亚油酸异构酶基因在产油真菌中的异源表达及产物的生物合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭亚油酸(Conjugated linoleic acid,CLA)是具有共轭双键的十八碳二烯酸的统称,由于其多样的生理活性而受到广泛关注。为了满足CLA在医药及营养领域的应用需求,通过生物技术生产单一、安全的CLA活性异构单体成为CLA合成技术的发展趋势。本论文将来源于痤疮丙酸杆菌(Propionibacterium acnes)的亚油酸异构酶(PAI)基因分别在大肠杆菌(Escherichia coli)、高山被孢霉(Mortierella alpina)和耶氏解脂酵母(Yarrowia lipolytica)中进行异源表达,确定耶氏解脂酵母作为合适的trans-10,cis-12-CLA生物合成系统,在此基础上,通过基因工程手段构建了一株trans-10,cis-12-CLA的高产菌株,并对发酵条件进行初步优化,进一步提高CLA产量。论文的主要研究结果如下:
     (1)构建了三种重组大肠杆菌重组菌株,分别表达三种重组PAI:C端融合6×His-tag的PAI、N端融合6×His-tag的PAI和不带有6×His-tag的PAI。将经镍柱纯化后的PAI免疫兔子,得到PAI多克隆抗体。通过SDS-PAGE和western blot分析三种重组菌的蛋白质表达情况,并利用气相色谱检测胞内相对酶活。结果显示,在相同的培养及诱导表达条件下,三种重组大肠杆菌均成功表达了具有亚油酸异构酶活性的重组PAI,6×His-tag的融合表达对于重组菌株的生长及PAI的表达总量没有影响,但减少了PAI可溶性表达量,并且降低酶活,而C端添加亲和标签比N端对此影响更为显著。为了获得更多的活性PAI,在产油真菌中异源表达PAI基因时,应不添加任何亲和纯化标签。
     (2)对M. alpina ATCC32222的孢子产量、孢子萌发率、孢子收集方法和孢子对抗生素敏感性进行了研究,确定最佳产孢培养条件是28℃、 PDA斜面上静置培养30天;为了去除菌丝并减少孢子的损失,采用60目滤布和20μm滤膜结合的两步法过滤孢子液;选择潮霉素作为筛选标记,潮霉素的最佳使用浓度为0.8-1.5mg/mL。构建了两种带有PAI基因的重组质粒:pD4-pai和pBIG-pai,分别用于基因枪轰击和农杆菌介导两种转化法。对转化实验条件进行摸索,最终通过农杆菌介导转化法获得稳定的转化子。以转化子的基因组DNA和cDNA为模板,通过PCR扩增证实了PAI基因成功整合在M.alpina转化子基因组上并发生转录,同时证明M. alpina表达系统构建成功。但M. alpina重组菌未能成功表达亚油酸异构酶。来源于细菌的PAI基因和真核生物M. alpina在密码子使用偏好性方面的差异可能是导致PAI异源表达失败的重要原因。
     (3)鉴于PAI基因在M. alpina中异源表达失败,首先根据Y. lipolytica的密码子偏好性,优化了PAI基因,并在PAI基因的起始密码子前加上了Kozak序列。天然的PAI基因(pai)和优化后的基因(opai)分别以单拷贝整合方式整合到Y. lipolytica基因组上。通过对重组蛋白表达量分析及产物trans-10,cis-12-CLA含量测定,发现在七个整合了pai的重组Y. lipolytica菌株中,只在两个转化子中检测到了PAI蛋白,而十二个带有opai的重组菌株中全部检测到了PAI。脂肪酸分析的结果与蛋白表达结果一致,带有天然PAI基因的转化子只有两个检测到产物trans-10,cis-12-CLA。经过密码子优化后,trans-10,cis-12-CLA平均产量提高了10倍,为2.1mg/L。这些结果证明PAI基因的优化是在真核生物中成功实现异源表达的前提。通过多拷贝整合方式,进一步提高了PAI表达量和trans-10,cis-12CLA含量,其平均含量为14.3mg/L,是opai的单拷贝重组菌中CLA平均产量的6.8倍。
     (4)从增加底物LA和提高PAI表达量两方面对酵母菌株进行改造。以带有单拷贝opai的Y. lipolytica重组菌株为出发菌株,将来源于M. alpina的delta-12脱氢酶基因在Y. lipolytica中进行异源表达,胞内亚油酸(LA)含量从总脂的27.8%提高至62.2%,底物的增加使得产物trans-10,cis-12CLA含量从2.3mg/mL升至3.8mg/L;在opai的原启动子hp4d上游插入12个UAS1B调控元件,得到新启动子hp16d,opai在新启动子调控下,PAI表达量提高了3倍,trans-10,cis-12CLA产量也提高至7.0mg/L;将以上两个基因改造策略结合使用后,二者的效果得到了叠加,trans-10,cis-12CLA产量提高了4.8倍,至11.0mg/L;最后通过多拷贝整合方式,进一步增强了二者的作用,trans-10,cis-12CLA产量为36.8mg/L,是出发菌株的16倍。经过分子改造后的最优菌株Polh-pINA1292-spopai-d12-16中CLA产量为44.9mg/L,占总脂肪酸的9.8%。
     (5)基于对重组蛋白和脂质底物的双重需求以及Y.lipolytica高效吸收利用脂类物质的特性,采用添加了2%亚油酸的培养基YNBDL6,定向增加PAI底物。在摇瓶培养的72h,trans-10,cis-12CLA产量达到最高,而且在培养基上清中检测到产物CLA,胞内含量为0.2g/L,培养基上清中为0.1g/L,总产量是YPD培养基中CLA产量的6.7倍。通过提高培养基中氮含量,抑制了Y.lipolytica产酸,提高了菌体生长速度、脂质吸收效率及PAI表达量,在高氮培养基YN20BDL6中培养72h,trans-10,cis-12CLA的产量达到2.6g/L,为低氮培养基中CLA产量的8.7倍。在高氮培养基配方的基础上,考察不同纯度的LA对Y.lipolytica重组菌产CLA的影响。结果显示,LA纯度的提高对于Y.lipolytica重组菌株的生长和产脂没有影响,而且trans-10,cis-12CLA的产量随着LA纯度的增加而提高,添加了纯度为33%、65%、96%LA的培养基中Polh-pINA1292-spopai-d12-16的CLA总产量分别为0.9g/L、2.6g/L和3.7g/L。大豆油价格低廉,来源广泛,其中LA的含量占总脂肪酸的56%,用大豆油替代培养基中的亚油酸,Y.lipolytica重组菌的生长、产脂及CLA产量与添加65%LA的结果相近,trans-10,cis-12CLA的最高产量同样出现在摇瓶发酵的72h,总产量为2.5g/L,证明Y.lipolytica重组菌能够高效转化大豆油为CLA。在5-L发酵罐中,Polh-pINA1292-spopai-d12-16利用添加大豆油的培养基,在发酵38.5h,CLA产量达最高,胞内为3.1g/L,培养基中为0.9g/L。经过培养条件的初步优化,CLA的总产量达到4g/L,为YPD培养基中CLA产量的90倍,是迄今为止报道的最高水平的20倍。通过胞外酶活检测及显微镜观察细胞完整性,结果显示胞外并未检测到PAI酶活,也并未观测到细胞碎片,说明培养基上清中的产物CLA不是由PAI分泌或细胞裂解引起,推测其原因是胞内外发生脂质交换。
Conjugated linoleic acid (CLA) is a generic term used to describe a mixture of positionaland geometric isomers of linoleic acid (LA) with conjugated double bonds. In the past threedecades, CLA has attracted much attention because of its biologically beneficial functions. Tomeet the requirements for medicinal and nutritional purposes, CLA isomers need to bebiologically safe and highly specific. Therefore biosynthesis of CLA has become theinevitable technology trends. In this dissertation, the linoleic acid isomerase gene fromPropionibacterium acnes (PAI) was successively expressed in Escherichia coli, Mortierellaalpina and Yarrowia lipolytica. Yarrowia lipolytica was confirmed to be the properbiosynthesis system for trans-10,cis-12-CLA. A recombinant Yarrowia lipolytica strain withability to produce large quantities of trans-10, cis-12-CLA was constructed by geneticmodifications. The trans-10, cis-12-CLA yield was further improved by optimization ofcultivation conditions. The main results were described as follows:
