新金分枝杆菌ZJUVN-08转化植物甾醇合成雄甾烯二酮的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾体类激素药物是我国医药领域的重要门类,雄甾烯二酮(AD)是甾体激素类药物不可替代的中间体。微生物选择性降解植物甾醇(PS)侧链生成AD,能替代复杂的多步化学合成法,并减轻目前由于薯蓣皂素为原料造成的资源紧缺,对合理利用我国甾体植物资源、推动制药行业的发展有着重要意义。本文对分离得到能转化植物甾醇合成AD的菌株进行性能比较,并对高产菌株进行鉴定与N+离子注入诱变选育,获得1株仅积累产物AD的菌株(新金分枝杆菌,命名为ZJUVN-08)。利用正交实验对该菌的培养基组成和培养条件进行了优化;通过几种不同的细胞通透性调节手段,提高新金分枝杆菌细胞壁的通透性,以期增加AD产量;比较了水相系统中几种不同促溶剂对植物甾醇转化的影响,并借助响应面分析方法对添加羟丙基-p-环糊精(HP-β-CD)的生长细胞转化过程进行了优化;研究了水相体系中静息细胞转化植物甾醇的最佳条件。论文的主要研究结果如下:
     取山东泰安市郊几家植物油厂附近污染较为严重的土壤样品,后经富集培养和涂布平板等方法,分离得到76株能够在以植物甾醇为唯一碳源的培养基上生长的菌株,对转化产物进行薄层层析和高效液相色谱分析,发现菌株ZJUVN的转化产物产量最高,且产物AD和雄甾-1,4-二烯-3,17-二酮(ADD)的比例约为10:1。经过菌株形态观察、生理生化特征及16S rDNA序列分析方法对菌株ZJUVN进行鉴定,结果显示该菌为新金分枝杆菌(Mycobacterium neoaurum. ZJUVN)。
     利用N+离子束注入技术对新金分枝杆菌ZJUVN进行诱变,通过不同注入剂量与诱变致死率的关系曲线确定N+离子束注入的最佳条件为:能量10keV,诱变剂量100×2.6×1013ions/cm2,致死率约在70%。
     选择在平板筛选培养基上生长良好的单菌落,进行摇瓶发酵,得到23株积累产物AD而几乎没有副产物ADD的突变株,其中突变株ZJUVN-08的AD产量为2.29g/L,比出发菌株提高71.05%。10次传代过程中,AD产量基本保持稳定,表明该菌有较好的遗传稳定性。
     利用正交实验,对突变株M. neoaurum ZJUVN-08的培养基组成进行了优化,最终确定合适培养基组成为:葡萄糖1%,蛋白胨0.6%,磷酸氢二钾0.15%,硫酸镁0.05%,硫酸亚铁0.007%。确定了最佳转化条件为:初始pH值7.0,温度30。C,10%的接种量,装液量50mL/250mL,转速为200rpm。对ZJUVN-08的转化产物利用制备型HPLC进行分离纯化,制得白色粉末结晶,通过MS,IR和NMR进行结构鉴定,结果证明纯化产物为AD。
     对比了超声、杆菌肽、鱼精蛋白和甘氨酸处理对菌体生长及底物转化能力的影响。结果发现,超声功率为500W,超声时长为180s时,发酵液中AD产量为2.95g/L,比对照提高了5.8%。杆菌肽处理菌体后,几种参试浓度下,均会抑制菌体生长,且AD产量低于对照水平。10mgm鱼精蛋白处理菌体后,发酵液中AD产量最高为3.02g/L,比对照提高了8.6%。5g/L的甘氨酸有利于菌体的生长,且有利于提高菌体转化底物的能力,发酵液中AD产量最高为3.16g/L,比对照提高了13.6%。并通过药敏性实验进一步确定了甘氨酸是通过增强细胞通透性的方式提高了底物的转化能力。
     探讨了水相体系中不同助溶剂对植物甾醇微生物转化的影响,确定了添加HP-β-CD的体系中植物甾醇转化效果最好;进一步采用响应面法对添加HP-β-CD的水相体系转化条件进行优化,获得最佳转化条件为诱导物浓度0.1g/L、初始pH7.0,HP-β-CD/PS摩尔比1.92:1,底物浓度8.89g/L,转化时间120h,在该条件下转化植物甾醇时,得到AD产量最大值为5.96g/L,摩尔转化率为94.69%。比未优化前有效节约了底物和HP-β-CD的用量,同时获得了较高的产量。
     进一步研究了水相体系中诱变菌株M. neoaurum ZJUVN-08静息细胞转化植物甾醇的条件,确定静息细胞菌龄为72h,细胞浓度45g/L、pH为7.0的0.05mol/L Tris-HCl缓冲液中转化96h条件最佳。静息细胞重复使用4次以后,在底物浓度为8.89g/L时,摩尔转化率降为56.04%。
Steroid hormone is an important category in our pharmaceutical industry, and androstenedione is an indispensable key intermediate of steroid hormones. Androstenedione can be produced by microbial side chain cleavage of phytosterol, which is an alternative to multi-step chemical synthesis, and can alleviate the current situation caused by the raw material scarcity of diosgenin, is of great significance to full use of plant steroid resources, as well as prompting the pharmacy development. In the present study, strains with the ability to selectively degrade phtosterol were screened and their AD producing ability was tested. The strain with high AD yield was identified and mutation using low energy N+implantation was followed. As a result, a genetically stable mutant