污水处理过程数学模型方法及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何提高污水处理效率和过程优化控制策略是国内外污水处理研究领域普遍关注的问题。污水处理过程具有时变性、非线性和复杂性等鲜明特征,这使得污水处理系统的运行和控制极为复杂。在我国当前水环境形势下,开展污水处理过程数学模型方法研究,即具有重要的理论价值,也有紧迫的现实需要。
     数学模型方法的有效性和可行性是数学模型应用推广的前提。论文回顾了污水处理过程模型近50多年的发展历程,认为数学模型是污水处理管理和决策不可缺少的工具;同时由于传统数学模型方法的相对复杂性与实际操作人员的知识有限性之间的矛盾,当前污水处理过程模型推广应用存在着两个难点:一是缺少简捷有效的机理模型校核方法;二是缺少稳定性和准确性俱佳黑箱模型方法。因此,应该寻求简捷可靠、行之有效的模型方法及其关键技术,以增强污水处理过程模型的实用性和可行性。
     论文以提高污水处理过程模型精度和简化模型校核步骤两方面为目标,提出了一种待估参数选择方法,反向选择法。该方法通过分析模型输出均方差,并将均方差分解为方差项和偏差项:前者与测量噪声方差和所选待估参数个数成正比,后者同模型参数取值及其灵敏度有关。反向选择法最初设定全部模型参数均属于待估参数集,然后逐步行进,每一步挑选出一个对提高模型精度无益的参数,并将其排除在待估参数集之外。随着待估参数个数的减少,方差项值逐渐降低,偏项值则逐渐增加,当偏项值增加幅度大于方差项值减少幅度时,便停止选择步骤,那么仍停留在待估参数集的参数则被用于模型校核。反向选择法在计算参数灵敏度时考虑了参数的不确定性,这更符合实际情况。通过与全体参数估计法和另一种待估参数选择方法正交选择法对比,发现反向选择法能够大大降低模型校核估计参数数目,同时提供了良好的模拟和预测性能。此外,论文还通过实验室规模的SBR系统模型验证了反向选择法的有效性。
     机理模型与人工神经网络(ANN)模型相结合的复合模型方法能够在机理模型未校核的前提下实现满意的模拟和预测精度。论文提出了三种复合模型方法:加和式并联复合模型方法(ASM2d+ANN)、乘积式并联复合模型方法(ASM2d*ANN)与串联复合模型方法(ASM2d-ANN)。复合模型方法中,以ANN模型学习机理模型因未校核而引起的误差部分,进而完成最终模拟。基于某污水处理脱氮除磷过程测量数据,分别建立了未校核的ASM2d机理模型, ASM2d+ANN模型,ASM2d*ANN模型与ASM2d-ANN模型,采用这些模型模拟出水水质。模拟结果表明:尽管ASM2d机理模型未经校核、并存在较大误差,但其输出能展示出与出水水质相似的波动特征,这为构建复合模型奠定了基础;基于ASM2d机理模型,辅以ANN模型,三种复合模型均显示了良好的模拟和预测性能,这表明复合模型不仅具有良好的向内差值功能,而且拥有可靠地外推插值能力;三种复合模型之中,ASM2d-ANN模型性能最优,其串联结构决定了ASM2d-ANN模型能够合理地描述存在于ASM2d机理模型输出和变量测量值之间的非线性关系。因此,复合模型方法适用于污水处理过程模拟,是一种简捷有效的模型方法。
     黑箱模型方法是解决污水处理复杂动态过程模拟问题的有效途径。论文深入探讨了三种黑箱模型方法:适应性模糊推理系统(ANFIS)、小波网络和小波变换-模糊马尔可夫链方法。ANFIS是一种具有神经网络学习特征的模糊推理系统;论文利用高浓度废水厌氧处理过程数据,验证了ANFIS模型的有效性;并且针对ANFIS模型快速收敛的特点,提出了一种模型输入优化选择方法,潜在式最优输入选择法,通过与主成份分析法对比以及模型不确定性分析,表明基于潜在式最优输入选择法构建的ANFIS模型泛化能力强、稳定性好。小波网络是隐层神经元为小波函数的单隐层神经网络;论文通过膜滤过程膜通量测量数据验证了小波网络模型的有效性,并且发现小波网络具有网络构建方法明确、网络初始化效果好、快速收敛等显著特征,可用于污水处理过程模拟。小波变换-模糊马尔可夫链方法是一种时间序列预测方法,其首先利用小波变换将原始时间序列分解为若干子序列,然后对每个子序列分别建立模糊马尔可夫链模型,最后再通过小波重构将各子序列输出合并以预测原始时间序列;论文将此方法用于污水处理厂进水BOD预测,结果表明小波变换-模糊马尔可夫链方法适用于污水处理过程时间序列预测,且可以通过适当增加模糊划分数目与改变小波函数类型提高预测精度。通过对上述三种黑箱模型方法的分析,表明黑箱模型方法能够充分利用现有数据,准确地把握住污水处理过程中的非线性不规则特征,可以作为污水处理过程模拟方法的选择。
It is important to improve wastewater treatment efficiencies and optimize controling strategies. Because wastewater treatment process is often characterized by time-varability, non-linearity and complexity, it is difficult to operate and control wastewater treatment systems normally. Now water environment is seriously threatened in China. Thus it is both theoretically critical and practically essential to study wastewater treatment process models.