     (1) Three new recombinant E.coli strains were constructed and used to over-expressthree types of recombinant PAI: PAI,.PAI fused with C-terminal6×his-tag and PAI fusedwith N-terminal6×his-tag. The purified his-tag PAI was used as antigen for the generation ofPAI-specific polyclonal antibodies in rabbits. To analysis the recombinant PAI expression inE.coli, SDS-PAGE and western blot were carried out. PAI activity in recombinant E.coli strainwas confirmed by gas chromatogram. The results showed that, under the same cultivation andinducible expression conditions, three recombinant E.coli strains successfully expressedrecombinant proteins which had linoleic acid isomerase activity. The total recombinant PAIproduction levels were similar among three recombinant E.coli strains. His-tag had anoticeable negative effect on protein solubility and PAI activity. C-terminal his-tag had astronger negative effect on these aspects than N-terminal his-tag. To obtain maximum activePAI, PAI gene should be expressed in oleaginous fungus without any affinity purification tags.
     (2) The production, germination rate, collection method and antibiotics sensitivity ofspores were investigated. The optimum cultivation condition for spores production is that M.alpina was cultivated on slant PDA medium at28℃for30days. To remove mycelia andminimize spores losses, the spore suspension was successively filtrated by250μm fabric and20μm membrane. Hygromycin B was used as selection marker and the optimumconcentration for transformation was0.8-1.5mg/mL. The recombinant vectors pD4-pai andpBIG-pai were constructed for microprojectile bombardment and Agrobacteriumtumefaciens-mediated transformation (ATMT) respectively. Transformation conditions wereinvestigated and the stable transformants were obtained by ATMT. PAI gene integration intochromosomal DNA and transcription were confirmed by PCR analysis, using genomic DNAand cDNA from stable transformants. The results suggested gene manipolation system for M.alpina was established. However the recombinant PAI was not detected by SDS-PAGE andwestern blot analysis. These results revealed that PAI gene was not expressed in M. alpina.Codon usage differences between PAI gene and M. alpina may be the reason for the failure ofPAI expression.
     (3) Considering the failure of PAI expression in M. alpina, PAI gene was firstlyoptimized according the condon usage bias in Y. lipolytica. Additionally, the Kozak elementwas added before the first AUG codon to prevent the leaky scanning of the ribosome.Mono-copy expression cassettes of native PAI gene (pai) and optimized gene (opai) wereintegrated into genomic DNA of Y. lipolytica. The recombinant PAI is present in all yeasttransformants carrying opai. By comparison, the level of PAI expressed from the native paiwas extremely low and could not be detected by western blot except for two transformants.The average content of trans-10,cis-12-CLA in transformants carrying opai was2.1mg/L,which corresponds to a10-fold increase compared with the transformants carrying pai. Theseresults suggested that codon optimization was essential for heterologous expression ineukaryotes. The expression level of PAI and trans-10,cis-12-CLA production were furtherpromoted with a multiple-copy expression of a codon-optimized gene. The average content oftrans-10,cis-12-CLA in multiple-copy transformants carrying opai was14.3mg/L, whichcorresponds to a6.8-fold increase compared with the mono-copy transformants carrying opai.