strain with AD as the sole product, designated as ZJUVN-08, was obtained. The effects of medium composition and culture conditions on phytosterol biotransformation were evaluated experimentally. Different cell wall permeabilization factors were used to enhance cell wall permeability and AD production. The effect of different cosolvents in aqueous system on the degradation of phytosterol into AD was studied. AD production was significantly increased in the presence of HP-P-CD. Then the process optimization was investigated using growing mycobacteria cells in depth. Biotransformation of phytosterol to AD using resting cell was optimized. The main results of this study were as follows:
     Soil samples which were seriously polluted by vegetable oil were collected from Taian surburb, Shandong, China. After incubation in encrichment media, the enrichment broth was spread on the plates with phytosterol as the sole carbon source.76strains were isolated, and then these strains were inoculated to bioconversion media to test the ability to transform the substrate. Transformation products were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). A strain named ZJUVN was found to have the maximum production and was able to transform phytosterol to AD and androsta-1,4-diene-3,17-dione (ADD) with the ratio of10:1. The strain was identified as Mycobacterium neoaurum by morphology, biochemical identification and16S rDNA sequence analysis.
     The strain was bred using low energy N+implantation method for accumulation of AD as the only product. The most suitable mutation conditions were:energy of10keV, implantation dose of100×2.6×1013ions/cm2, with the death rate of70%. Colonies appearing on the selected plates were chosen and tested for their AD production. Then23strains were selected with AD as the sole product. One of the mutated strains, designated as ZJUVN-08, produced the maximum level of AD (2.29g/L) which increased by71.05%. The strain was serially passaged for10passages and AD production was determined. The results demonstrated that M. neoaurum. ZJUVN-08has good genetic stability within10passages.
     The effects of medium composition and culture conditions on AD production by strain ZJUVN-08were evaluated experimentally. The optimized medium composition was as follows:glucose1%, peptone0.6%, KH2PO40.15%, MgSO40.05%, FeSO4. The optimized fermentation conditions were as follows:initial pH value7.0; temperature30℃; inoculums volume,10%; and50mL medium in250mL shaken flask; rotate speed200rpm. The product was purified by preparation HPLC and was a white powder, then further identified as AD using NMR, MS and IR analysis.
