松嫩草甸草原结皮藻类的物种多样性及其微生境分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物土壤结皮是退化生态系统植被演替与生态恢复的重要基础,但目前主要集中在荒漠生态系统,缺乏对草甸草原生物土壤结皮的研究。然而,不同类型的生态系统,其生物结皮的组成、分布、发育特征、过程及其机制均可能不同。本研究针对松嫩草甸草原生态系统的生物土壤结皮问题,重点研究在松嫩草原的典型环境与干扰因子—水、盐碱化及放牧干扰影响下,生物土壤结皮的物种组成、微生境分布及结皮分布与环境—干扰要素的相关性。旨在了解松嫩草甸草原生态系统生物土壤结皮的物种组成和分布特征,进而为揭示松嫩草甸草原生态系统生物土壤结皮在该地区典型环境与干扰因子—苏打盐碱化和放牧干扰影响下的发育过程及其胶结机制奠定基础,丰富对松嫩盐碱化草甸草原生态系统生物土壤结皮机理的认识,深化对松嫩盐碱化草原生态恢复机制的理解。本研究通过对松嫩草甸草原生物土壤结皮的野外调查、室内分析,培养、鉴定,获得如下结果:
     1、松嫩草甸草原生物土壤结皮藻类的物种组成,共包括蓝藻植物7科,18属,88种。其中11属33种是通过实验室培养而鉴定出来的,野外所取的结皮中未发现其植物体。在这些藻类中,以丝状藻类占优势,主要有颤藻科、念珠藻科、胶须藻科、伪枝藻科,占总种数的78.41%,且其出现频率达到100%。优势种为拟短形颤藻、维萨嘎颤藻、马氏鞘丝藻、静水隐杆藻和原型微鞘藻,几乎分布于松嫩草地所有发育藻结皮的区域。
     2、松嫩草甸草原的不同微生境中,生物结皮藻类的物种多样性和群落组成均表现出不同的规律,但都以丝状蓝藻占优势。藻类物种总数的变化趋势为,围栏封育草场>打草放牧场>草原道路>林下。在某些生境发现一些特有种类,而有些种类则对生境不具选择性。
     3、松嫩平原地区生物土壤结皮中的藻类区系组成相对丰富,与中国其它地区相比具有较大差异,结合本区一些典型的环境-干扰条件,表现出某些独有的特征。
     4、在松嫩草甸草原,影响藻类组成和分布的因素主要为环境植被条件、土壤理化性质及放牧、机械干扰。土壤理化性质中的水解氮量、土壤含水量和pH值与藻类的物种多样性具有较好的相关性;而放牧干扰和机械碾压也对藻类种类组成的数量特征具有一定的影响。
The biological soil crusts are a basis of vegetation succession and ecosystem restoration in degraded terrestrial ecosystems. However, previous investigations mainly converged upon that in the extreme environment—desert ecosystem, whereas lacking the issues in better circumstance, like of meadow steppes. But the biological composition, distribution, and relating crusting processes and mechanism of the development of biological soil crusts might be different in different ecosystems.
     By field survey, lab incubation, identification and analysis, this study attempts to recognize the biological composition and microsite-based distributions of the biological soil crusts and then the relationships between crusts distribution and external ambient-grazing factors like water, salinity and grazing, in the Songnen Meadow Steppes. This may lay a foundation for revealing the development processes and crusting mechanism of biological soil crusts under the influences of typical environmental and disturbance factors—soda salinization and grazing. Also, it may help further understand the ecological restoration in the degraded Songnen Meadow Steppes.
     By field investigation, lab culturing and identification, the following results were obtained.
     1. 88 species of cyanophytes were identified in the biological soil crusts of Songnen meadow steppes, belonging to 18 genera of 7 families, of which 11 genera and 33 species were identified by culturing. Filamentous algae are dominant in Cyanophyta which accounts for 78.41%, and its frequency of occurrence is up to 100%, mainly Oscillatoriceae, Nostoceae, Rivulariaceae, Scytonemataceae. In this area, dominant species of algae are Oscillatoria subbreris, Oscillatoria vizagapatensis, Lyngbya martensiana, Aphanothece stagnina and Microcoleus chthonoplastes, which almost distribute in all the areas where there exist algae crusts.