     (4) The genetic modifications of Y. lipolytica were performed to enhance the level ofsubstrate LA and PAI expression. The mono-copy integrative strain with the codon-optimizedgene opai was used as a control strain. To increase PAI substrate (LA) content, the delta-12desaturase gene was cloned from M. alpina and expressed in Y. lipolytica. As a result, PAIcontent in total fatty acids was increased from27.8%to62.2%and trans-10,cis-12-CLAproduction was increased from2.3mg/L to3.8mg/L. To enhance opai expression, thepromoter, hp4d, was replaced by a modified promoter hp16d located upstream of opai. Theexpression level of opai under hp16d was3-fold higher than that in the control strain and thetrans-10,cis-12-CLA production was increased to7.0mg/L. Furthermore, the synergisticeffect of d12expression and enhanced promoter resulted in a4.8-fold increased yield of CLA(11.0mg/L) compared to the control. The multi-copy integration also improved CLA yield:the trans-10,cis-12-CLA yield was increased to36.8mg/L, which corresponds to a total of16-fold increase. The highest CLA yield obtained by the best performing transformantPolh-pINA1292-spoPAI-D12-16was44.9mg/L, corresponding to9.8%in total fatty acids.
     (5) The non-conventional dimorphic yeast Y. lipolytica has been efficiently cultivated onvarious hydrophobic substances such as alkanes or lipids to produce many extra-orintra-cellular metabolites of industrial significance. Considering the specific properties of Y.lipolytica and the limiting factors for CLA production, YNBDL6medium supplemented withLA was used to increase PAI substrate. At72h of cultivation in flask, the trans-10,cis-12-CLA yield in Polh-pINA1292-spoPAI-D12-16was maximum, which was6.7-foldhigher than that in YPD medium, corresponding to0.3g/L. Interestingly,0.1g/L CLA thereinwas detected in supernatant medium. Increase of nitrogen concentration in medium inhibitedacid production and promoted cell growth, lipid intake and PAI expression. In high nitrogenmedium YN20BDL6, the maximal CLA yield was2.6g/L observed at72h of cultivationwhich was8.7-fold than that in low nitrogen medium. The effect of different LAconcentration on growth characters was investigated. High LA concentration had no negativeeffect on Y. lipolytica growth and lipid accumulation. Moreover, the trans-10,cis-12-CLA yield increased according with LA concentration. The CLA production were separately0.9g/L,2.6g/L and3.7g/L in medium added with33%,65%and96%LA. The overall modifiedstrain was cultivated with YN20BDS medium supplemented with soybean oil which is wildlyavailable, low-cost and rich in LA. The growth characters, lipid accumulation and CLAproduction in YN20BDS were similar with those in the medium supplemented with65%LA.The maximum CLA production in cells was2.5g/L. Polh-pINA1292-spoPAI-D12-16wascultured in5-L fermentor with YN20BDS medium. The maximum CLA production in cellswas3.1g/L and observed at the late stage of rapid growth (38.5h of cultivation). A largeportion of CLA (0.9g/L) was detected in supernatant medium simultaneously.The total CLAproduction was4g/L, corresponding to90-fold higher than that in YPD medium and20-foldhigher than the highest production of trans-10, cis-12-CLA by biosynthesis. The extracellularactivity of PAI in medium at24h of cultivation was tested and optical microscopic analysiswas performed to evaluate the cell integrity. As a result, there was no activity of PAI to bedetected in supernatant culture and no cell fragmentation was observed. These resultssuggested that the CLA in culture supernatant was not due to PAI secretion and cell lysis. Thepossible explanation was the result of fatty acid exchange between intracellular andextracellular matrixes.
引文
1. Pariza M W. Conjugated linoleic acid, a newly recognized nutrient. Chemistry&Industry,1997,16:464-466
    2. Pariza M W,Park Y,Cook M E. The biologically active isomers of conjugated linoleic acid. Progressin Rapid Research,2001,40(4):283-298
    3. Lee Y,Thompson J T,de Lera A R,et al. Isomer-specific effects of conjugated linoleic acid on geneexpression in RAW264.7. The Journal of Nutritional Biochemistry,2009,20(11):848-859
    4. Crumb D J. Conjugated linoleic acid (CLA)-An overiew. Internatiomal Journal of Applied Research inNatural Products,2011,4(3):12-18
    5. Ha Y L,Grimm N K,Pariza M W. Newly recognized anticarcinogenic fatty acids: identification andquantification in natural and processed cheeses. Journal of Agricultural and Food Chemistry,1989,37(1):75-81
    6. Mir P S,McAllister T A,Scott S,et al. Conjugated linoleic acid-enriched beef production. TheAmerican Journal of Clinical Nutrition.2004,79(6):1207S-1211S
    7. Haas M J,Kramer JK,McNeill G,et al. Lipase-catalyzed fractionation of conjugated linoleic acidisomers. Lipids,1999,34(9):979-987
    8. Churruca I,Fernandez-Quintela A,Puy Portillo M. Conjugated linoleic acid isomers: Differences inmetabolism and biological effects. Biofactors,2009,35(1):105–111
    9. Pariza M W,Ashoor S H,Chu F S,et al. Effects of temperature and time on mutagen formation inpan-fried hamburger. Cancer Letters.1979,7(2-3):63-69
    10. Ha Y L,Grimm N K,Pariza M. Anticarcinogens from fried ground beef: heat-altered derivatives oflinoleic acid. Carcinogenesis,1987,8(12):1881-1887
    11. Shultz T D,Chew B P,Seaman W R,et al. Inhibitory effect of conjugated dienoic derivatives oflinoleic acid and β-carotene on the in vitro growth of human cancer cells. Cancer Letters,1992,63(2):125-133