     By the study of ultrasound, bacitriacin, protamine and glycine on the strain growth and AD production, it was found that under the condition that with ultrasound power500W, treating time180s, AD yield was2.95g/L and increased by5.8%. After the treatment of different concentration of bacitriacin, the growth of strain was inhibited and AD yield was decreased under all the tested bacitriacin concentration. After the treatment of10g/L protamine, AD yield was3.02g/L and increased by8.6%. It was found that5g/L glycine was in favor of strain growth and AD production, with the AD yield of3.16g/L. Drug sensitivity assays were carried out to establish whether glycine increased AD production by increasing the cell wall permeabilization.
     The effect of different cosolvents on phytosterol degradation in aqueous system was studied. It was found that AD production was significantly increased in the presence of HP-β-CD. The parameters of biotransformation process by growing mycobacteria cells were optimized using fractional factorial design and response surface methodology. The optimial process conditions were observed at0.1g/L inducer, pH7.0, and molar ratio of hydroxypropyl-β-cyclodextrin to phytosterol1.92:1,8.98g/L phytosterol and at120h of incubation time. Under these conditions, the maximum AD yield was5.96g/L and the maximum phytosterol conversion rate was94.69%, which is a cost-efficient process compared to the non-optimized condition.
     The effect of phytosterol bioconversion using resting cells of strain Mneoaurum ZJUVN-08was investigated. The optimized conditons were as follows:cell age of72h; cell concentration of45g/L; Tris-HCl buffer solution pH value and concentration were7.0and0.05mol/L, respectively. After repeatedly utilizing four times, phytosterol bioconversion rate was decreased to56.04%.
引文
[1]谭仁祥.甾体化学[M].北京市:化学工业出版社,2009:271.
    [2]束怀德.甾体激素药理学[M].北京市:人民卫生出版社,1982:396.
    [3]杨清,王玉,王光伟.甾体激素类避孕药物与女性恶性肿瘤发病风险[J].中国实用妇科与产科杂志.2009(10):733-735.
    [4]Asselin-Labat M L, Vaillant F, Sheridan J M, et al. Control of mammary stem cell function by steroid hormone signalling[J]. Nature.2010,465(7299):798-802.
    [5]Callewaert F, Boonen S, Vanderschueren D. Sex steroids and the male skeleton:a tale of two hormones [J]. Trends Endocrinol Metab.2010,21(2):89-95.
    [6]Tong W Y, Dong X. Microbial biotransformation recent developments on steroid drugs[J]. Recent Patents on Biotechnology.2009,3(2):141-153.
    [7]Donova M V, Egorova O V. Microbial steroid transformations:current state and prospects [J]. Applied Microbiology and Biotechnology.2012,94(6):1423-1447.
    [8]Philibert D, Bouchoux F, Degryse M, et al. The pharmacological profile of a novel norpregnane progestin (trimegestone)[J]. Gynecological endocrinology.1999,13(5): 316-326.
    [9]李凯,岑瑛.蛋白同化激素及其应用[J].现代临床医学.2006(4):306-308.
    [10]陈代杰,朱宝泉.微生物转化技术在现代医药工业中的应用[J].中国抗生素杂志.2006,31(2):112-118.
    [11]黄丕铂.甾体类药物的生物转化研究现状[J].医学信息.1995(7):9-10.
    [12]Murray H C, Peterson D H. Oxidation of steroids by Muoorales fungi[J]. United States patent.1952:2602729.
    [13]张丽青.微生物转化在甾体药物合成中的应用[J].医药工业.1985,16(1):37-41.
    [14]魏巍. Mycobacterium neoaurum NwIB-01降解甾醇母核关键酶3-甾酮-△-1-脱氢酶和3-甾酮-9α-羟化酶基因的鉴定及其基因工程改造[D].华东理工大学,2010.
    [15]黄鸣龙,蔡祖辉,王志勤,等.副肾皮酮乙酸酯的合成[J].1959,25(5):295-300.