     2. The species diversity and community composition of algae from biological soil crusts are different in various microsites of the Songnen Meadow Steppes,but the dominant algae appear to be the filamentous cyanophyta. The numbers of algae species shown in descending order are in fenced pastures, in grazing pastures, in paths of grassland, and in the grassland near woods. There are some unique cyanophyta in different microsites, while some algae species are common and not selective to microsites.
     3. The algae flora composition of crusts in the Songnen area is relatively rich, which is significantly different from other parts of China. And it has its own unique characteristics under the ecologically typical conditions.
     4. In the Songnen Meadow Steppes, the main factors affecting the composition and distribution of algae are ambient vegetations, soil chem-physical properties, and grazing and trampling disturbances. Hydrolyzable nitrogen contents, soil moistures and pH values of soils, which belong to the physical and chemical properties of soils, have significantly associated with diversity of algae. The grazing disturbance and trampling also influence over the number of algae species.
引文
[1] Harper K T, Marble J R. A role for nonvascular Plants in management of arid and semiarid rangeland[M].In Tueller P T(eds), Vegetation Science Applications for Rangeland Analysis and Management. Kluwer Academic Publishers, Dordrecht, 1988, 135-169.
    [2] West N E. Structure and function of microphytic soil crusts in wild land ecosystem of arid and semi-arid regions[J]. Advances in Ecological Research, 1990, 20: 179 - 223.
    [3] Yeager C M, Jnnifer L, Komosky, et al. Diazotrophic community structure and function in two successional stages of biological siol crusts from the Colorado Plateau and Chihuahuan Desert [J]. Applied and Environmental Microbiology, 2004, 70(2): 973 - 983.
    [4] Metting B. Biological surface features of semiarid lands and deserts[C]. In: Skujins J, eds. Semiarid Lands and Deserts: Soil Resource and Reclamation. New York: Marcel Dekker, 1991: 275-293.
    [5] Belnap J. Harper K T, Warren S D. Surface disturbance of cryptobiotic soil crusts: Nitrogenase activity, chlorophyll content and chlorophyll degradation[J]. Arid Soil Research and Rehabilitation, 1994, 8:1-8.
    [6] Aranibar J N, Anderson I C, Ringrose S, et al. Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies[J]. Journal of Arid Environments, 2003, 54: 345-358.
    [7] Evans R D, Johansen J R. Microbiotic crusts and ecosystem processes[J]. Crilical Review in plant Science, 1999, 18(2):183-225.
    [8] Belnap J, Gillette D A. Disturbance of biological soil crusts: Impacts on potential wind erodibility of sandy desert soils in southeastern Utah[J]. Land Degradation and Development, 1997, 8:355-362.
    [9] Skujins J. Microbial ecology of desert soils[J]. Advances in Microbial Ecology, 1984, 7: 49-91.
    [10] Loope W L, Gifford G F. Influence of a soil microfloralcrust on selected properties of soils under pinyon-juniper in southeastern Utah[J]. Journal Soil Conserv, 1972, 27, 164-167.
    [11]李新荣,张景光,王新平,等.干早沙漠区土壤微生物结皮及其固沙植被影响的研究[J].植物学报, 2000, 42(9): 965-970.
    [12]陈荷生.沙坡头地区生物结皮的水文物理特点及其环境意义[J].干旱区研究, 1992, 9(1): 31-38.
    [13]吴玉环,高谦,于兴华.生物土壤结皮的分布影响因子及其监测[J].生态学杂志, 2003, 22(3): 38-42.
    [14]崔燕,吕贻忠,李保国.鄂尔多斯沙地土壤生物结皮的理化性质[J].土壤, 2004, 36(2): 197-202.
    [15]胡春香,刘永定,黄泽坡等.荒漠藻壳的精细结构与发育[J].水生生物学报, 2000, 24(1): 11-18.