     Mathematical models must have validity and practicability to ensure their popularization. Following a systematic review for the development of wastewater treatment process models over the last fifty years, this thesis highlighted the need for mathematical models in wastewaetr treatment management and decision making. However, there are disputes between profound model theories and limited ability of model designer. Using wastewater treatment process models are now restricted by two points. One is the absence of short-cut for mechanism model calibration, and the other is the lack of black-box models which work well with both stability and accuracy. Therefore, establishing credible and effective modeling approaches and key technologes will be potential for improvinig the validity and practicability of wastewater treatment process models.
     The thesis proposed a parameter selection approach for model calibration, the inverse selection approach. The proposed approach selected parameters to be estimated by decreasing the mean square errors (MSE) of model output. The MSE consists of two part, a variance item and a bias item. The variance item is proportional to the variance of measurement random errors and the number of selected parameters, and the bias item is related to the values and sensitivities of model parameters. In the first step, the selection procedure made an assumption that all parameters should be estimated. In following steps, each step removed one parameter which contributed the least to improving model simulating accuracy. Follwing a removed parameter, the variance item was reduced and the bias item was increased. Once the decreased value of the variance item was less than the increased value of the bias item, the selection procedure would be stoped, and the remained parameters would be estimated. Note that the inverse selection calculated the sensitivity with parameter uncertainty, which made the procedure more objective. The inverse selection approach was evaluated with experimental data of a lab-scale SBR equipment. The results showed that the inverse selection approach is valid during calibrating mechanism models.
     Three hybrid model approaches were proposed to represent the dynamic behavior of wastewater treatment processes. Each hybrid model consists of a mechanism model and an artificial neural network (ANN) model. Those models are the additive parallel model (ASM2d+ANN), the multiplying parallel model (ASM2d*ANN), and the cascade model. In the hybrid models, the ANN submodels are used to simulate the error part of the uncalibrated mechanism model. Using experimental data of a nutrient removal process, the proposed models were evaluated to predict the effluent. The results showed that all three models presented with good prediction as well as fitting. Such good performance was caused by the mechanism model which contributed good extrapolation and the black-box model which shared good adatability. The performance of ASM2d-ANN model was better than the others, which was caused by its cascade structure. The cascade hybrid structure ensure the model accurately described the nonlinear relationship between the output of mechanism model and the measurements. Therefore, the hybrid models is suitable for modeling wastewater treatment.
     Pure black-box model approaches could also be alternatives for modeling wastewater treatment process. Adaptive-network-based fuzzy inference system (ANFIS), the wavelet network, and the wavelet transform-fuzzy Markov chains approach were discussed here. Firstly, ANFIS models were evaluated by experimental data of wastewter anaerobic treatment process, and an potential optimal input selection procedure was proposed for ANFIS models. ANFIS models based on the potential optimal input selection procedure were found with good performance and generalization. Secondly, A wavelet network model was used to simulate the permeate flux of membrane filtration. The wavelet network is a special neural network with only single hidden layer whose neuron is a wavelet function. The results showed that the wavelet network could be constructed definitely and have an good initialization which leads to a fast convergence. Thirdly, the wavelet transform-fuzzy Markov chains approach was evaluated by predicting influent BOD time series. The time series model showed good predicting precision, and could be improved by increasing fuzzy partition and changing the wavelet type. All the above black-box models showed that the black-box model approach could sufficiently make use of the avaiable data and successfully depict the nonlinear irregularity, so it could be used to model wastewater treatment process.