    [16]褚志义.生物合成药物学[M].北京市:化学工业出版社,2000:822.
    [17]叶丽,史济平.甾体微生物转化在制药工业中的应用[J].工业微生物.2001,31(4): 40-48.
    [18]吴谦,黄凤英,潘亮,等.微生物在甾体激素C16-a羟基化中的应用[J].武汉华工学院学报.2004,26(3):25-27.
    [19]Sih C J, Wang K C, Tai H H. Mechanisms of steroid oxidation by microorganisms. ⅩⅢ. C22 acid intermediates in the degradation of the cholesterol side chain[J]. Biochemistry.1968,7(2):796-807.
    [20]周维善,庄治平.甾体化学进展[M].北京市:科学出版社,2002:418.
    [21]Wix G, Buki K G, Tomoekeny E, et al. Inhibition of steroid nucleus degradation in mycobacterial transformations [J]. Steroids.1968,11(3):401-413.
    [22]Marsheck W J, Karychy S, Muir R D. Microbial Degradation of Sterols[J]. Applied Microbiology And Biotechnology.1972,23(1):72-77.
    [23]Choi K P, Molnar I, Murooka Y. Secretory overproduction of Arthrobacter simplex 3-ketosteroid delta 1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector[J].Appl Microbiol Biotechnol.1995,43(6):1044-1049.
    [24]杨顺楷,易奎星,杨亚力,等.甾体微生物转化C11-β羟基化的研究进展[J].生物加工过程.2006,4(2):7-14.
    [25]封玉贤,周振起.我国薯芋皂甙元的工业生产和资源的回顾与展望[J].天然产物研究与开发.1994,6(1):93-97.
    [26]杨顺楷,杨亚力.关注发展本土甾体资源均衡发展我国甾体药业[Z].南京:2007.
    [27]Sih C J, Wang K C. A new route to estrone from sterols [J]. J Am Chem Soc.1965,87: 1387-1388.
    [28]Arima K, Nagasawa M, Bae M, et al. Microbial transformation of sterols. Ⅰ. Decomoposition of cholesterol by microorganisms[J]. Agricultural and Biological Chemistry.1969,33(11):1636-1643.
    [29]Butenandt A, Tscherning K. Uber androsteron, ein krystallisiertes mannliches sexualhormon Ⅰ. Isoliereng und reindarstellung aus mannerham[J]. Z.Physiol. Chem. 1934,229:167-184.
    [30]Ruzicka L, Goldberg M W, Meyer J, et al. Zur. Kenntnis der Sexualhormone Ⅱ, Ueber die Synthese des Testikelhormons (Androsteron) und Steroisomers desselben durch Abbau hydrieter Sterine[J]. Helv. Chim. Acta.1934,17.
    [31]Butenandt A, Kudszus H. Uber Androstendion, einen hochw-irksamen mannlichen Pragungstoff[J]. Z. Physiol. Chem.1935,237.
    [32]Kochakian C D, Murlin J R. Sexualhormon V. Kunlsliche Herstellung des Mannlichen Sexualhormon, trans-Dehydroandrosteron und des Androsten-3,17-dion[J]. Am. J. Physiol. 1936,117:642-657.
    [33]Szentirmai A. Microbial physiology of sidechain degradation of sterols[J]. Journal of Industrial Microbiology.1990,6:101-116.
    [34]Goetschel R, Bar R. Formation of mixed crystals in microbial conversion of sterols and steroids [J]. Enzyme and Microbial Technology.1992,14(6):462-469.
    [35]Dogra N, Qazi G N. Biotransformation of cholesterol by Micrococcus sp. mediated by plasmid DNA [J]. World Journal of Microbiology and Biotechnology.1999,15:411-415.
    [36]Wadhwa L, Smith K E. Progesterone side chain cleavage by Bacillus sphaericus[J]. FEMS Microbiology Letters.2000,192:179-183.
