal complications in patients with rheumatoid arthritis receiving nonsteroidal anti-inflammatory drugs. A randomized, double-blind, placebo-controlled trial. Ann Intern Med, 1995, 123(4): 241.
    [35] Kurata JH, Nogawa AN, Noritake D. NSAIDs increase risk of gastrointestinal bleeding in primary care patients with dyspepsia. J Fam Prract, 1997, 45(3): 227.
    [36] 仲珑瑾,程能能.非甾体抗炎药致胃肠道损害机制的研究进展.2004,13(1):56-59.
    [37] Williams RL and Upton RA. The clinical pharmacology of ketoprofen. J Clin Pharmacol, 1988, 28: S13-S22.
    [38] 李性天,翟丽霞.酮洛芬和曲马多对术后疼痛的疗效比较.中国新药杂志,1992,1(1):39-41.
    [39] 王瑜,张家胜,董六一,等.酮洛芬的脊髓镇痛作用及其机制.中国药理学通报,1998,14(3):251-253.
    [40] 王瑜,赵维中,陈志武,等.酮洛芬镇痛作用与前列腺素、一氧化氮、氧自由基的关系.安徽医科大学学报,1998,33(4):257-259.
    [41] Giovanni FP, Giulia B, Piera DM, et al. Microencapsulation of semisolid ketoprofen/polymer microspheres. International Journal of Pharmaeeuties, 2002, 242: 175-178.
    [42] Tansel C, Nut sin G, Turner B. Preparation and in vitro evaluation of modified release ketoprofen microsponges. Ⅱ Fannaco, 2003, 58(2): 101-106.
    [43] Khan MA, Dib, et al. Statistical optimization of ketoprofen-eudragit S 100 coprecipitates to obtain controlled release tablets. Drug Dev Ind Pharm, 1996, 22: 135-141.
    [44] E1 G, I, Safwat, et al. Microencapsulation of ketoprofen using w/o/w complex emulsion technique. J microencapsulation, 1996, 13: 67-68.
    [45] 陈琰,胡晋红,范国荣,等.酮洛芬的制剂研究.药学进展,2001,25(4):219-223.
    [46] 劳志英.酮洛芬和双氯芬酸肌肉注射止痛作用的比较.新药与临床,1995,14(5):264-267.
    [47] 酮洛芬注射液治疗骨关节炎、类风湿性关节炎及术后镇痛的临床疗效观察.医药月刊,1992,8:11-13.
    [1] B. Slater, A. McCormack, A. Avdeef, et al. pH-metric logP 4. Comparison of partition coefficients determined by HPLC and potentiometric methods to literature values. J Pharm Sci, 1994, 83(9): 1280-1283.
    [1] 郑俊民.经皮给药新剂型.北京,人民卫生出版社,1997,255.
    [2] 朱文涛.物理化学(下).北京:清华大学出版社,1995,266-269.
    [3] Tantishiaiyaku V, Wiwattanawongsa K, Pinsuwan S, et al. Characterization of mefenamic acid-guaiacol ester: stability and transport across Caco-2 cell monolyayer. Pharm Res, 2002, 19: 1013-1018.
    [4] 毕殿洲主编.药剂学(第四版).人民卫生出版社,1999,13-29.
    [5] Bruggeman WA, Steen JVD, Hutxinger O. Reversed-phase thin-layer chromatography of polynuclear aromatic hydrocarbons and chlorigated biphenyls relationship with hydropbobicity as measured by aqueous solubility and octanol-water partition coefficient. J Chromatogr, 1982, 238: 335-346.
    [6] 梁文权主编.生物药剂学与药代动力学.北京:人民卫生出版社,2000,258.
    [1] Thomas KB. High pressure homogenization of parenteral fat emulsion -influence of pressure of process parameters on emulsion quality. Eur J Pharrn. Biopharm, 1994, 40(3): 157-160.
    [2] 苏德森.物理药剂学.沈阳,沈阳药科大学,144-147.
    [3] 廖颂明.中/长链脂肪乳注射液制备工艺的研究.广东药学院学报,2001,17(3):170-172.
    [4] 李少英.正交设计法筛选30%脂肪乳注射液的工艺条件.广东药学,1999,9(1):22-23.
    [5] Ishii, F. Effect of phosphilipid emulsifiers on physicochemical properties of intreaveneous fat emulsion and/or drug carrier emulsion. J Pharm. Pharmacol, 1990, 42, 513~515.
