含钛炉渣中TiO_2作用浓度及炉渣粘度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国四川攀西地区钒钛磁铁矿TiO_2含量较高,TiO_2对高炉冶炼过程具有重要的影响,主要是还原条件下,会有一系列钛的低价氧化物和TiC(熔点3 140℃)、TiN(熔点2 930℃)以及Ti(C、N)等高熔点物质生成,对炉渣的物理化学性质有很大改变。含钛高炉渣的特殊性与TiO_2的热力学性质-活度密切相关,因此有必要研究含钛高炉渣中TiO_2的活度,建立其计算模型并将计算值与实测值进行对比讨论,为深入研究含钛炉渣的各种物理化学性质提供重要支持。
    本文通过对以往研究活度的热力学模型的总结,归纳了目前较常用的一些热力学模型的特点及其适用范围。不同的热力学计算模型,活度有不同的计算方法,但对含TiO_2渣系的热力学计算模型方面的报道并不多,尤其是含TiO_2的多元渣系,针对此问题,依据共存理论有,作用浓度即服从质量作用定律的浓度和能较广泛地应用于多元渣系的特点,尝试建立含TiO_2渣系的作用浓度计算模型有较大的理论和实际意义。
    本文以FeO-MnO-TiO_2三元系、CaO-SiO_2-TiO_2三元系、CaO-Al2_O_3-SiO_2-TiO_2四元系及CaO-MgO-SiO_2-Al2_O_3-TiO_2五元系为研究对象,根据共存理论,确定渣系的结构单元,分别建立了各个渣系中组元作用浓度的计算模型。借助Matlab5.3程序设计语言编制相应的计算程序,求解非线性方程组,并得到计算结果。本文所做的主要研究和结果如下:
    (1)对于FeO-MnO-TiO_2三元系,根据共存理论,首先确定了可能的结构单元,并计算组元的作用浓度,再根据计算结果,利用Visual Basic6.0 语言编制了具有可视化界面的应用程序,同时绘制了温度为1 748.15K及1 773.15K时,TiO_2的等作用浓度曲线。
    (2)对于CaO-SiO_2-TiO_2三元系,分别建立了作用浓度计算模型和粘度计算模型,并利用Visual Basic6.0 语言编制了具有可视化界面的应用程序,分别绘制了温度为1 773.15K及1 673.15K时,TiO_2的等作用浓度曲线及渣系粘度曲线。
    (3)对于CaO-Al2_O_3-SiO_2-TiO_2四元系,建立了作用浓度计算模型和粘度计算模型,并绘制了温度为1 673.15K时,TiO_2的作用浓度随成分变化的曲线,随着渣中TiO_2含量的增加,其作用浓度增加。
    (4)对于CaO-MgO-SiO_2-Al2_O_3-TiO_2五元渣系,建立了渣系的作用浓度计算模型。根据熔渣中TiO_2作用浓度随组成的变化曲线,其作用浓度的理论计算结果左右与李道昭等人预测的比较吻合。
    总之,在对含TiO_2的三元至五元典型渣系的基本结构单元进行分析的基础上,
    
    根据分子离子共存理论建立渣中组元作用浓度计算模型,并将计算结果与文献中的实测值进行了对比,表明共存理论应用于含钛炉渣的组元作用浓度是可行的。
The percentage of TiO_2 in the titanium-vanidium-magenite located in Sichuan-Panxi in China is considerable high. TiO_2 has a significant influence on blast furnace smelting process. At reducing condition, high melting-point matter, such as a serial of low oxide containing Ti and TiC(3 140℃)、TiN(2 930℃) as well as Ti(C、N), are produced. Physicochemical properties of slag could be modified by these matters. And special performance of slag containing Ti is related to thermodynamics property of TiO_2-activity. Therefore, it is necessary to study activity of TiO_2 and establish its thermodynamics model and compared calculated values with measured ones. Important support is provided for further study of various physicochemical properties slag containing Ti.
    By summarizing published activity of thermodynamic model, the paper concludes properties and application range of some thermodynamic models at present. For different thermodynamic calculation models, activity has different calculation methods. But the reports were few concerning thermodynamic calculation model of TiO_2-containing system, especially multicomponent slag system. Aiming at this problem, and according to the characteristics of coexistence theory , in which mass action concentration(N) is the concen -tration obeying mass active law, and can be widely applied to multicomponent slag system. Thermodynamic models are established with theory and practice meaning.