    [37]Ahmed F, Williams R, Smith K. Microbial transformation of steroids-cytochromes p-450 11-β-hydrolase and C17-C20 layase and a 1-eno-dehydrogenase transform steroids in Nectria haematococca[J]. Journal of Steroid Biochemistry and Molecular Biology.1996, 58(3):337-349.
    [38]Sallam L A R, El-Refai A M, El-Minofi H A. Biological and biochemical improvement of the enzyme side-chain degradation of cholesterol by Fusarium solani[J]. Process Biochemistry.2005,40:203-206.
    [39]Weber A, Kewnnecke M. Preparation of 14α-Hydroxyandrost-4-ene-3,17-dione by fermentation[P]. [1993].
    [40]Malaviya A, Gomes J. Androstenedione production by biotransformation of phytosterols[J]. Bioresource Technology.2008,99(15):6725-6737.
    [41]Perez C, Perez I, Herve E. Isolation and partial characterization of a new mutant for sterol biotransformation in Mycobacterium sp.[J]. Biotechnology Letters.1995,17(11): 1241.
    [42]Perez C, Falero A, Llanes N, et al. Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria[J]. J Ind Microbiol Biotechnol.2003,30(10):623-626.
    [43]Vidal M, Becerra J, Mondaca M A, et al. Selection of Mycobacterium sp. strains with capacity to biotransform high concentration of β-sitosterol[J]. Appl. Microbiol. Biotechnol. 2001,57(3):385-389.
    [44]Shet M S, Fisher C W, Eastbroook R W. The function of recombinant cytochrome-P450s in intact Escherichia coli cells the 17a-hydroxylation of progesterone and pregnenolone by P450-cl7[J]. Archives Biochemistry and Biophysilogy.1997,339: 218-225.
    [45]Vander Geize R, Hessels G I, Van Gerwen R, et al. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid vl-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker [J]. FEMS Microbiology Letters. 2001,205:197-202.
    [46]Smith M, Zahnley J, Pfeifer D, et al. Growth and cholesterol oxidation by Mycobacterium species in Tween 80 medium [J]. Applied and Environmental Microbiology. 1993,59(5):1425-1429.
    [47]Rumijowaska A, Lisowska K, Ziolkowski A, et al. Transformation of sterols by Mycobacterium vaccae effects of lecithin on the permeability of cell envelopes to sterols[J]. World Journal of Microbiology and Biotechnology.1997,13:89-95.
    [48]Heselink P, Van Vliet S, de Vries H B W. Optimization of sterols side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins[J]. Enzyme and Microbial Technology.1989,11(7):398-404.
    [49]Donova M V, Nikolayeva V M, Dovbnya D V, et al. Methyl-beta-cyclodextrin alters growth, activity and cell envelope features of sterol-transforming mycobacteria[J]. Microbiology.2007,153(Pt 6):1981-1992.
    [50]申雁冰,王敏,王永乐,等.羟丙基-p-环糊精对植物甾醇侧链生物转化反应的影响[J].高校化学工程学报.2009,23(3):440-444.
    [51]法幼华,徐诗伟.A环饱和甾体的微生物转化作用I.用17α-甲基表雄醇制备去氢17α-甲基睾丸素[J].微生物学报.1980,20(2):185-188.
    [52]Sedlaczek L, Dlugonski J, Jaworski A. Transformation of steroids by fungal protoplasts [J]. Applied Microbiology and Biotechnology.1984,20(3):166-169.
    [53]王敏.新月弯孢酶的甾体11β-羟基化作用研究[D].天津:天津轻工业学院,2001.
    [54]Korycka-Machala M, Ziolkowski A, Rumijowska-Galewicz A, et al. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compound[J]. Microbiology.2001,147:2769-2781.
    [55]Malaviya A, Gomes J. Enchanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using wall permeabilizing antibiotics[J]. Journal of Industrial Microbiology and Biotechnology.2008,35:1235-1239.