引文
[1]中华人民共和国环境保护部. 2006年中国环境状况公报. http://jcs.mep.gov.cn /hjzl/zkgb/ 06hjzkgb/, 2007-06-19
    [2]中华人民共和国环境保护部. 2008年中国环境状况公报. http://jcs.mep.gov.cn /hjzl/zkgb/2008zkgb/, 2009-06-09
    [3]顾夏声.废水生物处理数学模式.第二版.北京:清华大学出版社, 1993, 1-237
    [4]Lawrence A W, Mccarty P L. Unified Basis For Biological Treatment Design and Operation. Journal of the Sanitary Engineering Division-ASCE, 1971, 97(NSA6):930
    [5]Eckenfelder W. Water Quality Engineering for practicing engineers. New York:Barnes & Nobel, Inc., 1970, 1-30
    [6]Henze M, Grady C P L, Gujer W, et al. Activated Sludge Model No. 1. IAWQ Scientific and Technical Report No. 1. London, UK:IWA Publishing, 1987, 1-33
    [7]Brdjanovic D, Van Loosdrecht M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder. Water Research, 2000, 34(3):846-858
    [8]Salem S, Berends D, Heijnen J J, et al. Model-based evaluation of a new upgrading concept for N-removal. Water Science and Technology, 2002, 45(6):169-176
    [9]Rodriguez-Roda I, Sanchez-Marre M, Comas J, et al. A hybrid supervisory system to support WWTP operation: implementation and validation. Water Science and Technology, 2002, 45(4-5):289-297
    [10]汪慧贞,曹秀芹.活性污泥模型NO.1及“SSSP程序”在中国污水厂适用性的初步.北京建筑工程学院学报, 1996, 12(3):66-74
    [11]Thesen A. Some notes on systems models and modelling. International Journal of Systems, 1974, 5(2):145-152
    [12]Popper K. R.猜想与反驳:科学知识的增长.傅季重.上海:上海译文出版社, 2005, 51-52
    [13]Beck M B. Water-Quality Modeling - A Review of the Analysis of Uncertainty. Water Resources Research, 1987, 23(8):1393-1442
    [14]韦安磊,曾光明,黄国和等.计算流体力学在二沉池改造中的应用.工业用水与废水, 2005, 36(3):52-54
    [15]Penya-Roja J M, Seco A, Ferrer J, et al. Calibration and validation of Activated Sludge Model No.2d for Spanish municipal wastewater. Environmental Technology, 2002, 23(8):849-862
    [16]Guclu D, Dursun S. Amelioration of carbon removal prediction for an activated sludge process using an artificial neural network (ANN). Clean-Soil Air Water, 2008, 36(9):781-787
    [17]El-Din A G, Smith D W. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research, 2002, 36(5):1115-1126
    [18]Tomida S, Hanai T, Honda H, et al. Construction of COD simulation model for activated sludge process by recursive fuzzy neural network. JOURNAL OF Chemical Engineering of Japan, 2001, 34(3):369-375
    [19]Lee D S, Park J M. Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor. Journal of Biotechnology, 1999, 75(2-3):229-239
    [20]曹海彬,张代钧,卢培利.活性污泥模型进水COD组分的测定方法.重庆大学学报:自然科学版, 2005, 28(9):83-87
    [21]卢培利,张代钧,严晨敏等.活性污泥法动力学模型应用中的参数校核.环境科学与技术, 2002, 25(5):13-14
    [22]张代钧,卢培利,严晨敏等.活性污泥2号模型用于城市污水处理厂脱氮除磷改造的研究.环境科学学报, 2003, 23(3):332-337
    [23]张天,张代钧,卢培利等.基于微分代数方法的生物除磷模型参数结构可识别性研究.环境科学学报, 2010(1):97-102
    [24]蒋茹,曾光明,黄国和等.改进的遗传算法在城市污水处理厂区间数优化设计模型中的应用.安全与环境学报, 2004, 4(3):45-48
    [25]杨力,张盼月,曾光明等. ASM No.2d模型模拟SBR工艺同步脱氮除磷效能.环境工程学报, 2008, 2(5):599-603
    [26]曾光明,何静,马荣骏等.运用动力学模型研究盐度对厌氧生物的抑制作用.中南大学学报:自然科学版, 2005, 36(4):599-604
    [27]Downing A L, Painter H A, Knowles G. Nitrification in the activated sludge process. Journal of Institute of Sewage Purification, 1964, 64(2):130-158
    [28]Lawrence A W, Mccarty P L. Unified basis for biological treatment design and operation. Journal of the Sanitary Engineering Division, ASCE, 1970, 96(3):757-778
    [29]Mckinney R E. Mathematics of complete mixing activated sludge. Journal of the Sanitary Engineering Division, ASCE, 1962, 88(SA3):87-113
    [30]Mckinney R E, Ooten R J. Concepts of complete mixing activated sludge. In:Transcripts of 19th Annual Conference of Sanitary Engineering and Architectural Bulletin No. 60. University of Kansa, Lawrence, 1969, 32-59
    [31]Gujer W, Henze M, Mino T, et al. Activated Sludge Model No. 3. WATER SCIENCE AND TECHNOLOGY, 1999, 39(1):183-193
    [32]Henze M, Gujer W, Mino T, et al. Activated Sludge Model No. 2. IWA Scientific and Technical Report No. 3. London, UK:IWA Publishing, 1995, 1-10
    [33]Henze M, Gujer W, Mino T, et al. Activated Sludge Model No.2d, ASM2d. Water Science and Technology, 1999, 39(1):165-182
    [34]Rieger L, Koch G, Kuhni M, et al. The EAWAG Bio-P module for activated sludge model No. 3. Water Research, 2001, 35(16):3887-3903
    [35]Brdjanovic D, Van Loosdrecht M, Versteeg P, et al. Modeling COD, N and P removal in a full-scale wwtp Haarlem Waarderpolder. Water Research, 2000, 34(3):846-858