    FeO-MnO-TiO_2 system, CaO- SiO_2-TiO_2 system, CaO-Al2_O_3-SiO_2-TiO_2 system as well as CaO-MgO-SiO_2-Al2_O_3- TiO_2 system are regarded as research objects. According to coexistence theory, structural units are determined and mass action concentrations calculation model of every system are established. Corresponding calculation programs are written by means of programming language Matlab5.3, resolving non-linear equations. Calculated results are mass action concentrations. Main conclusions are as follows:
    (1) For FeO-MnO-TiO_2 system, according to coexistence theory, the mass action concentrations of the slag contents have been calculated after slag units are determined. And with these results, application program is formulated by means of programming language Visual Basic6.0 with visual surface. Iso-mass action concentrations of TiO_2 are plotted at 1 748.15K and 1 773.15K.
    
    
    (2) For CaO-SiO_2-TiO_2 system, mass action concentrations model and viscosity model are created. And application program is formulated by means of programming language Visual Basic6.0 with visual surface. Iso-mass action concentrations of TiO_2 are plotted at 1 773.15K and 1 673.15K.
    (3) For CaO-Al2_O_3-SiO_2-TiO_2 system, mass action concentrations model and viscosity model are produced. Curve for mass action concentrations of TiO_2 with composition is plotted at 1 673.15K. With the increase of TiO_2 in slag, mass action concentrations increased.
    (4) For CaO-MgO-SiO_2-Al2_O_3-TiO_2 slag system, mass action concentrations model are established. In terms of curve for mass action concentrations of TiO_2 in slag with composition calculated result is, which fits measured values, , predicted by Li Daozhao well.
    In conclusion, on the basis of analysis structure for ternary system to quinary system containing TiO_2, mass action concentrations model are established, according to coexistence theory. Comparing calculated values with measured data, the results present that coexistence theory could be applied to slag containing Ti.
引文
[1]. 王筱留, 钢铁冶金学(炼铁部分). 北京. 冶金工业出版社. 1990: 7
    [2]. 马家源, 孙希文, 刁日升. 高炉冶炼钒钛磁铁矿理论与实践. 北京. 冶金工业出版社. 2000: 39
    [3]. 杜鹤桂, 等. 高炉冶炼钒钛磁铁矿原理. 北京. 科学出版社. 1996.
    [4]. 张鉴著. 冶金熔体的计算热力学. 北京. 冶金工业出版社. 1998:173
    [5]. 李文超. 冶金热力学. 北京. 冶金工业出版社. 1995:102-107
    [6]. 魏庆成. 冶金热力学. 重庆. 重庆大学出版社. 1996
    [7]. C. Wagner. Thermodynamics of Alloys. Addison-wesleg, london, England. 1952: 68
    [8]. Richardson, F. D. Physical Chemistry of Melts in Metallurgy, Academic Press. 1974:135
    [9]. Kubaschewski, O. and Alcock, C. B., Metallurgical. thermochemistry, Pergamon Press. fifth ED 1979.
    [10]. 魏寿昆. 活度在冶金物化中的应用. 北京. 中国工业出版. 1964:12-61
    [11]. M. Hansen. Constitution of Binary Alloys. McGraw-Hill. 1958.1st supp
    [12]. R.P. Elliott. Constitution of Binary Alloys. McGraw-Hill. 1965 2nd supp
    [13]. F. A. Shunk. Constitution of Binary Alloys. McGraw-Hill. 1969.
    [14]. W. G. Moffatt. Handbook of Binary Phase Diagrams. Genium. 1978.
    [15]. Hultgren, Orr, Anderson ,Kelley. Selected Values of Thermodynamics Properties of Metals and Alloys ASM. Metal Park., Ohio, USA. 1973.
    [16]. Ernest M. Levin, Carl R. Robbins, Phase Diagrams of Ceramists, American Ceramic Society, 1964;1stsupp., E. M. Levin, H. F. MeMurdie, 1969; 2ndsupp., R. C. Roth, T. Negas, 1975; 3ndsupp., L. P. Cook, 1981.
    [17]. 虞觉奇, 易文质, 等. 二元合金状态集. 上海. 上海科学技术出版社. 1987.