    [56]Borrego S, Niubo E, Ancheta O, et al. Study of the microbial aggregation in Mycobacterium using image analysis and electron microscopy [J]. Tissue Cell.2000,32(6): 494-500.
    [57]Dias A C P, Cabral J M S, Pinheiro H M. Sterol side chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents[J]. Enzyme and Microbial Technology.1994,16(8):708-714.
    [58]Pereira V, Tigli H, Gryte C C. Mathematical analysis of two-phase mass transfer in a batch reactor for the chemical transformation of a steroid[J]. Biotechnol Bioeng.1987. 30(4):505-513.
    [59]Reiche R, Heller I, Hoerhold C, et al. Manufacture of androsta-1,4-diene-3,17-dione from sterols with Mycobacterium[P]. [1992].
    [60]Laane C, Boeren S, Vos K, et al. Rules for optimization of biocatalysis in organic solvents[J]. Biotechnol Bioeng.1987,30(1):81-87.
    [61]Hocknall M D, Lilly M D. Stability of the steroid △1-degrogenation system of Arthobacter simplex in organic solvent-water two-liquid phase environment[J]. Enzyme and Microbial Technology.1998,10:669-674.
    [62]Cruz A, Fernades P, Cabral J M S, et al. Effect of phase composition on the whole-cell booconversion of β-sitosterol in biphasic medium[J]. Journal of molecular catalysis B: Enzymatic.2002.
    [63]Dias A C P, Carbral J M S, Pinheiro H M. Sterol side chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents[J]. Enzyme and Microbial Technology.1994,16(8):708-714.
    [64]Pinheiro H M, Cabral J M. Activity and stability of an entrapped-cell system for the Delta(1)-dehydrogenation of steroids in organic media[J]. Biotechnol Bioeng.1992,40(9): 1123-1127.
    [65]Albertsson P A. Chromatography and paritition of cells and fragments[J]. Nature. 1956,177:771-774.
    [66]Andersson E, Hahn-H Gerdal B. Bioconversion in aqueous two-phase systems[J]. Enzyme and Microbial Technology.1990,12:242-254.
    [67]Flygare S, Larsson P O. Steroid transformation in aqueous two-phase systems side-chain degradation of cholesterol by Mycobacterium sp[J]. Enzyme and Microbial Technology.1989,11(11):752-759.
    [68]郝雪秦,许激扬,陈代杰,等.利用双水相系统转化雄甾-1,4-二烯-3,17-二酮的研究[J].药物生物技术.2003,10(3):169-173.
    [69]杨英,姜绍通,潘丽军,等.双水相系统微生物转化植物甾醇制备雄烯二酮研究[J].食品与发酵工业.2008,34(9):61-64.
    [70]Sinha J, Dey P K, Panda T. Aqueous two-phase:the system of choice for extractive fermentation[J]. Appl Microbiol Biotechnol.2000,54(4):476-486.
    [71]Zijlstra G M, Gooijer C D, Tramper J. Extractive bioconversions in aqueous two-phase systems[J]. Current Opinion in Biotechnology.1998,9(2):171-176.
    [72]Wang Z, Zhao F, Chen D, et al. Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system[J]. Process Biochemistry.2006,41(3):557-561.
    [73]Wang Z, Zhao F, Hao X, et al. Microbial transformation of hydrophobic compound in cloud point system[J]. Journal of Molecular Catalysis B:Enzymatic.2004,27(4-6): 147-153.
    [74]Llanes N, Pendas J, Leon R, et al. Conversion of liposomal 4-androsten 3,17-dione by A.simplex immobilizzed cells in calcium pectate[J]. Journal of molecular catalysis B: Enzymatic.2001,11:523-530.
    [75]Manosroi J, Sripalakit P, Manosroi L A. Bioconversion of hydrocortisone to prednisolone by immobilized bacterium cells in a two-liquid-phase system[J]. Journal of Chemical Technology and Biotechnology.1998,73(3):203-210.