    [36]Barker P S, Dold P L. General model for biological nutrient removal activated-sludge systems: model presentation. Water EnvironmentResearch, 1997, 69(5):969-984
    [37]Dold P L, Ekama G A, Marais G R. The activated sludge process 1. a general model for the activated sludge process. Progress in WaterTechnology, 1980, 12(6):47-77
    [38]Vanhaandel A C, Ekama G A, Marais G V. The activated-sludge process .3. single sludge denitrification. Water Research, 1981, 15(10):1135-1152
    [39]Marais G R, Ekama G. The activated sludge process: Part I-steady state behavior. Water SA, 1976, 2(4):163-199
    [40]Grady C, Gujer W, Henze M, et al. A model for single-sludge waste-water treatment systems. Water Science and Technology, 1986, 18(6):47-61
    [41]Dold P L, Marais G V. Evaluation of the general activated-sludge model proposed by the iawprc task group. Water Science and Technology, 1986, 18(6):63-89
    [42]Henze M, Grady C, Gujer W, et al. A general-model for single-sludge waste-water treatment systems. Water Research, 1987, 21(5):505-515
    [43]Gujer W. Activated sludge modelling: past, present and future. Water Science and Technology, 2006, 53(3):111-119
    [44]Hauduc H, Gillot S, Rieger L, et al. Activated sludge modelling in practice: an international survey. Water Science and Technology, 2009, 60(8):1943-1951
    [45]Lesouef A, Payraudeau M, Rogalla F, et al. Optimizing nitrogen removal reactor configurations by on-site calibration of the iawprc activated-sludge model. Water Science and Technology, 1992, 25(6):105-123
    [46]Fall C, Loaiza-Navia J, Esparza-Soto M. Full activated sludge model no. 1 calibration experience at a medium-size WWTP in Mexico. Water Science and Technology, 2009, 60(12):3069-3082
    [47]Levstek M, Plazl I, Koloini T. Modelling of a pilot wastewater treatment plant operated with variable inflows. Chemical and Biochemical Engineering Quarterly, 2006, 20(1):85-91
    [48]蓝梅,李雯,吴宏举等.基于ASM1的城市污水厂优化诊断与改造.中国给水排水, 2009(12):65-68
    [49]季民,霍金胜,胡振苓等.活性污泥法数学模型的研究与应用.中国给水排水, 2001, 17(8):18-22
    [50]张代钧,卢培利,陈丹琴等.传统活性污泥法COD去除及脱氮改造的模拟.环境科学学报, 2002, 22(04):448-453
    [51]邹亮,曾光明,黄国和等.活性污泥系统的回流污泥量控制策略.中国给水排水, 2004, 20(1):1-6
    [52]Stamou A, Katsiri A, Mantziaras I, et al. Modelling of an alternating oxidation ditch system. Water Science and Technology, 1999, 39(4):169-176
    [53]Lesage N, Sperandio M, Lafforgue C, et al. Calibration and application of a 1-D model for oxidation ditches. Chemical Engineering Research & Design, 2003, 81(A9):1259-1264
    [54]Stamou A I. Modelling of oxidation ditches using an open channel flow 1-D advection-dispersion equation and ASM1 process description. Water Science and Technology, 1997, 36(5):269-276
    [55]邓荣森,杜康平,王涛等.活性污泥法动力学模型与氧化沟设计.中国给水排水, 2007, 23(24):38-41
    [56]揭大林,操家顺,花月等. WEST仿真软件在污水处理中的应用研究.环境工程学报, 2007, 1(3):138-141
    [57]刘广立,王玉珏,施汉昌等.活性污泥工艺模拟系统软件在氧化沟中的应用.中国环境科学, 2001, 21(4):359-361
    [58]Mace S, Dosta J, Gali A, et al. Optimization of biological nitrogen removal via nitrite in a SBR treating supernatant from the anaerobic digestion of municipal solid wastes. Industrial & Engineering Chemistry Research, 2006, 45(8): 2787-2792
    [59]Coelho M, Russo C, Araujo O. Optimization of a sequencing batch reactor for biological nitrogen removal. Water Research, 2000, 34(10):2809-2817
    [60]孙光伟,毛弘毅.序批式活性污泥法数学模型的改进.哈尔滨建筑大学学报, 2001, 34(4):37-39
    [61]Baek S H, Jeon S K, Pagilla K. Mathematical modeling of aerobic membrane bioreactor (MBR) using activated sludge model no. 1 (ASM1). Journal of Industrial and Engineering Chemistry, 2009, 15(6):835-840
    [62]Jiang T, Liu X, Kennedy M D, et al. Calibrating a side-stream membrane bioreactor using Activated Sludge Model No. 1. Water Science and Technology, 2005, 52(10-11):359-367
    [63]Plattes M, Henry E, Schosseler P M, et al. Modelling and dynamic simulation of a moving bed bioreactor for the treatment of municipal wastewater. Biochemical Engineering Journal, 2006, 32(2):61-68
    [64]Maryns F, Bauwens W. The application of the activated sludge model no.1 to a river environment. WateR Science and Technology, 1997, 36(5):201-208
    [65]Magri A, Corominas L, Lopez H, et al. A model for the simulation of the SHARON process: pH as a key factor. Environmental Technology, 2007, 28(3):255-265
    [66]Wang C, Zeng Y Z, Lou J, et al. Dynamic simulation of a WWTP operated at low dissolved oxygen condition by integrating activated sludge model and a floc model. Biochemical Engineering Journal, 2007, 33(3):217-227