    [18]. 邹元曦. 铟-锑和锡-碲系的热力学数据与相图的关系. 金属学报. 1964.7(2):123-127
    [19]. 周国治. 函数在变通的Gibbs-Duhem关系式中的应用. 金属学报. 1965.8(4):545-548
    [20]. N.Brouwer, H. A. J. Oonk. A direct method for the derivation of thermodynamic excess functions from TX phase diagrams. III. Eutectic systems. Z. Phys. Chem. Neue Folge, 1980.121(1):131-134
    [21]. N.Brouwer, H.A.J.Oonk. A direct method for the derivation of thermodynamic excess functions from TX phase diagrams. II. Improved method applied to experimental regions of demixing. Z. Phys. Chem. Neue Folge. 1979.117:55-67
    A.D. Pelton. Thermodynamics of Mn3O4-Co3O4, Fe3O4-Mn3O4, and Fe3O4-Co3O4 spinels by
    
    [22]. phase diagram analysis. Ber. Bunsenges. phys.Chem. 1979.83(3):241-252
    [23]. Kuo-chih Chou, Shuang-lin Chen. Calculating activities from phase diagram containing equilibrium between solid and liquid solutions. Calphad. 1990.14(1):41-48
    [24]. Kuo-chih Chou. A new treatment for calculating activities from phase diagrams containing so liquid solution. Calphad. 1990.14(3):275-282
    [25]. Fan Zhang, Kuo-chih Chou. A new treatment for calculating activities from phase diagrams involving two liquid or solid coexisting phases . Calphad. 1990.14(4):349-362
    [26]. Fan Zhang, Fan-you Xie, Kuo-chih Chou. A new treatment for calculating activities from a simple eutectic phase diagram. Calphad. 1992.16(3):261-268
    [27]. Fan Zhang, Shuang-lin Chen, Kuo-chih Chou. A new treatment for calculating activities from phase diagrams involving intermediate compounds. Calphad. 1992.16(3): 269-276
    [28]. 傅崇说. 有色冶金应用基础研究. 北京. 科学出版社. 1993
    [29]. 李文超, 周国治, 李兴康, 等. 由中间化合物熔化焓提取活度的新方法及Ga-As, Ga-Sb和In-As活度的计算. 96全国冶金物化学术会议论文集. 昆明. 1996:1
    [30]. 曾文明, 陈念贻. 从液-液分层二元系相图提取热力学数据的新方法. 96全国冶金物化学术会议论文集. 昆明. 1996:45
    [31]. 黄希祜. 关于炉渣的结构模型及其热力学性质的近代发展. 中国稀土学报(专辑). 重庆. 2000: 51-58
    [32]. T. Yokokawa, K. Niwa, Free energy and basicity of molten silicate solution. Trans. Jpn. Inst. Met. 1969.10(2):81-84
    [33]. S.G. Whiteway, I.B. Smith, C.R. Masson, Theory of molecular size distribution in multichain polymers. Can. J. Chem. (Canada). 1970.48(1):33-45
    [34]. G.M. Mehrotra, M.G. Frohberg, P.M. Mathew, M.L. Kapoor, Free energy of formation of intermediate compounds in the system PbO-TiO_2, Scr. Metall. (USA), 1973.7(10):1047-1051
    [35]. D.R. Gaskell, Activities and free energies of mixing in binary silicate melts, Metall. Trans. B, 1977,8B(1):131-145
    [36]. C.Borgianni, P. Granati, Monte Carlo calculations of ionic structure in silicate and alumino-silicate melts, Metall. Trans. B,1979.10B(1):21-25
    [37]. P.L.Lin, A.D. Pelton, A structural model for binary silicate systems., Metall. Trans. B, 1979.10B(4):667-675
    [38]. P. Sastri, A.K. Lahiri, A 'central atoms' model for binary silicate and aluminate melts,Phys. Chem. Glasses.,1983.24(4):98-103
    [39]. 王之昌, 周继程, 程兆年. 一个新的聚合模型在CaO-SiO_2熔体中的应用. 金属学报. 1986.22(5):A425-A433
    
    
    [40]. 张鉴. 关于炉渣结构的共存理论. 北京钢铁学院学报. 1984. 6(1):21-29
    [41]. M. Hillert, B. Jansson, B. Sundman, J. Agren, A two-sublattice model for molten solutions with different tendency for ionization. Metall. Trans. A, Phys. Metall. Mater. Sci., 1985.16A(2):261-266
    [42]. M. Hoch, I. Arpshofen, A modified aggregation model for the calculation of thermodynamic state functions of liquid alloys, Z. Met.kd. 1984.75(1):23-29