    12. Schonberg S,Erokan H E. The inhibitory effect of conjugated dienoic derivatives (CLA) of linoleicacid on the growth of human tumor cell lines is in part due to increased lipid peroxidation. AnticancerResearch,1995,15(4):1241-1246
    13. Ma D W,Field C J,Clandinin M T. Countecurrent approach to the enrichment of Δ9c,11t-andΔ10,12c-18:2isomers by urea complexation. Journal of the American Oil Chemists' Society,2002,79(8):755-758
    14. Masso-Welch P A,Zangani D,Ip C,et al. Inhibition of angiogenesis by the cancer chemopreventiveagent conjugated linoleic acid. Cancer Research,2002,62(15):4383-4389
    15. Durgam V R,Fernandes G. The growth inhibitory effect of conjugated linoleic acid on MCF-7cells isrelated to estrogen response system. Cancer Letters,1997,116(2):121-130
    16. Ha Y L,Storkson J M,Pariza M W. Inhibition of benzo-(a)pyrene-induced mouse forestomachneoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Research,1990,50(4):1097-1101
    17. Ip C,Chin S F,Scimeca J A,et al. Mammary cancer prevention by conjugated dienoic derivative oflinoleic acid. Cancer Research,1991,51(22):6118-6124
    18. Ip C,Briggs S P,Haegele A D,et al. The efficacy of conjugated linoleic acid in mammary cancerprevention is independent of the level or type of fat in the diet. Carcinogenesis,1996,17(5):1045-1050
    19. Hubbard N E,Lim D,Summers L,et al. Reduction of murine mammary tumor metastasis byconjugated linoleic acid. Cancer Letters,2000,150(1):93-100
    20. Kelley D S,Simon V A,Taylor P C,et al. Dietary supplementation with conjugated linoleic acidincreased its concentration in human peripheral blood mononuclear cells but did not affect theirfunction. Lipids,2001,36(7):669-674
    21. Field C J,Schley P D. Evidence for potential mechanism for the effect of conjugated linoleic acid ontumor metabolism and immune function: lessons from n-3fatty acids. The American Journal ofClinical Nutrition,2004,79(6):1190-1198
    22. Ip C,Dong Y,Ip M M,et al. Conjugated linoleic acid isomers and mammary cancer prevention.Nutrition and Cancer,2002,43(1):52-58
    23. Hubbard N E,Lim D,Erickson K L. Effect of separate conjugated linoleic acid isomers on murinemammary tumorigenesis. Cancer Letters,2003,190(1):13-19
    24. Ip C,Banni S,Angioni E,et al. Conjugated linoleic acid-enriched butter fat alters mammary glandmorphogenesis and reduces cancer risk in rats. The Journal of Nutrition,1999,129(12):2135-2142
    25. Knekt P,Jarvinen R,Seppanen R,et al. Intake of dairy products and the risk of breast cancer. BritishJournal of Cancer,1996,73(5):687-691
    26. Aro A,Mannisto S,Salminen I,et al. Inverse association between dietary and serum conjugatedlinoleic acid and risk of breast cancer in postmenopausal women. Nutrition and Cancer,2000,38(2):151-157
    27. Brown J M,Mcinstosh M K. Conjugated linoleic acid in humans: regulation of adiposity and insulinsensitivity. The Journal of Nutrition,2003,133(10):3041-3046
    28. Rodriguez E,Ribot J,Palou A. Trans-10, cis-12, but not cis-9, trnas-11CLA isomer inhibits brownadipocyte thermogenic capacity. American Journal of Physiology,2002,282(6): R1789-R1797
    29. Park Y,Storkson J M,Liu W,et al. Structure-activity relationship of conjugated linoleic acid and itscognates in inhibiting heparin-releasable lipoprotein lipase and glycerol release from fullydifferentiated3T3-l1adipocytes. The Journal of Nutritional Biochemistry,2004,15(9):561-569
    30. Wang Y W,Jones P J. Conjugated linoleic acid and obesity control: efficacy and mechanisms.International Journal of Obesity,2004,28(8):941-955
    31. Bouthegourd J C,Even P C,Gripois D,et al. A CLA mixture prevents body triglyceride accumulationwithout affecting energy expenditure in syrian hamsters. The Journal of Nutrition,2002,132(9):2682-2689
    32. Park Y,Storkson J M,Albright K J,et al. Evidence that the trans-10, cis-12isomer of conjugatedlinoleic acid induces body changes in mice. Lipids,1999,34(13):235-241
    33. Risearus U,Berglund L,Vessby B. Conjugated linoleic acid (CLA) reduced abdominal adipose tissuein obese middle-aged men with signs of the metabolic syndrome: a randomized controlled trial.International Journal of Obesity,2001,25(8):1129-1135
    34. Larsen T M,Toubro S,Gudmundsen O,et al. Conjugated linoleic acid supplementation for1y doesnot prevent weight or body fat regain. The American Journal of Clinical Nutrition,2006,83(3):606-12
    35. Blankson H,Stakkestad J A,Fagertun H,et al. Conjugated linoleic acid reduces body fat mass inoverweight and obese humans. Journal of Nutrition,2000,130(12):2943-2948
    36. Ogawa J, Matsumura K, Kishino S, et al. Conjugated Linoleic acid accumulation via10-Hydroxy-12-Octadecaenoic acid during Microaetobic transformation of Linoleic acid byLactobacillus acidophilus. Applied and Environmental Microbiology,2001,67(3):1246-1252
    37. Kepler C R,Tove S V. Biohydrogenation of unsaturated fatty acid: Ⅲ Purification and properties of alinoleate△12-cis,△11-trans-isomerase from Butyrivibrio fibrisolvens. The Journal of BiologicalChemistry,1967,242(2):5686-5692
    38. Kim Y J,Liu R H,Rychlik J L,et al. The enrichment of a ruminal bacterium (Megasphaera elsdeniiYJ-4) that produces the trans-10, cis-12isomer of conjugate linoleic acid. Journal of AppliedMicrobiology,2002,92(5):976-982
    39. Kim Y J,Liu R H. Increase of conjugated linoleic acid content in milk by fermentation with Lactic acidBacteria. Journal of Food Science,2002,67(5):1731-1737