    [67]Krishna C, Van Loosdrecht M. Substrate flux into storage and growth in relation to activated sludge modeling. Water Research, 1999, 33(14):3149-3161
    [68]Gernaey K V, van Loosdrecht M, Henze M, et al. Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 2004, 19(9):763-783
    [69]Koch G, Kuhni M, Gujer W, et al. Calibration and validation of Activated Sludge Model No. 3 for Swiss municipal wastewater. Water Research, 2000, 34(14):3580-3590
    [70]许朕,杨朝晖,曾光明等.供氧充足环境下SBBR实现短程硝化的控制研究.环境科学, 2008, 29(7):1860-1866
    [71]Hu Z R, Wentzel M C, Ekama G A. External nitrification in biological nutrient removal activated sludge systems. Water Science and Technology, 2001, 43(1):251-260
    [72]van Veldhuizen H M, van Loosdrecht M, Brandse F A. Model based evaluationof plant improvement strategies for biological nutrient removal. Water Science and Technology, 1999, 39(4):45-53
    [73]Murnleitner E, Kuba T, Vanloosdrecht M, et al. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal. Biotechnology and Bioengineering, 1997, 54(5):434-450
    [74]Smolders G, Klop J M, Vanloosdrecht M, et al. A metabolic model of the biological phosphorus removal process .1. effect of the sludge retention time. Biotechnology and Bioengineering, 1995, 48(3):222-233
    [75]Kuba T, Vanloosdrecht M, Murnleitner E, et al. Kinetics and stoichiometry in the biological phosphorus removal process with short cycle times. Water Research, 1997, 31(4):918-928
    [76]卢培利,张代钧,刘颖等.活性污泥法动力学模型研究进展和展望.重庆大学学报:自然科学版, 2002, 25(3):109-114
    [77]彭永臻,刘智波, TakashiMINO.污水强化生物除磷的生化模型研究进展.中国给水排水, 2006, 22(4):1-5
    [78]孙洪伟,彭永臻,王淑莹等.厌氧氨氧化生物脱氮技术的演变、机理及研究进展.工业用水与废水, 2008, 39(1):7-11
    [79]Hu Z R, Wentzel M C, Ekama G A. Modelling biological nutrient removal activated sludge systems - a review. Water Research, 2003, 37(14):3430-3444
    [80]Wentzel M C, Ekama G A, Marais G R. Process and modelling of nitrification denitrification biological excess phosphorus removal systems-a review. Water Science and Technology, 1992, 25(6):59-82
    [81]Serralta J, Ferrer J, Borras L, et al. An extension of ASM2d including pH calculation. Water Research, 2004, 38(19):4029-4038
    [82]Coen F, Vanderhaegen B, Boonen I, et al. Nitrogen removal upgrade of a wastewater treatment plant within existing reactor volumes: A simulation supported scenario analysis. Water Science and Technology, 1996, 34(3-4):339-346
    [83]Cinar O, Daigger G T, Graef S P. Evaluation of IAWQ Activated Sludge Model No. 2 using steady-state data from four full-scale wastewater treatment plants. Water Environment Research, 1998, 70(6):1216-1224
    [84]Van Veldhuizen H M, Van Loosdrecht M, Heijnen J J. Modelling biological phosphorus and nitrogen removal in a full scale activated sludge process. Water Research, 1999, 33(16):3459-3468
    [85]Brdjanovic D, Mithaiwala M, Moussa M S, et al. Use of modelling foroptimization and upgrade of a tropical wastewater treatment plant in a developing country. Water Science and Technology, 2007, 56(7):21-31
    [86]Meijer S, van der Spoel H, Susanti S, et al. Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Science and Technology, 2002, 45(6):145-156
    [87]Hulsbeek J, Kruit J, Roeleveld P J, et al. A practical protocol for dynamic modelling of activated sludge systems. Water Science and Technology, 2002, 45(6):127-136
    [88]Petersen B, Gernaey K, Henze M, et al. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. Journal of Hydroinformatics, 2002, 4(1):15-38
    [89]Dold P L, Wentzel M C, E B A, et al. Activated sludge simulation program. Gezina, South Africa:Water Research Commision, 1991, 1-20
    [90]蒋茹,曾光明.城市污水处理厂工艺方案选择的辅助决策模型.环境科学与技术, 2004, 27(1):55-58
    [91]梁婕,曾光明,郭生练等.变尺度混沌-遗传算法在复杂河流水质模型参数优化中的应用.环境科学学报, 2007, 27(2):342-347
    [92]王薇,曾光明,秦肖生.遗传模拟退火算法在水质模型参数估值中的应用研究.环境工程, 2003, 21(4):60-62
    [93]孙伟,曾光明,魏万之等.微生物降解动力学参数估计新算法的比较.湖南大学学报:自然科学版, 2006, 33(5):114-119
    [94]Weijers S R, Vanrolleghem P A. A procedure for selecting best identifiable parameters in calibrating activated sludge model no.1 to full-scale plant data. Water Science and Technology, 1997, 36(5):69-79
    [95]Sin G, De Pauw D, Weijers S, et al. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnology and Bioengineering, 2008, 100(3):516-528
    [96]Meijer S, Van Loosdrecht M, Heijnen J J. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's. Water Research, 2001, 35(11):2711-2723