    [16]胡春香,刘永定,张德禄等.荒漠藻结皮的胶结机理[J].科学通报, 2002, 47(12): 931-937.
    [17]凌裕泉,屈建军,胡玫.沙面结皮形成与微环境变化[J].应用生态学报, 1993, 4(4): 393-398.
    [18]张元明.荒漠地表生物土壤结皮的微结构及其早期发育特征[J].科学通报, 2005, 50(l):42-47.
    [19]张丙昌,张元明,赵建成.古尔班通古特沙漠生物结皮藻类的组成和生态分布研究[J].西北植物学报, 2005, 25(10): 2048-2055.
    [20]李新荣,贾玉奎,龙力群等.干早半干旱地区土壤微生物结皮的生态学意义及若干研究进展[J].中国沙漠, 2001, 21(l): 4-11.
    [21] Li, X R, Zhang, J G, Wang, X P, et al. Study on soil microbiotic crust and its infuences in sand-fixing vegetation in Arid desert region[J]. Acta Botanica Sinica, 2000, 42(9): 965-70.
    [22] Eldridge D J, Greene R S B. Microbiotic crusts: A view of the roles in soil and ecological processes in the rangelands of Australia[J]. Australian Journal of Soil Research, 1994, 32: 389-415.
    [23] Belnap J, Gardner J S. Soil microstructure in soils of the Colorado Plateau: The role of the cyanobacterium Microcoleus vaginatus[J]. Great Basin Naturalists, 1993, 53: 40-47.
    [24] Maya Y, Lopez-Cortes A, Soeldner A. Cyanobacterial microbiotic crusts in eroded soils of a tropical dry forest in the Baja California Peninsula, Mexico[J]. Geomicrobiology Journal, 2002, 19: 505-518.
    [25]房世波,马凌,刘华杰等.生物土壤结皮对全球气候变化的响应[J].生态学报, 2008, 28(7): 3312-3321.
    [26]吕林海.阿尔山火山熔岩台地上亚气生蓝藻分类及生态研究[D].硕士论文,东北师范大学, 2007
    [27]杨晓辉,张克斌,赵云杰.生物土壤结皮-荒漠化地区土壤研究的热点问题[J].生态学报, 2001, 21(3): 474-480.
    [28] Patrick E. Researching crusting soils: Themes, trends, recent developments and implications for managing soil and water resources in dry areas[J]. Progress in Physical Geography, 2002, 26: 442-461.
    [29] Eldridge D J, Freudenberger D, Koen T B. Diversity and abundance of biological soil crust taxa in relation to fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia[J]. Plant and Soil, 2006, 281: 255- 268.
    [30] Johansen J R. Cryptogamic crusts of semlarid and arid lands of North American[J]. Journal of Phycology, 1993, 29: 140-147.
    [31]邵玉琴,赵吉,包青海等.沙坡头固定沙丘结皮层的微生物区系动态[J].中国沙漠, 2002, 22(3): 298-303.
    [32]胡春香,张德禄,刘永定.干早区微小生物结皮中藻类研究的新进展[J].自然科学进展, 2003, 13(8): 791-795.
    [33] Yeager C M, Kormosky J L, Housman D C, et al. Diazotrophic Community Structure and Function in Two Successional Stages of Biological Soil Crusts from the Colorado Plateau and Chihuahuan Desert[J]. Applide and Environmental Microbiology, 2004, 70(2): 973-983.
    [34]张元明,陈晋,王雪芹等.古尔班通古特沙漠生物结皮的分布特征[J].地理学报, 2005, 60(l): 53-60.
    [35]贾宝全,张红旗,张志强等.甘肃省民勤沙区土壤结皮理化性质研究[J].生态学报, 2003, 23(7): 1442-1448.
    [36]杨伟,陈晋,张元明等.古尔班通古特沙漠1970-2000年代生物结皮覆盖变化研究[J].自然资源学报, 2006, 21(6): 934-941.