    40. Pariza M W,Yang X Y. Method of producing conjugated fatty acids [P]. United States Patent,6060304.2000-09-05
    41. Corkley M,Ross RP,Nordgren M,et al. Conjugated linoleic acid biosynthesis by human-derivedBifidobacterium species. Journal of Applied Microbiology,2003,94(1):138-145
    42. Ogawa J,Kishino S,Ando A,et al. Production of Conjugated Linoleic Acids by Lactic Acid Bacteria.Journal of Bioscience and Bioengineering,2005,100(4):355-364
    43. Kishino S,Ogawa J,Omura Yoriko,et al. Conjugated linoleic acid production from linoleic acid bylactic acid bacteria. Journal of the American Oil Chemists' Society,2002,799(2):159-163
    44.张中义,胡锦荣,刘萍等.产共轭亚油酸乳酸菌的筛选及产物分析[J].中国农业大学学报,2004,9(3):5-8
    45. Lin T Y,Huang T H,Chen T-S J. Conjugated linoleic acid production by immobilized cells oflactobacillus delbruckii ssp bulgaricus and lactobacillus acidophilus. Food Chemistry,2005,92(1):23-28
    46.于国萍,寇秀颖.产共轭亚油酸酸乳酸菌的选育及培养基的确定[J].食品工业科技,2005,26(5):60-62
    47. OH D,Hong G,Lee Y J,et al. Production of conjugated linoleic acid by isolated bifidobacteriumstrains. World Journal of Microbiology and Biotechnology,2003,19(9):907-912
    48. Alonso L,Cuesta E P,Gilliland S E. Production of free congjugated linoleic acid by Lactobacillusacidophilus and Lactobacillus casei of human intestinal origin. Journal of Dairy Science,2003,86(6):1941-1946
    49. Lin T Y,Lin C W,Wang Y J. Linoleic acid isomerase activity in enzyme extract from Lactobacillusacidophilus and Propionibacterium freudenreichii ssp.Shermanii. Journal of Food Science,2002,67(4):1502-1505
    50. Verhulst A,Janssen G,Parmentier H,et al. Isomerization of polyunsaturated long chain fatty acids bypropionibacteria. Systematic and applied microbiology,1987,9(1):12-15
    51. Kepler C R,Hirons K P,McNeill J J,et al. Intermediates and products of the biohydrogenation oflinoleic acid by Butyrivibrio fibrisolvens. The Journal of Biological Chemistry,1966,241(6):1350-4
    52. Rosson R A,Grund A D,Deng M D,et al. Linoleate isomerase [P]. United States Patent,6743609.2004-01-06
    53. Deng M D,Grund A D,Schneider K J,et al. Linoleic acid isomerase from Propionibacterium acnes:purification, characterization, molecular cloning, and heterologous expression. Applied Biochemistryand Biotechnology,2007,143(3):199-211
    54. Hornung E,Krueger C,Pernstich C,et al. Production of (10E,12Z)-conjugated linoleic acid in yeastand tobacco seeds. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2005,1738(1-3):105-114
    55. Kohno-Murase J,Iwabuchi M,Endo-Kasahara S,et al. Production of trans-10, cis-12conjugatedlinoleic acid in rice. Transgenic Research,2006,15(1):95-100
    56. Rosberg-Cody E,Johnson M C,Fitzgerald G F,et al. Heterologous expression of linoleic acidisomerase from Propionibacterium acnes and anti-proliferative activity of recombinant trans-10, cis-12conjugated linoleic acid. Microbiology,2007,153(8):2483-2490
    57. Kishino S,Park S B,Takeuchi M,et al. Novel multi-component enzyme machinery in lactic acidbacteria catalyzing C=C double bound migration useful for conjugated fatty acid synthesis,Biochemical and Biophysical Research Communications,2011,416:188-193.
    58. Fairband P L,Herb J R,Reimenschneider R W. Isomers of conjugated fatty acids.I. Alkali-isomerizedLinoleic Acid. Journal of American Chemical Society,1951,73(1):247-252
    59. Beppu F,Hosokawa M,Tanaka L,et al. Potent inhibitory effect of trans9, trans11isomer ofconjugated linoleic acid on the growth of human colon cancer cells. The Journal of NutritionalBiochemistry,2006,17(12):830-836
    60. Kishino S,Ogawa J,Omura Y,et al. Conjugated linoleic acid production from linoleic acid by lacticacid bacteria. Journal of American Oil Chemists`Society,2002,79(2):159-163
    61. Ando A,Ogawa J,Kishino S,et al. Conjugated linoleic acid production from ricinoleic acid by lacticacid bacteria. Journal of American Oil Chemists`Society,2003,80(9):889-894
    62. Ando A,Ogawa J,Kishino S,et al. Conjugated linoleic acid production from castor oil byLactobacillus plantarum JCM1551. Enzyme and Microbial Technology,2004,35(1):40-45
    63. Ando A,Ogawa J,Sugimoto S,et al. Selective production of cis-9, trans-11isomer of conjugatedlinoleic acid from trans-vaccenic acid methyl ester by Delacroixia coronata. Journal of AppliedMicrobiology,2009,106(5):1697-704
    64.赵建新,陈卫,田丰伟等.植物乳杆菌ZS2058转化亚油酸为共轭亚油酸条件的初步研究[J].食品工业科技,2005,26(12):82-87
    65.钮晓燕,陈卫,张灏等.植物乳杆菌ZS2058在磷酸盐缓冲液体系中生物转化共轭亚油酸[J].微生物学报,2007,47(2):244-248
    66.顾思天,陈海琴,叶强等.植物乳杆菌ZS2058中亚油酸异构酶的定位研究[J].食品工业科技,2008,12(29):57-60
    67.许庆炎,陈卫,陈海琴等.植物乳杆菌ZS2058生物转化产物共轭亚油酸的分析方法的研究[J].食品与发酵工业,2008,34(1):110-115
    68.陈海琴,许庆炎,叶强等.植物乳杆菌ZS2058生物转化共轭亚油酸的反应动力[J].微生物学报,2009,49(2):174-179
    69. Coakley M,Ross R P,Nordgren M,et al. Conjugated linoleic acid biosynthesis by human-derivedBifidobacterium species. Journal of Applied Microbiology,2003,94(1):138-145
    70. Wahle K W J,Heys S D,Rotondo D. Conjugated linoleic acids: are they beneficial or detrimental tohealth. Progress in Lipid Research,2004,43(6):553-587
    71. Haas M J,Kramer J K,McNeill G,et al. Lipase-catalyzed fractionation of conjugated linoleic acidisomers. Lipids1999,34(9):979-987
    72. Mounts T L,Dutton H J,Glover D. Conjugation of polyunsaturated acids. Lipids,1970,5(12):997-1005