    [97]Sin G, Kaelin D, Kampschreur M J, et al. Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Science and Technology, 2008, 58(6):1155-1171
    [98]Cinar O, Daigger G T, Graef S P. Evaluation of IAWQ Activated Sludge Model No. 2 using steady-state data from four full-scale wastewater treatment plants.Water Environment Research, 1998, 70(6):1216-1224
    [99]Meijer S, van Loosdrecht M, Heijnen J J. Modelling the start-up of a full-scale biological phosphorous and nitrogen removing WWTP. Water Research, 2002, 36(19):4667-4682
    [100]Vanrolleghem P A, Insel G, Petersen B, et al. A comprehensive model calibration procedure for activated sludge models. In:Proceedings 76th Annual WEF Conference and Exposition. Los Angels, USA, 2003, 210-237
    [101]Langergraber G, Rieger L, Winkler S, et al. A guideline for simulation studies of wastewater treatment plants. Water Science and Technology, 2004, 50(7):131-138
    [102]Melcer H, Dold P L, Jones R M, et al. Methods for wastewater characterization in activated sludge modeling. Alexandria, VA, USA:WERF, 2003, 21.1-21.22
    [103]Akratos C S, Papaspyros J, Tsihrintzis V A. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 2008, 143(1-3):96-110
    [104]Ginoris Y P, Amaral A L, Nicolau A, et al. Development of an image analysis procedure for identifying protozoa and metazoa typical of activated sludge system. Water Research, 2007, 41(12):2581-2589
    [105]Hong S H, Lee M W, Lee D S, et al. Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks. Biochemical Engineering Journal, 2007, 35(3):365-370
    [106]Lee M W, Hong S H, Choi H, et al. Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors. Process Biochemistry, 2008, 43(10):1107-1113
    [107]Novotny V, Capodaglio A G. Strategy of stochastic real-time control of waste-water treatment plants. ISA Transactions, 1992, 31(1):73-85
    [108]Novotny V, Capodaglio A, Jones H. Real-time control of waste-water treatment operations. Water Science and Technology, 1992, 25(4-5):89-101
    [109]Chen H W, Ning S K, Yu R F, et al. Optimizing the monitoring strategy of wastewater treatment plants by multiobjective neural networks approach. Environmental Monitoring and Assessment, 2007, 125(1-3):325-332
    [110]Chen Z, Ren N, Wang A, et al. A novel application of TPAD-MBR system to the pilot treatment of chemical synthesis-based pharmaceutical wastewater. WaterResearch, 2008, 42(13):3385-3392
    [111]Kotti M E, Parisis N A, Vlessidis A G, et al. Pattern recognition techniques for the classification of wastewater samples based on their UV-absorption spectra and their fractions after applying MW-fractionation techniques. Desalination, 2007, 213(1-3):297-310
    [112]Ferrer J, Morenilla J J, Bouzas A, et al. Calibration and simulation of two large wastewater treatment plants operated for nutrient removal. Water Science and Technology, 2004, 50(6):87-94
    [113]Yao K Z, Shaw B M, Kou B, et al. Modeling ethylene/butene copolymerization with multi-site catalysts: Parameter estimability and experimental design. Polymer Reaction Engineering, 2003, 11(3):563-588
    [114]Lund B F, Foss B A. Parameter ranking by orthogonalization - Applied to nonlinear mechanistic models. Automatica, 2008, 44(1):278-281
    [115]Gadkar K G, Varner J, Doyle F J. Model identification of signal transduction networks from data using a state regulator problem. Systems Biology, 2005, 2(1):17-30
    [116]Yue H, Brown M, Knowles J, et al. Insights into the behaviour of systems biology models from dynamic sensitivty and identifiability analysis: a case study of an NF-kappa B signalling pathway. Molecular Biosystems, 2006, 2(12):640-649
    [117]Jaqaman K, Danuser G. Linking data to models: data regression. Nature Reviews Molecular Cell Biology, 2006, 7(11):813-819
    [118]Chu Y F, Hahn J. Parameter set selection for estimation of nonlinear dynamic systems. AICHE Journal, 2007, 53(11):2858-2870
    [119]Jayasankar B R, Ben-Zvi A, Huang B. Identifiability and estimability study for a dynamic solid oxide fuel cell model. Computers & Chemical Engineering, 2009, 33(2):484-492
    [120]Brun R, Kuhni M, Siegrist H, et al. Practical identifiability of ASM2d parameters - systematic selection and tuning of parameter subsets. Water Research, 2002, 36(16):4113-4127
    [121]Chu Y F, Hahn J. Parameter set selection for estimation of nonlinear dynamic systems. AICHE Journal, 2007, 53(11):2858-2870