    [6] Washington C. Ageing effects in parenteral fat emulsions: the role of fatty acids. Int J Pharm, 1987, 39, 33~37.
    [7] Washington C. The production of parenteral feeding emulsions by microfluidizer. Int J Phann, 1988, 44, 169~176.
    [8] Zhao XX. Study of Chinese Herbal Injections (中药注射剂学). Guangdong Science and Techmology Publishing House, 2000: 286.
    [9] Gaysorn G, Robert TL, Mahesh V. Effect of surface charge on the stability of Oil/Water emulsions during steam sterilization. J Phann Sci, 1999, 88(4): 454-458.
    [10] Groves MJ and Herman CJ. The redistribution of bulk aqueous phase. Phospholipids during thermal stressing of phospholipid-stabilized emulsions. J Phann Phannacol, 1993, 45: 592-596.
    [11] 陆彬主编,药物新剂型与新技术,北京;人民卫生出版社,1998.
    [12] Bock T. Emulsionen als parenterale Arzneistofftraeger systeme - Herstellung, Charakterisierung und Optimierung. Ph. D. Thesis, Chrisfian-Albrechts-University, Kiel, (1994).
    [13] Francoise N and Gilberte MM edited. Pharmaceutical Emulsions and Suspensions. Marcel Dekker Inc., New York, 2000.
    [14] Levy MY, Schutze W, Fuhreret C, et al. Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsulation, 1994, 11(1): 79-92.
    [15] Napper DH. Polymer stabilization of colloidal dispersions. London, Academic Press, 1983.
    [1] 毕殿洲主编,药剂学,北京:人民卫生出版社,1999,第四版.
    [2] Benita S, Levy ML. Submicron emulsions as colloidal drag carriers for intravenous administration: comprehensive physicochemical characterization. J Pharm Sci, 1993, 82(11): 1069-1079.
    [3] Driscoll DF, Etzlr F, Barber TA, et al. Physicochemical assessments of parenteral lipid emulsion: light obscuration versus laser diffraction. Int J Pharm, 2001, 219: 21-37.
    [4] Nicoli DF, Mckenzie DC, Wu JS. Application of dynamic light scattering to particle size analysis of macromolecules. American Laboratory, 1991, 23 (17): 32-40.
    [5] 王思玲,孙长山,于建军,等.比较Gaussia曲线分布与Nicomp多波型分布分析在纳米分散液粒径测定中的应用.沈阳药科大学学报,2003,20(5):321-323.
    [6] 徐辉碧,杨祥良,等.纳米技术在中药研究中的应用.清华大学出版社.2002:57.
    [7] 王思玲,孙长山,王仁胜,等.激光散射法分析异丙酚纳米乳剂的粒径大小与分布.沈阳药科大学学报,2003,20(5):336-339.
    [8] 王思玲,李玉娟,张景海,等.电泳光散射法测定异丙酚微乳剂的动电电位.沈阳药科大学学报,2002.19(5):313-315.
    [9] Nicoli DE Wu JS, Chang YJ, et al. ζ potential and particle size analysis of colloids using ELS and DLS. American Laboratory, 1997, 9: 12-15.
    [10] 周祖康.动态光散射.化学通报,1986,10:34-39.
    [11] Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release, 2004, 95(3): 627-638.
    [12] Lieberman HA, Rieger MM, Banker GS. Pharmaceutical dosage forms: disperse systems, Vol 2, New York, Marcle Dekker Inc., 1996.
    [1] 刘昌孝,孙瑞元.药物评价实验设计与统计学基础.北京:军事医学科学出版社.1999,P107.
    [2] 钟大放.以加权最小二乘法建立生物分析标准曲线的若干问题.药物分析杂志,1996,16(5):343-346.
    [3] 国家药典委员会.中华人民共和国药典,二部,2000年版.北京:化学工业出版社,2000,附录,193-197.
    [4] 刘昌孝.缓释制剂的药物动力学原理及其评价.天津药学,1999,11(1):1-3.
    [5] Lin LC, Hung LC and Tsai TH. Determination of (—)-epigallocatechin gallate in rat blood by microdialysis coupled with liquid chromatography. J Chrom A, 2004, 1032: 125-128.)
    [6] Evrard PA, Deridder G and Verbeeck RK. Intravenous microdialysis in the mouse and the rat: development and pharmacokinetic application of a new probe. Pharm Res, 1996, 13(1): 12-17.