    [76]Claudino M J, Soares D, Van Keulen F, et al. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol[J]. Bioresource Technology.2008,99(7):2304-2311.
    [77]Liu Y C, Chen G Y, Ge F L, et al. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis[J]. World Journal of Microbiology & Biotechnology.2011,27(4):759-765.
    [78]刘佩.表面展示亚油酸异构酶的重组植物乳杆菌构建及其高效合成共轭亚油酸[D].浙江大学,2011.
    [79]’陈义光,李铭刚,徐丽华,等.新型物理诱变方法及其在微生物诱变育种中的应用进展[J].长江大学学报(自然科学版).2005,2(5):46-48.
    [80]Parekh S, Vinci V A, Strobel R J. Improvement of microbial strains and fermentation processes[J]. Appl Microbiol Biotechnol.2000,54(3):287-301.
    [81]刘彩琴,何国庆,陈启和,等.一株产α-半乳糖苷酶菌的分离与选育[J].食品与发酵工业.2006,32(11):32-35.
    [82]虞龙,许安,王纪,等.低能离子注入在Vc高产菌株选育中的应用[J].激光生物学报.1999,8(3):217-220.
    [83]食品卫生微生物学检验菌落总数测定[S].北京,中华人民共和国技术监督局,2008:2008-10-10.
    [84]Su C, Zhou W, Fan Y, et al. Mutation breeding of chitosanase-producing strain Bacillus sp. S65 by low-energy ion implantation[J]. J Ind Microbiol Biotechnol.2006, 33(12):1037-1042.
    [85]曹小红,杜冰冰,鲁梅芳.N+离子束注入米曲霉诱变效应的研究[J].中国食品学报.2005,5(4):128-132.
    [86]杨英.微生物转化植物甾醇制备甾体药物关键中间体研究[D].合肥工业大学,2009.
    [87]钟传圣.转化植物甾醇单产雄甾雄甾-1,4-二烯-3,17-二酮菌株的诱变选育及产 物初步提取[D].江南大学,2009.
    [88]Kumar R, Dahiya J S, Singh D, et al. Biotransformation of cholesterol using Lactobacillus bulgaricus in a glucose-controlled bioreactor[J]. Bioresour Technol.2001, 78(2):209-211.
    [89]Lee D C, Park J H, Kim G J, et al. Modeling,simulation and kinectic analysis of a heterogenous reaction system for the enzymatic conversion of poorly soluble substrate[J]. Biotechnology and Bioengineering.1999,64(3):272-283.
    [90]Flygare S. Part Ⅰ Steroid transformation using immobilized whole cells. Part Ⅱ Affinity precipitation and magnetic aqueous two-phase separation. [D]. Lund, Sweden:University of Lund,1988.
    [91]阳葵,王福东,冯霞.磁化水处理菌种在甾体微生物转化过程中的效应[J].微生物学通报.1999,26(5):336-338.
    [92]De Brabandere V I, Thienpont L M, Stockl D, et al.13C NMR and mass spectral data of steroids with a 17,17-dialkyl-18-nor-13(14)-ene substructure [J]. Journal of Lipid Research.1997,38:780-789.
    [93]林彦良.甾体化合物微生物转化的研究[D].山东大学,2009.
    [94]Gulla V, Banerjee T, Patil S. Bioconversion of soysterols to androstenedione by Mycobacterium fortuitum subsp. fortuitum "NCIM 5239, a mutant derived from total sterol degrader strain[J]. Journal of Chemical Technology & Biotechnology.2010,85(8): 1135-1141.
    [95]叶丽,李增霞,陈倩,等.分枝杆菌降解p谷甾醇制备雄甾-1,4-二烯-3,17-酮[J].复旦学报.2002,29(4):280-283.