    [37]吴楠,梁少民,王红玲等.动物践踏干扰对生物结皮中微生物生态分布的影响[J].干早区研究, 2006, 23(l): 50-55.
    [38]陈晋,杨伟,张元明等.古尔班通古特沙漠生物土壤结皮反射光谱特征分析[J].光谱学与光谱分析, 2008, 28(1): 28-32.
    [39]段争虎,刘新民,屈建军.沙坡头地区土壤结皮形成机理的研究[J].干旱区研究, 1996, 12(2): 31-36.
    [40]吴楠,张元明,王红玲等.古尔班通古特沙漠生物结皮固氮活性[J].生态学报, 2007, 27(9): 3785-3793.
    [41] Belnap J. Nitrogen fixation in biological soil crusts from southeast Utah, USA[J]. Biology and Fertility of Soil, 2002, 35: 128-135.
    [42]王新平,肖洪波,张景光等.荒漠地区生物土壤结皮的水文物理特征分析[J].水科学进展, 2006, 17(5): 592-598.
    [43]肖波,赵允格,邵明安.陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J].农业工程学报, 2007, 23(12): 35-40.
    [44] George D B, Roundy B A, St Clair L L, et al. The effect of microbiotic soil crusts on soil water loss[J].Arid Land Research and Management, 2003, 17: 113-125.
    [45]李守中,肖洪浪,李新荣,等.干早半干早地区微生物结皮土壤水文学的研究进展[J].中国沙漠, 2004, 24(4): 500-506.
    [46] Ferran Garcia-Piche, Alejandro Lopez-cortes, Ulrich nubel. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau[J]. Applied and environmental Microbiology, 2001, 67(40): 1902-1910.
    [47]刘永定,黎尚豪.土壤藻类及其生理生态[J].水生生物学报, 1993, 17(3): 272-277.
    [48]胡春香.荒漠藻类及其结皮机理研究[D].博士论文,中国科学院武汉水生生物研究所,1999.
    [49] Ali S, G R Sandhu. Blue-green algae of the saline soil of the Punjab[J]. Oikobs, 1972, 22: 268-272.
    [50] Anantani Y S, D V Marathe. Obsevrations on algae of some arid and semi-arid of Rajasthan[J]. Journal of Univ of Bombay, 1974, 41(68): 88-93.
    [51] Anantani Y S, D V Marathe. Soil aggregating effect of some algae occurring in the soil of Kutch and Rajasthan[J]. Journal of Univ of Bombay, 1974, 41(68): 94-100.
    [52] Durrell L W, Shields L W. Characteristics of soil algae relation to crust formation[J]. Trans Am Microbiol Soc, 1961, 80(l): 73-79.
    [53] Flecther J E, Martin W R. Some effect of algae and molds in the rain-crusts of desert soils[J]. Ecology, 1948, 29(1): 95-100.
    [54] Foerst H S, Weston C R. Blue-green algae from the Atacama Desert of northern Chile[J]. Journal Phycology, 1966, 2: 163-164.
    [55] Ashley J, Rushforth S R. Growth of soil algae on topsoil and processed oil shale from the Uintah Basin, Utah, USA[J]. Reclamation and Revegetation Research, 1984, 3: 49-63.
    [56] Hwakes C V, Flechtner V R. Biological soil crusts in a Xeric Florida Shrubland:Cmoposition, Abundance, and Spatial Heterogeneity of crusts with different disturbance histories[J]. Microbial Ecology, 2002, 43: l-12.
    [57] King J M, Ward C H. Distribution of edaphic algae as related to land usage[J]. Phycologia, 1977, 16: 23-30.
    [58]胡春香,刘永定,宋立荣,等.半荒漠藻结皮中藻类的种类组成和分布[J].应用生态学报, 2000, 11(l): 61-65.
    [59]洪英,李尧英,黎尚豪.柴达木盆地荒漠土壤蓝藻群落的初步研究明[J].植物学报, 1992, 34(3): 161-168.
    [60] Danin A, Bar-or, Y Dor, et al. The role of cyanobacteria in stabilization of sand dunes in Southern Israel[J]. Ecologia Mediterranea, 1989, XV: 55-64.