    [43]. M. Hoch, Application of the Hoch-Arpshofen model, to ternary, quaternary, and larger systems, CALPHAD, 1987.11(3):219-224
    [44]. M.A.J. Michels, E. Wesker, A network model for the thermodynamics of multicomponent silicate melts. I. Binary mixtures MO-SiO_2, CALPHAD,1987.12(4)383-393
    [45]. F.Sommer, Association model for the description of the thermodynamic functions of liquid alloys. I. Basic concepts .Z.Met.kd. 1982.73(2):72-76
    [46]. F.Sommer. Association model for the description of thermodynamic functions of liquid alloys. II. Numerical treatment and results .Z.Met.kd. 1982.73(2):77-86
    [47]. 唐恺. 多元亚正规熔体模型SELF-SReM4.1研究. 上海. 上海大学博士学位论文. 1996
    [48]. 王新国. 硅系合金氧化精练过程的热力学研究. 上海. 上海大学博士学位论文. 2001
    [49]. Kuo-Chih Chou. A general solution model for predicting ternary thermodynamic properties . CALPHAD, 1995.19(3):315-325
    [50]. 周国治. 新一代的溶液几何模型及其今后的展望. 金属学报. 1997.33(2):126-132
    [51]. A.D.Pelton, M.Blander. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach application to silicate slags. Metall.Trans.B. 1986.17B:805
    [52]. A.D.Pelton, M.Blander. Least squares optimization technique for the analysis of thermodynamic data in ordered liquids. CALPHAD. 1988.12(1):97-108
    [53]. Tao Dongping. Prediction about thermodynamic properties of ternary liquid alloys from Wilson equation. Acta Metall. Sin., 1991.27(6):B380-B386
    [54]. 陶东平, 杨显万. 用Wilson方程估算多元液态合金在给定温度下的组元活度. 金属学报. 1997.33(10):1097-1084
    [55]. 黄希祜. 钢铁冶金原理. 北京. 冶金工业出版社. 1990
    [56]. 张鉴著. 冶金熔体的计算热力学. 北京. 冶金工业出版社. 1998:205-208
    [57]. 肖劲松, 王沫然. Matlab5.x与科学计算. 北京. 清华大学出版社. 2001.
    [58]. 抖斗书屋主编. Visual Basica6.0常用编程技巧. 北京. 清华大学出版社. 1999
    [59]. 刘焕明, 杜红, 杨祖磐, 等. 高炉型熔渣中TiO_2的活度. 金属学报. 1992.28(2):B45-B49
    [60]. 梁英教, 车荫昌. 无机物热力学数据手册. 沈阳. 东北大学出版社. 1993
    [61]. 叶大伦. 实用无机热力学数据手册. 北京. 冶金工业出版社. 1981
    
    
    [62]. 陈家祥编著. 炼钢常用图表数据手册. 北京. 冶金工业出版社.1984
    [63]. Ernest M.Levin, Carl R.Robbins and Howard F. McMurdie. Phase Diagrams for Ceramists. Columbus,Ohio.1969
    [64]. 德国钢铁工程协会编. 王俭, 彭育强, 毛裕文译. 渣图集. 北京. 冶金工业出版社. 1989
    [65]. 徐士良. C常用算法程序集. 北京. 清华大学出版社. 1996:231-233
    [66]. Turdogan特克道根著. 魏季和, 傅杰译. 高温工艺物理化学.北京. 冶金工业出版社. 1988
    [67]. 张鉴著. 冶金熔体的计算热力学. 北京. 冶金工业出版社. 1998
    [68]. Z.A.Foroulis. METAL-SLAG-GAS REACTIONS AND PROCESSES. Hamilton, Ontario, Canada. 1975,1-7
    [69]. 董希琳. 高炉型钛渣二氧化钛活度. 北京. 中国科学院化工冶金研究所硕士学位论文. 1986
    [70]. 曲英主编. 炼钢学原理(第二版). 北京. 冶金工业出版社. 1994: 98-101
    [71]. 黄希祜. 钢铁冶金原理. 北京. 冶金工业出版社. 1990.122-128
    [72]. Urbain, G. Viscosity Estimation of Slags. Steel Research. 1987.58(3):111
    [73]. 攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编编写小组. 攀枝花钒钛磁铁矿选矿烧结高炉冶炼试验资料汇编. 北京. 冶金工业出版社. 1978
    [74]. 李金锡, 张鉴. CaO-MgO-CaF2-Al2_O_3-SiO_2五元渣系粘度的计算模型. 北京科技大学学报. 2000.22(4):316-319
    [75]. 李金锡, 张鉴. CaO-MgO-MnO-FeO-CaF2-Al2_O_3-SiO_2渣系粘度的计算模型. 北京科技大学学报. 2000.22(5):438-441
    [76]. 李金锡, 张鉴. MnO-SiO_2, MgO-SiO_2和 CaO- Al2_O_3-SiO_2熔渣粘度的计算模型. 北京科技大学学报. 1999.21(4):1-6
    [77]. 马家源, 孙希文, 刁日升. 高炉冶炼钒钛磁铁矿理论与实践. 北京. 冶金工业出版社. 2000: 177-180
    [78]. Sims Clarence E. Electric Furnace Steelmaking. New York. Interscience, 1962.Ⅱ:54
    [79]. Barin I.etal.. Thermochemical Properties of Inorganic Substances. 1977:128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700