    [122]Weijers S R, Kok J J, Preisig H A, et al. Parameter identifiability in the IAWQ model no 1 for modelling activated sludge plants for enhanced nitrogen removal. Computers & Chemical Engineering, 1996, 20Suppl. B:S1455-S1460
    [123]Nowak O, Franz A, Svardal K, et al. Parameter estimation for activated sludge models with the help of mass balances. Water Science and Technology, 1999, 39(4):113-120
    [124]Jeppsson U, Pons M N. The COST benchmark simulation model - current state and future perspective. Control Engineering Practice, 2004, 12(3):299-304
    [125]Thayalakumaran N, Bhamidimarri R, Bickers P O. Biological nutrient removal from meat processing wastewater using a sequencing batch reactor. Water Science and Technology, 2003, 47(10):101-108
    [126]Cote M, Grandjean B, Lessard P, et al. Dynamic modeling of the activated-sludge process - improving prediction using neural networks. Water Research, 1995, 29(4):995-1004
    [127]Zhao H, Hao O J, Mcavoy T J, et al. Modeling nutrient dynamics in sequencing batch reactor. Journal of Environmental Engineering-ASCE, 1997, 123(4):311-319
    [128]中华人民共和国环境保护部.城镇污水处理厂污染物排放标准GB18918-2002.北京:中国环境科学出版社, 2002, 1-20
    [129]Mirchandani P K, Benn R C, Heck K A. Development of mechanically alloyed al-ti alloys for high stiffness elevated-temperature applications. Journal of Metals, 1988, 40(11):11
    [130]Hagan M T, Demuth H B, Beale M H. Neural Network Design. Boston:PWS Publishing, 1996, 103-110
    [131]Torrecilla J S, Mena M L, Yanez-Sedeno P, et al. A neural network approach based on gold-nanoparticle enzyme biosensor. Journal of Chemometrics, 2008, 22(1-2):46-53
    [132]Civelekoglu G, Yigit N O, Diamadopoulos E, et al. Modelling of COD removal in a biological wastewater treatment plant using adaptive neuro-fuzzy inference system and artificial neural network. Water Science and Technology, 2009, 60(6):1475-1487
    [133]Perendeci A, Arslan S, Celebi S S, et al. Prediction of effluent quality of an anaerobic treatment plant under unsteady state through ANFIS modeling with on-line input variables. Chemical Engineering Journal, 2008, 145(1):78-85
    [134]Cakmakci M. Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess and Biosystems Engineering, 2007, 30(5):349-357
    [135]Pai T Y, Wan T J, Hsu S T, et al. Using fuzzy inference system to improveneural network for predicting hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 2009, 33(7):1272-1278
    [136]吴灿东.用神经网络和ANFIS模拟污水生物处理过程.中国给水排水, 2008, 24(23):102-104
    [137]余颖,乔俊飞.基于ANFIS的污水处理过程建模的研究.计算机工程, 2006, 32(8):266-268
    [138]Jang J, Sun C T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 1993, 4(1):156-159
    [139]Jang J. ANFIS - Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man and Cybernetics, 1993, 23(3):665-685
    [140]Shrestha R R, Nestmann F. Physically Based and Data-Driven Models and Propagation of Input Uncertainties in River Flood Prediction. Journal of Hydrologic Engineering, 2009, 14(12):1309-1319
    [141]Ju Q, Yu Z B, Hao Z C, et al. Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing, 2009, 72(13-15Sp. Iss. SI):2873-2883
    [142]Chen M, Chen W H. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos Solitons & Fractals, 2009, 41(5):2716-2724
    [143]Maiti S, Tiwari R K. A Hybrid Monte Carlo Method Based Artificial Neural Networks Approach for Rock Boundaries Identification: A Case Study from the KTB Bore Hole. Pure and Applied Geophysics, 2009, 166(12):2059-2090
    [144]Pierce S G, Worden K, Bezazi A. Uncertainty analysis of a neural network used for fatigue lifetime prediction. Mechanical Systems and Signal Processing, 2008, 22(6):1395-1411
    [145]He L, Huang G H, Lu H W. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Advances in Water Resources, 2008, 31(12):1622-1635
    [146]Noori R, Hoshyaripour G, Ashrafi K, et al. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 2010, 44(4):476-482
    [147]Lo S P, Lin Y Y. The prediction of wafer surface non-uniformity using FEM and ANFIS in the chemical mechanical polishing process. JournaL of materials Processing Technology, 2005, 168(2):250-257
    [148]Ubeyli E D, Guler I. Teaching automated diagnostic systems for Doppler ultrasound blood flow signals to biomedical engineering students using MATLAB. International Jjournal of Engineering Education, 2005, 21(4):649-667