    73. Liavonchanka A,Hornung E,Feussner I,et al. Structure and mechanism of the Propionibacteriumacnes polyunsaturated fatty acid isomerase. Proceedings of National Academy of Science of the UnitedStates of American,2006,103(8):2576-2581
    74. Beopoulos A,Cescut J,Haddouche R,et al. Yarrowia lipolytica as a model for bio-oil production.Progress in Lipid Research,2009,48(6):375-387
    75. Ratledge C. Single cell oils for the21st century [C]. In: Ratladge C, eds. Single cell oils. Champaign:AOCS Press,2005.3-26
    76. Ratledge C,Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginousmicroorganisms. Advances in Applied Microbiology,2002,51:1-51
    77. Streekstra H. On the safety of Mortierella alpina for the production of food ingredients, such asarachidonic acid. Journal of Biotechnology,1997,56(3):153-165
    78. Archer D B,Connerton I F,MacKenzie D A. Filamentous fungi for production of food additives andprocessing aids. Advances in Biochemical Engineering/Biotechnology,2008,111:99-147
    79. Barth G,Beckerich J M. Functional genetics of industrial yeasts. New York: Springer-Verlag BerlinHeidelberg,2003:227-271
    80. Wang L,Chen W,Feng Y,et al. Genome characterization of the oleaginous fungus Mortierella alpine.Plos one,2011,6(12): e28319
    81. Ren Y,Perepelov A V,Wang H,et al. Biochemical characterization of GDP-l-fucose de novosynthesis pathway in fungus Mortierella alpina. Biochemical and Biophysical ResearchCommunications,2010,391(4):1663-1669
    82. Wang H,Yang B,Hao G F,et al. Biochemical characterization of the tetrahydrobiopterin synthesispathway in the oleaginous fungus Mortierella alpine. Microbiology,2011,157(11):3059-3070
    83. Mackenzie D A,Wongwathanarat P,Carter A T,et al. Isolation and Use of a Homologous Histone H4Promoter and a Ribosomal DNA Region in a Transformation Vector for the Oil-Producing FungusMortierella alpine. Applied And Environmental Microbiology,2000,66(11):4655-4661
    84. Seiki T,Eiji S,Akiko T,et al. Transformation of Oil-Producing Fungus, Mortierella alpine1S-4, UsingZeocin, and Application to Arachidonic Acid Production. Journal Of Bioscience And Bioengineering,2005,100(6):617-622
    85. Nicaud J M,Madzak C,Broek P,et al. Protein expression and secretion in the yeast Yarrowia lipolytica.FEMS Yeast Research,2002,2(3):371-379
    86. Madzak C,Gaillardin C,Beckerich J M. Heterologous protein expression and secretion in thenon-conventional yeast Yarrowia lipolytica: a review. Journal of Biotechnology,2004,109(1-2):63-81
    87. Smith M C,Furman T C,Ingolia T D,et al. Chelating peptide immobilized metal ion affinitychromatography. A new concept in affinity chromatography for recombinant proteins. The Journal ofBiological Chemistry,1988,263(15):7211–7215
    88. Chant A,Kraemer-Pecore C M,Watkin R,et al. Attachment of a histidine tag to the minimal zincfinger protein of the Aspergillus nidulans gene regulatory protein AreA causes a conformational changeat the DNA-binding site. Protein Expression and Purification,2005,39(2):152-159
    89. Ferreira C G,Epping M,Kruyt F A E,et al. Apoptosis: Target of Cancer Therapy. Clinical CancerResearch,2002,8(7):2024–2034
    90. Cadel S, Gouzy-darmon C, Petres S, et al. Expression and purification of rat recombinantaminopeptidase B secreted from baculovirus-infected insect cells. Protein Expression and Purification,2004,36(1):19-30
    91. Mohanty A K,Wiener M C. Membrane protein expression and production: effects of polyhistidine taglength and position. Protein Expression and Purification,2004,33(2):311-325
    92. Derewenda Z S. The use of recombinant methods and molecular engineering in protein crystallization.Methods,2004,34(3):354-363
    93. Waugh D S. Making the most of affinity tags. Trends in Biotechnology,2005,23(6):316-320
    94. Woestenenk E A,Hammarstr m M,van den Berg S,et al. His tag effect on solubility of humanproteins produced in Escherichia coli: a comparison between four expression vectors. Journal ofStructural and Functional Genomics,2004,5(3):217-229
    95. Li Y,Yang G,Huang X,et al. Recombinant glutamine synthetase (GS) from C. glutamicum existed asboth hexamers&dedocamers and C-terminal His-tag enhanced inclusion bodies formation in E. coli.Applied Biochemistry and Biotechnology,2009,159(3):614-622
    96. Liavonchanka A. Structure and biochemistry of polyunsaturated fatty acid double bond isomerase fromPropionibacterium acnes [D]:[PhD Thesis]. Germany: Georg August University,2007
    97. Jang H D, Yang S S. Polyunsaturated fatty acids production with a solid-state columnreactor. Bioresource Technology,2008,99(14):6181-6189
    98. Ho S Y,Chen F. Lipid characterization of Mortierella alpina grown at different NaCl concentrations.Journal of Agricultural and Food Chemistry,2008,56(17):7903-7909
    99. Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production.Biochimie,2004,86(11):807-815
    100. Ruiz-Diez B. Strategies for the transformation of filamentous fungi. Journal of Applied Microbiology,2002,92(2):189-195
    101. Riach M B R,Kinghorn J R. Genetic transformation and vector developments in filamentous fungi. InFungal Genetics: Principles and Practice,New York: Marcel Dekker,1996-ISBN08-247-9544X(hardcover: alk. paper):209-233
    102. Gomes-Barcellos F,Pelegrinelli-Fungaro M H,Furlaneto M C,et al. Genetic analysis of Aspergillusnidulans unstable transformants obtained by the biolistic process. Canadian Journal of Microbiology,1998,44(12):1137-1141