    [61] Anderson D C, Harper K T, Rushforth S R. Recovery of cryptogamic soil crust from grazing in U tah deserts[J]. Journal of Range Management, 1982, 35: 180-185.
    [62] Campbell, Seeler S E, Golubic J.Desert crust formation and soil stabilization[J]. Arid Soil Res and Rehab, 1989, J.3: 217-228.
    [63] Graetz R D, Tongway D J. Influence of grazing management in vegetion,soil structure and nutrient distribution and the infiltration of aoolied rainfall in a semi-arid chenopod shrubland[J]. Australian Journal of Ecology, 1986, 11: 347-360.
    [64] Rogers R W, Lange R T. Lichen population in arid soil crusts around sheep watering places in South Australia[J]. Oikos, 1972, 22: 93-100.
    [65]胡春香,刘永定,宋立荣.宁夏沙坡头地区藻类及其分布[J].水生生物学报, 1999, 23(5): 443-448.
    [66]胡春香,张斌才,马红樱等.兰州北山生物结皮中陆生藻种类组成与群落结构[J].西北师范大学学报(自然科学版), 2003, 39(1): 59-63.
    [67]胡春香,刘永定.宁夏回族自治区沙坡头地区半荒漠土壤中藻类的垂直分布[J].生态学报, 2003, 23(l): 38-44.
    [68] Hu C X, Liu Y D. Primay ruccession of algae community structure in desert soil[J]. Acta Botanica Sinica, 2003, 45(8): 917-924.
    [69]张丙昌,张元明,赵建成等.古尔班通古特沙漠生物结皮不同发育阶段中藻类的变化[J].生态学报, 2009, 29(l): 9-17.
    [70]张元明,潘惠霞,潘伯荣.古尔班通古特沙漠不同地貌地位生物结皮的选择性分布[J].水土保持学报, 2004, 18(4): 61一64.
    [71] Stal L J. Cyanobacterial mats and stromatolites.In The Ecology of Cyanobacteria: Their Diversity in Time and Space[J]. Whitton and Potts eds Dordrecht:Kluwer Academic Publishers, 2000, 62.
    [72] Hu C X, et al. Cementing mechanism of algal crusts from desert area[J]. Chin Sci Bull, 2002, 47(16): 1361.
    [73]胡春香,等.土壤藻研究新进展[J].水生生物学报, 2002, 26(5): 521.
    [74] Painter T J. Carbohydrate polymers in desert reclamation: The potential of microalgal biofertilizer[J]. Carbohydrate Polymers, 1993, 20: 77.
    [75]陈兰周,等.微鞘藻胞外多糖在沙漠土壤成土中的作用[J].水生生物学报, 2002,26(2): 155.
    [76] Huang Z B, et al. Studies in polysaccharides from three edible species of Nostoc(cyanobacteria)with different colony morphologies: Comparison of monosaccharide compositions and viscosities of polysaccharides from field colonies and suspension cultures[J]. J Phycol, 1998, 34: 962.
    [77] Haper K T, Pendleton R L. Cynaobacteria and cyanolichens: Can they enhance availability of essential minerals for higher Plants[J]. Great basin Naturalist, 1993, 53: 59-72.
    [78] Rogers R W, Lange R T, Nicholas D J D. Nitrogen fixation by liehens of arid zone crusts[J]. Nature, 1966, 209: 96-97.
    [79] Mayland H F, Mclntosh T H. Availability of biologically fixed at mospheric nitrogen 15 to higher Planst[J]. Nature, 1966, 209: 421-422.
    [80] King J M. A survey of the edphic algae of western Wisconsin[J]. Transaction of the Wisconsin academy of sciences, 1975, 63: 200-205.
    [81] Shubert L E, Starks T L. Algal succession on orphaned coal mine spoils[A]. Wali K M Ecology and Coal Resource DeveloPment[C]. New Yokr:Pegamon Press, 1979, 661-667.