    [7] Mi-Jeong, L., Min-Hwa, L. and Chang-Koo, S. (1995) Inverse targeting of drugs to reticuloendothelial system-rich organs by lipid microemulsion emulsified with poloxamer 338. Int J Pharm, 113: 175-187)
    [8] Williams RL and Upton RA. The clinical pharmacology of ketoprofen. J. Clin. Pharmacol., 1998, 28, S13-S22.
    [9] 丁平田,徐辉,郑俊民.微渗析技术在药代动力学和药物代谢研究中的应用.药学学报,2002,37(4):316-320.
    [10] Ungerstedt U, Microdialysis-principles and applications for studies in animals and man. J Int Med, 1991, 230: 365-373.
    [11] Verbeek RK. Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv Drug Del Rev, 2000, 45: 217-228.
    [12] Hamberger A, Jacobson 1, Nystrom B, et al. Microdialysis sampling of the neuronal environment in basic and clinical research. J Int Med, 1991, 230: 375-377.
    [13] Chaurasia CS. In vivo microdialysis sampling: theory and applications. Biomed Chromatogr, 1999, 13: 317-332.
    [14] Stahle L. Drug distribution studies with microdialysis. 1. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci. 1991, 49: 1835-1842.
    [15] 汪海林,邹汉法,张玉奎.微透析-液相色谱法研究药物与蛋白竞争结合.中国科学(B辑),1998,28(1):71-77.
    [16] Evrard PA, Cumps J, Verbeeck RK, Concentration-dependent plasma protein binding of flurbiprofen in the rat: an in vivo microdialysis study. Pharm Res, 1996, 13(1): 18-22.
    [17] K. M. Park, C. K. Kim, Preparation and evaluation of flubiprofen-loaded microemulsion for parenteral delivery. Int J Pharm, 1999, 181: 173-179;
    [18] W. Mehnert, K Maeder, Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Dell. Rev, 2001, 47: 165-196.
    [19] Takino T, Konishi K, Takakura Y, et al. Long circulating emulsion carrier systems for highly lipophilic drugs. Biol Pharm Bull, 1994, 17(1): 121-125.
    [20] 全东琴,崔光华,董华进,等.醋酸地塞米松静注乳剂的抗炎活性及动物组织分布研究.中国药学杂志,2002,37(8):591-594.
    [21] 徐美英,刘树孝.止痛新药-酮洛芬.国外医学:麻醉学与复苏分册,1992,13(6):325-328.
    [22] 王瑜,张家胜,董六一,等.酮洛芬的脊髓镇痛作用及其机制.中国药理学通报,1998,14(3):251-253.
    [23] 王瑜,赵维中,陈志武,等.酮洛芬镇痛作用与前列腺素、一氧化氮、氧自由基的关系.安徽医科大学学报,1998,33(4):257-259.
    [24] Wu JW, Shih HH, Wang SC, et al. Determination and pharmacokinetic profile of pyrazinamide in rat blood, brain and bile using microdialysis coupled with high-performance liquid chromatography and verified by tandem mass spectrometry. Analytica Chimica Acta, 2004, 522: 231-239.
    [25] Lundberg BB, Risovic V, Ramaswamy M, et al. A lipophilic paclitaxel derivation incorporated in a lipid emulsion for parenteral administration. J Controlled Release, 2003, 86: 93-100.
    [1] 安国红,王莉,范星彦.注射用酮洛芬的制备及质量控制[J].中国药业,2003,12(7):47-48.
    [2] 徐叔云,主编.药理实验方法学.第二版[M].北京:人民卫生出版社,1991.
    [3] 章元沛.药理学实验.北京:人民卫生出版社,1996,226.
    [4] 全东琴,崔光华,董华进,等.醋酸地塞米松静注乳剂的抗炎活性及动物组织分布研究.中国药学杂志,2002,37(8):591-594.
    [5] 徐美英,刘树孝.止痛新药-酮洛芬.国外医学:麻醉学与复苏分册,1992,13(6):325-328.
    [6] 王瑜,张家胜,董六一,等.酮洛芬的脊髓镇痛作用及其机制.中国药理学通报,1998,14(3):251-253.
    [7] 王瑜,赵维中,陈志武,等.酮洛芬镇痛作用与前列腺素、一氧化氮、氧自由基的关系.安徽医科大学学报,1998,33(4):257-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700