    103. Hazell B W,Te’O V S J,Bradner J R,et al. Rapid transformation of high cellulase-producing mutantstrains of Trichoderma reesei by microprojectile bombardment. Letters in Applied Microbiology,2000,30(4):282-286
    104. Groot M J A de, Bundock P, Hooykaas P J J, et al. Agrobacterium tumefaciens-mediatedtransformation of filamentous fungi. Nature Biotechnology,1998,16(9):839-842
    105. Gouka R J,Gerk C,Hooykaas P J,et al. Transformation of Aspergillus awamori by Agrobacteriumtumefaciens-mediated homologous recombination. Nature Biotechnology,1999,17(6):598-601
    106. Takeno S,Sakuradani E,Murata S,et al. Establishment of an overall transformation system for anoil-producing filamentous fungus, Mortierella alpine1S-4. Applied Microbiology and Biotechnology,2004,65(14):419-425
    107. Takeno S,Sakuradani E,Tomi A,etal. Transformation of oil-producing fungus, Mortierella alpine1S-4, using Zeocin, and application to arachidonic acid production. Journal of Bioscience andBioengineering,2005,100(6):617-622
    108. Takeno S,Sakuradani E,Tomi A,etal. Improvement of the fatty acid composition of an oil-producingfilamentous fungus, Mortierella alpine1S-4, through RNA Interference with Δ12-Desaturase geneexpression. Applied and Environmental Microbiology,2005,71(9):5124-5128
    109. Ando A,Sumida Y,Negoro H,et al. Establishment of agrobacterium tumefaciens-mediatedtransformation of an oleaginous fungus Mortierella alpina1S-4and its application foreicosapentaenoic acid-producer breeding. Applied and Environmental Microbiology,2009,75(17):5529-5535
    110. Butow R A,Henke R M,Moran J V,et al. Transformation of Saccharomyces cerevisiae mitochondriausing the biolistic gun. Methods in Enzymology,1996,264:265-278
    111. Wolf D A. Non-conventional yeasts in biotechnology: a Handbook. Heidelberg: Springer-Verlag,1996.313-388
    112. Juretzek T,Dall MT,Mauersberger S,et al. Vecotrs for gene expression and amplification in the yeastYarrowia lipolytica. Yeast,2001,18(2):97-113
    113. Fickers P,Benettif P H,WachéY,et al. Hydrophobic substrate utilisation by the yeast Yarrowialipolytica, and its potential applications. FEMS Yeast Research,2005,5(6-7):527-543
    114. Barth G,Gaillardin C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMSMicrobiology Reviews,1997,19(4):219-237
    115. Roth R,Moodley V,Van Z P. Heterologous expression and optimized production of an Aspergillusaculeatus endo-1,4-beta-mannanase in Yarrowia lipolytica. Molecular Biotechnology,2009,43(2):112-120
    116. Huang Y S,Chaudhary S,Thurmond J M,et al. Cloning of D12-and D6-desaturase from Mortierellaalpine and recombinant production of g-linolenic acid in Saccharomyces cerevisiae. Lipids,1999,34(7):649-659
    117. Batard Y,Hehn A,Nedelkina S,et al. Increasing expression of P450and P450-reductase proteinsfrom monocots in heterologous systems. Archives of Biochemistry and Biophysics,2000,379(1):161-169
    118. Outchkourov S N,Stiekema W J,Jongsma M A,et al. Optimization of the expression of equistatin inPichia pastoris. Protein Expression and Purification,2002,24(1):18-24
    119. Nelson G,Kozlova-Zwinderman O,Collis A J,et al. Calcium measurement in living filamentousfungi expressing codon-optimized aequorin. Molecular Microbiology,2004,52(5):1437-1450
    120. Kurland C,Gallant J. Errors of heterologous protein expression. Current Opinions in Biotechnology,1996,7(5):489-493
    121. Gustafsson C,Govindrajan S,Minshull J. Codon bias and heterologous protein expression. Trends inBiotechnology,2004,22(7):346-353
    122. Koda A,Bogaki T,Minetoki T,et al. High expression of a synthetic gene encoding potatoalpha-glucan phosphorylase in Aspergillus niger. Journal of Bioscience and Bioengineering,2005,100(5):531-537
    123. Kofman A,Graf M,Deml L,et al. Codon usagemediated inhibition of HIV-1gag expression inmammalian cells occurs independently of translation. Europe Pubmed Central,2003,45(1):94-100
    124. Tokuoka M,Tanaka M,Ono K,et al. Codon optimization increases steady-state mRNA levels inAspergillus oryzae heterologous gene expression. Applied and Environmental Microbiology,2008,74(21):6538-6546
    125. Srivastava P,Bhattacharaya P,Pandey G,et al. Overexpression and purification of recombinanthuman interferon alpha2b in Escherichia coli. Protein Expression and Purification,2005,41(2):313-322
    126. Brocca S,Schmidt-Dannert C,Lotti M,et al. Design, total synthesis, and functional overexpressionof the Candida rugosa lip1gene coding for a major industrial lipase. Protein Science,1998,7(6):1415-1422
    127. Li H,Ma Y,Su T,et al. Expression, purification, and characterization of recombinant human neurturinsecreted from the yeast Pichia pastoris. Protein Expression and Purification,2003,30(1):11-17
    128. Gasmi N,Fudalej F,Kallel H,et al. A molecular approach to optimize hIFN alpha2b expression andsecretion in Yarrowia lipolytica. Applied Microbiology and Biotechnology,2011,89(1):109-119
    129. Valente C A,Prazeres D M F,Cabral J M S,et al. Monteiro GA.Translational features of humanAlpha2b interferon production in Escherichia coli. Applied and Environmental Microbiology,2004,70(8):5033-5036
    130. Nakagawa S,Niimura Y,Gojobori T,et al. Diversity of preferred nucleotide sequences around thetranslation initiation codon in eukaryote genomes. Nucleic Acids Research,2008,36(3):861-871
    131. Kozak M. The scanning model for translation: an update. The Journal of Cell Biology,1989,108(2):229-241