    [82] Mckell C M. Establishment of native plants for the rehabilitation of Paraho Processed oil shale in arid environment[M]. In:R A VWright(Editors), The reclamation of arid lands.University of new mexico, Albuquerque, NM, pp, 1978, 13-22.
    [83] Nebeker G T, St Clair L L. Enhancement of seed germination and seedling development by cryptogamic soil crusts [J]. Botanical society of America, Miscellaneous Series, 1980, 158: 81.
    [84] Sartks T L, Shubert L E. Algal colonization on a reclaimed surface mined area in western North Dakota[A]. Wali M K.Ecology and Coal Resource Development[C]. New York: Pergamon Press, 1979, 652-660.
    [85] Hunt M E, Floyd G L, Stout B B. Soil algae in field and forest environments[J]. Ecology, 1979, 60(2): 362-375.
    [86] Porperi C. Environmental factors affecting in vitro nitrogenase activity of cyanobacteria silated from rice fields [J]. Journal Applied Phycology, 1992, 4: 197-204.
    [87] Sharma P, T Rosswall. Stimulation of groeth and nitrogen fixation of Anabaena spp, by montmorillonite clay in ail Indian soil[J]. Pkos, 1992, 31(1-2): 43-53.
    [88] OttoL Lange, Jayne Belnap, Hans Reichenberger, et al. Photosynthesis of green algal siol crust lichens from arid lands in southern Utah: role of water content on light and temperature repenses of CO2 exchange[J]. Flora, 1997, 192: l-15.
    [89] Doemel W N, Brock T D. The Physioloical ecology of Cyanidium caldarium[J]. J Gen Microbiol, 1971, 67: 17-32.
    [90] Dubois J D, Kapustka C A. Ferzz-Recovery Physiology of nitrogenase activity in terrestrial Nostoc spcolonies[J]. Applied Environ. Microbiol, 1983, 46(4): 773-778.
    [91] Davey M C. The effects of freezing and desiccation on photosynthesis and survival of Anatarctic algae and cyanobacteria[J]. Polar Biol, 1989, 10: 29-36.
    [92] Emst A. Carbohydrate formation in rewetted terrestrial cyanobacteria[J]. Oecologia, 1987, 72: 574-576.
    [93] Flaibani A, Olsen Y, Painter T J. Polysaccharides in desert reclamation compositions of exocellular proteoglycan complexes produced by filamentous bluegreen and unicellular green edaphic algae [J]. Carblhydr Res ,1989, 190: 235-248.
    [94] Hellebust J A,1 Ahmad.Nitrogen melabolism and amino acid nutrition in the soil algae(Stichococcus bacillaris Chlorophyceae)[J]. Journal Phycology, 1989,25:48-5.
    [95]闰德仁,等.沙漠生物土壤结皮国外研究概况[J].内蒙古林业科技, 2007, 33(l): 39-42.
    [96]王新平,等.荒漠地区土壤初始状况对水平入渗的影响[J].地球科学进展, 2003, 18(8): 592-596.
    [97]牛玉璐,等.生物结皮及其在荒漠治理中的作用[J].生物学教学, 2005, 30(10): 5-6.
    [98] Belnap J, Gillette D A. Vulnerability of desert soil surfaces to wind erosion:impacts of soil texture and disturbance [J]. J Arid Environ, 1998, 39(1): 133-142.
    [99] Jungerius P D, Meulen F. Erosion processes in a dune land-scape along the Dutch coast[J]. Catena, 1988, 15(2): 217-228.
    [100] Mckenna-Neuman D, et al. Wind transport of sand surfaces crusted with photoautotrophic microorganisms[J]. Catena, 1996, 27(2): 229~247.
    [101] Kinnel P I A, Chartres C J, Watson C L. The effect of fire on the soil in a degraded semiarid woodland. II. Susceptibility of the soil to erosion by shallow rain-impacted flow[J]. Aust J Soil Res, 1990, 28: 779-794.
    [102]吴玉环,高谦,程国栋.生物土壤结皮的生态功能[J].生态学杂志, 2002, (4): 41-45.