    [96]Carvalho F, Marques M P C, Carvalho C C C R, et al. Sitosterol bioconversion with resting cells in liquid polymer based systems[J]. Bioresource Technology.2009,100(17): 4050-4053.
    [97]Minniken D. The Biology of the mycobacteria [Z]. London:Academic Press,1982.
    [98]李永红,朱登勇,王姣,等.红酵母细胞通透性研究[J].郑州大学学报(理学版).2011,43(4):100-103.
    [99]Malaviya A, Gomes J. Enhanced biotransformation of sitosterol to androstenedione by Mycobacterium sp. using cell wall permeabilizing antibiotics[J]. J Ind Microbiol Biotechnol.2008,35(11):1235-1239.
    [100]Korycka-Machala M, Ziolkowski A, Rumijowska-Galewicz A, et al. Polycations increase the permeability of Mycobacterium vaccae cell envelopes to hydrophobic compounds[J]. Microbiology.2001,147(Pt 10):2769-2781.
    [101]Sedlaczek L, Lisowska K, Korycka M, et al. The effect of cell wall components on glycine-enhanced sterol side chain degradation to androstene derivatives by mycobacteria[J]. Appl Microbiol Biotechnol.1999,52(4):563-571.
    [102]Chuanyun D, Bochu W, Chuanren D, et al. Low ultrasonic stimulates fermentation of riboflavin producing strain Ecemothecium ashbyii[J]. Colloids and Surfaces B: Biointerfaces.2003,30(1):37-41.
    [103]Rastogi N, Goh K S, David H L. Enhancement of drug susceptibility of inhibitors of cell envelope[J]. Antimicrobial Agents and Chemotherapy.1990,34(5):759-764.
    [104]Manosroi J, Sripalakit P, Manosroi A. Biotransforamtion of chlomadinone acetate to demadinone acetate by free and imobilized Arthrobacter simplex ATCC6946 and Bacillus sphaericus ATCC13805[J]. Enzyme And Microbial Technology.2003,33(2):320-325.
    [105]Cruz A, Fernandes P, Cabral J M S, et al. Whole-cell bioconversion of β-sitosterol in aqueous-organic two-phase systems[J]. Journal of Molecular Catalysis B:Enzymatic. 2001,11:579-585.
    [106]邓军.表面活性剂和环糊精对土壤有机污染物的增溶作用及机理[D].湖南大学,2007.
    [107]Szejtli J. Introduction and General Overview of Cyclodextrin Chemistry [J]. Chem Rev.1998,98(5):1743-1754.
    [108]Atger V M, de la Llera M M, Stoudt G W, et al. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells[J]. J Clin Invest.1997,99(4):773-780.
    [109]申雁冰.羟丙基-p-环糊精对分枝杆菌降解植物甾醇的影响[D].天津科技大学,2008.
    [110]Hesselink P G M, Vliet S V, Vries H D, et al. Optimization of steroid side chain cleavage by cyclodextrins [J]. Enzyme And Microbial Technology.1989,11(7):398-404.
    [111]申雁冰,王敏,王永乐.反应介质对植物甾醇侧链生物降解的影响[J].天津科技大学学报.2008,23(4):27-30.
    [112]张龙翔等.生化实验方法和技术[M].北京市:高等教育出版社,1997:532.
    [113]Staebler A S, Cruz A, van der Goot W, et al. Optimization of androstenedione production in an organic-aqueous two-liquid phase system[J]. Journal of Molecular of Molecular catalysis B:Enzymatic.2004,29(1-6):19-23.
    [114]Doig S D, Boam A T, Leak D J, et al. Optimisation of the kinetics of the stereoselective reduction of geraniol to citronellol in a two liquid phase system[J]. Biocatalysis and Biotransformation.1998,16(1):27-44.
    [115]Donova M V. Transformation of steroids by actinobacteria:a review[J]. Prikl Biokhim Mikrobiol.2007,43(1):5-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700