    [149]Brindle K, Stephenson T. The application of membrane biological reactors for the treatment of wastewaters. Biotechnology and Bioengineering, 1996, 49(6):601-610
    [150]Liao B Q, Kraemer J T, Bagley D M. Anaerobic membrane bioreactors: Applications and research directions. Critical Reviews in Environmental Science and Technology, 2006, 36(6):489-530
    [151]Basu B, Visvanathan C. Membrane permeation of a binary compound for co-current and cross flow modes. Desalination, 2000, 130(2):113-129
    [152]Defrance L, Jaffrin M Y, Gupta B, et al. Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresource Technology, 2000, 73(2):105-112
    [153]Song L F. Flux decline in crossflow microfiltration and ultrafiltration: mechanisms and modeling of membrane fouling. Journal of Membrane Science, 1998, 139(2):183-200
    [154]Zhang M M, Song L F. Mechanisms and parameters affecting flux decline in cross-flow microfiltration and ultrafiltration of colloids. Environmental Science & Technology, 2000, 34(17):3767-3773
    [155]Li Q L, Elimelech M. Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms. Environmental Science & Technology, 2004, 38(17):4683-4693
    [156]Bowen W R, Jones M G, Yousef H. Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach. Chemical Engineering Science, 1998, 53(22):3793-3802
    [157]Tarleton E S, Wakeman R J. Understanding flux decline in cross-flow microfiltration .1. effects of particle and pore-size. Chemical Engineering Research & Design, 1993, 71(A4):399-410
    [158]Chen H Q, Kim A S. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination, 2006, 192(1-3):415-428
    [159]Cheng L H, Cheng Y F, Chen J H. Predicting effect of interparticle interactions on permeate flux decline in CMF of colloidal suspensions: An overlapped type of local neural network. Journal of Membrane Science, 2008, 308(1-2):54-65
    [160]Dornier M, Decloux M, Trystram G, et al. Dynamic modeling of cross-flow microfiltration using neural networks. Journal of Membrane Science, 1995, 98(3):263-273
    [161]Faibish R S, Elimelech M, Cohen Y. Effect of interparticle electrostatic double layer interactions on permeate flux decline in crossflow membrane filtration of colloidal suspensions: An experimental investigation. Journal of Colloid and Interface Science, 1998, 204(1):77-86
    [162]Sahoo G B, Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. Journal of Membrane Science, 2006, 283(1-2):147-157
    [163]Zhang Q G, Benveniste A. Wavelet networks. IEEE Transactions on Neural Networks, 1992, 3(6):889-898
    [164]Zhang X Y, Qi J H, Zhang R S, et al. Prediction of programmed-temperature retention values of naphthas by wavelet neural networks. Computers & Chemistry, 2001, 25(2):125-133
    [165]Billings S A, Wei H L. A new class of wavelet networks for nonlinear system identification. IEEE Transactions on Neural Networks, 2005, 16(4):862-874
    [166]Sjoberg J, Zhang Q H, Ljung L, et al. Nonlinear black-box modeling in system identification: A unified overview. Automatica, 1995, 31(12):1691-1724
    [167]Sanner R M, Slotine J. Structurally dynamic wavelet networks for adaptive control of robotic systems. International Journal of Control, 1998, 70(3):405-421
    [168]Oussar Y, Rivals I, Personnaz L, et al. Training wavelet networks for nonlinear dynamic input-output modeling. Neurocomputing, 1998, 20(1-3):173-188
    [169]I D. Ten Lectures on Wavelets. Philadelphia:SIAM, 1992, 10-20
    [170]Haykin S. Neural Network: A Comprehensive Foundation. NY:Prentice Hall , 1999, 39-43
    [171]Huisman I H, Dutre B, Persson K M, et al. Water permeability in ultrafiltration and microfiltration: Viscous and electroviscous effects. Desalination, 1997, 113(1):95-103
    [172]Mcdonogh R M, Fane A G, Fell C. Charge effects in the cross-flow filtration of colloids and particulates. Journal of Membrane Science, 1989, 43(1):69-85
    [173]李晓东,曾光明,蒋茹等.改进支持向量机对污水处理厂运行状况的故障诊断.湖南大学学报:自然科学版, 2007, 34(12):68-71
    [174]李晓东,曾光明,黄国和等.城市污水量短时预测的混沌神经网络模型.环境科学学报, 2006, 26(3):416-419
    [175]柏柯嘉,刘伟铭.模糊马尔可夫随机场理论在阴影检测中的应用.中国图象图形学报, 2010(3):409-416
    [176]陈亚宁,徐海量.新亚欧大陆桥新疆段环境灾害的模糊马尔可夫链状预测.干旱区资源与环境, 2002, 16(1):32-36
    [177]孙才志,林学钰.降水预测的模糊权马尔可夫模型及应用.系统工程学报, 2003, 18(4):294-299
    [178]卢晓东,周凤岐.改进模糊马尔可夫随机场的SAR图像分割.宇航学报, 2008, 29(5):1632-1636
    [179]郑文瑞,王新代,记昆等.非确定数学方法在水污染状况风险评价中的应用.吉林大学学报:地球科学版, 2003, 33(1):59-62
    [180]仲远见,李靖,王龙.改进马尔可夫链降雨量预测模型的应用.济南大学学报:自然科学版, 2009, 23(4):402-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700