    [103] Jeffries D L, et al. Acetylene reduction by cryptogamic crusts from a blackbrush community as related to resaturation and dehydration[J]. Soil Biol.Biochem, 1992, 24(8): 1101~1105.
    [104] St Clair L L, Johansen J R. Introduction to the symposium on soil crust communities[J]. Great Basin Nat, 1993, 53(1): 1-4.
    [105] Tongway D J, Ludwig J A. Vegetation and soil patterning of semi-arid mulga land of eastern Australia [J]. Aust J Ecol, 1990, 15(1): 23-34.
    [106] Belnap J, Harper K T. Influence of cryptobiotic soil crusts on elemental content of tissue texture in two desert seed plants[J]. Arid Soil Res Reh, 1995, 9(1): 107-115.
    [107] Eldridge D J. Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia[J]. Aus J Bot, 1996, 44(3): 581-599.
    [108]聂华丽,张元明,吴楠等.生物结皮对5种不同形态的荒漠植物种子萌发的影响[J].植物生态学报, 2009, 33(1): 161-170.
    [109]苏延桂,李新荣等.生物土壤结皮对土壤种子库的影响[J].中国沙漠, 2006, 26(6): 997-1001.
    [110] Hawkes CV. Effects of biological soil crusts on seed germination of four endangered herbs in a xeric Florida shrubland during drought[J]. Plant Ecology, 2004, 170, 121–134.
    [111] Li X R, Jia X H, Long L Q. Effects of biological soil crusts on seed bank, germination and establishment of two annual plant species in the Tengger Desert(N China)[J]. Plant and Soil, 2005, 277, 375-385.
    [112] Serpe M D, Orm J M, Barkes T, Rosentreter R. Germination and seed water status of four grasses on moss-dominated biological soil crusts from arid lands[J]. Plant Ecology, 2006, 185, 163-178.
    [113]苏延桂,李新荣,黄刚,等.实验室条件下两种生物土壤结皮对荒漠植物种子萌发的影响[J].生态学报,2007, 27(5): 1845-1851.
    [114] Davey M C, Rothery P. Seasonal Variation in Respiratory and Photosynthetic Parameters in ThreeMosses from the Maritime Antarctic[J]. Annals of Botany, 1996, 78(6): 719-728.
    [115] Kennedy A D. Antarctic fellfield response to climate change: a tripartite synthesis of experimental data[J]. Oecologia, 1996, 107(2): 141-150.
    [116]肖洪兴,李建东.吉林省羊草草原内亚气生藻类的分布规律[J].东北师范大学报(自然科学版), 2004, 36(2): 55-62.
    [117]李建东,郑慧莹.松嫩平原碱化草地的生态恢复及其优化模式[J].东北师范大学报(自然科学版), 1995, 3: 67-70.
    [118]李建东,王仁忠.松嫩草地资源生物多样性的初步研究[J].东北师范大学报(自然科学版)1998, 15(5): 1-3.
    [119]陈玉香.东北农牧交错带玉米生产与利用及农业生态系统优化生产模式[D].博士论文,东北师范大学, 2002.
    [120] (日)土壤微生物研究会(叶维青等译)编.土壤微生物实验法[M].北京:科学出版社, 1983: 172- 174.
    [121]李燕华,凤凰山峡谷亚气生蓝藻的分类及生态学研究[D].硕士论文,东北师范大学, 2008.
    [122]陈兰周,刘永定,李敦海,等.荒漠藻类及其结皮的研究[J].中国科学基金, 2003, 2:90-93.
    [123] Kaltenecker J H , Wicklow-Howard M, Pellant M. Biological soil crusts: natural barriers to Bromus tectorum Lestablishment in the northern Great Basin, USA[A]. In: Eldridge D(eds). Proceedings of theⅥInternational Rangeland Congress [C]. Queensland: Aitkenvale, 1999, 222-226.
    [124]胡春香,刘永定.土壤藻类生物量及其在荒漠结皮的影响因子[J].生态学报, 2003, 23(2): 284-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700