    132. Blanchin-Roland S,Cordero Otero R,Gaillardin C. Two upstream activation sequences control theexpression of the XPR2gene in the yeast Yarrowia lipolytica. Molecular and Cellular Biology.1994,14(1),327-338
    133. Davidow L S,Franke A E,De Zeeuw J R. New Yarrowia lipolytica transformants used for expressionand secretion of heterologous proteins, especially prorennin and human anaphylatoxin C5a. EuropeanPatent Application:86307839.1987-6-26
    134. Hamsa P V,Chattoo B B. Cloning and growth-regulated expression of the gene encoding the hepatitisB virus middle surface antigen in Yarrowia lipolytica. Gene,1994,143(2):165-170
    135. Madzak C,Blanchin-Roland S,Cordero Otero R,et al. Functional analysis of upstream regulatingregions from the Yarrowia lipolytica XPR2promoter. Microbiology,1999,145(1):75-87
    136. Muller S,Sandal T,Kamp-Hansen P,et al. Comparison of expression systems in the yeastsSaccharomyces cerevisiae, Hansenula polymorpha, Kluyveromyces lactis, Schizosaccharomycespombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast,1998,14(14),1267-1283
    137. Nicaud J M,Fabre E,Gaillardin C. Expression of invertase activity in Yarrowia lipolytica and its useas a selective marker. Current Genetics,1989,16(4):253-260
    138. Ogrydziak D M,Demain A L,Tannenbaum S R. Regulation of extracellular protease production inCandida lipolytica. Biochimica et Biophysical Acta General Subjects,1977,497(2):525-538
    139. Madzak C, Treton B, Blanchin-Roland S. Strong hybrid promoters and integrativeexpression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeastYarrowia lipolytica. Journal of Molecular Microbiology and Biotechnology,2000,2(2):207-216
    140. Madzak C,Blanchin-Roland S,Gaillardin C. Upstream activating sequences and recombinantpromoter sequences functional in Yarrowia and vectors containing them. European PatentApplication:0747484A1.1995
    141. Shakuradani E,Kobayashi M,Ashikari T,et al. Identification of delta12-fatty acid desaturase fromarachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomycescerevisiae and the fungus Aspergillus oryzae. European Journal of Biochemistry,1999,261(3):812-820
    142. Pignede G,Wang H J,Fudalej F,et al. Autocloning and amplification of LIP2in Yarrowia lipolytica.Applied and environmental microbiology,2000,66(8):3283-3289
    143. Papanikolaou S,Chevalot I,Komaitis M,et al. Kinetic profile of the cellular lipid composition in anoleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats.Antonine van Leeuwenhoek,2001,80(3-4):215-24
    144. Papanikolaou S,Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol ina single-stage continuous culture. Bioresource Technology,2002,82(1):43-49
    145. Barth G,Gaillardin C. Yarrowia lipolytica In: Nonconventional yeasts in biotechnology (A Handbook).New York: Springer Berlin Heidelberg,1996.313-388
    146. Kruse K,Fo¨rster A,Juretzek T,et al. Method for the biotechnological production of citric acid bymeans of a genetically modified yeast Yarrowia lipolytica. World Patent Application: WO2004/009828.2004-01-29
    147. Schrader J,Etschmann M,Sell D,et al. Applied biocatalysis for the synthesis of natural flavourcompounds–current industrial processes and future prospects. Biotechnology Letters,2004,26(6):463-472
    148. Papanikolaou S,Muniglia L,Chevalot I,et al. Accumulation of a cocoa-butter-like lipid by Yarrowialipolytica cultivated on agro-industrial residues. Current Microbiology,2003,46(2):124-130
    149. Cirigliano M C,Carman G M. Isolation of a bioemulsifer from Candida lipolytica. Applied andEnvironmental Microbiology,1984,48(4):747-750
    150. Osumi M,Fukuzumi F,Yamada N,et al. Surface structure of some Candida yeast cells grown onn-alkanes. Journal of Fermentation Technology,1975,53(4):244-248
    151. Fickers P,Fudalej F,Le Dall M T,et al. Identification and characterisation of LIP7and LIP8genesencoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genetics andBiology,2005,42(3):264-274
    152. Mlickova K,Roux E,Athenstaedt K,et al. Lipid accumulation, lipid body formation, andacylcoenzyme A oxidases of the yeast Yarrowia lipolytica. Applied and Environmental Microbiology,2004,70(7):3918-3924
    153. Beopoulos A,Mrozova Z,Thevenieau F,et al. Control of lipid accumulation in the yeast Yarrowialipolytica. Applied and Environmental Microbiology,2008,74(24):7779-7789
    154. Bligh E G,Dyer W J. A rapid method for total lipid extraction and purification. Canadian Journal ofBiochemistry and Physiology,1959,37(8):911-917
    155. Dulermo T,Nicaud J M. Involvement of the G3P shuttle and β-oxidation pathway in the control ofTAG synthesis and lipid accumulation in Yarrowia lipolytica. Metabolic engineering,2011,13(5):482-491
    156. Kodicek E,Worden A N. The effect of unsaturated fatty acids on Lactobacillus helveticus and otherGram-positive micro-organisms. The Biochemical Journal,1945,39(1):78-82
    157. Kankaanpaa P E,Salminen S J,Isolauri E,et al. The influence of polyunsaturated fatty acids onprobiotic growth and adhesion. FEMS Microbiology Letters,2001,194(2):149-153
    158. Julie K,Polly D C. Lactobacillus growth and membrane composition in the presence of linoleic orconjugated linoleic acid. Canadian Journal of Microbiology,2003,49:51-57
    159. Molina Grima E,Belarbi E H,Acien Fernandez F G,et al. Recovery of microalgal biomass andmetabolites: Process options and economics. Biotechnology Advances,2003,20(7-8):491-515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700