侧脑室注射共轭亚油酸(CLA)的外周效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭亚油酸(conjugated linoleic acids, CLA)是一组天然存在的具有18个碳原子,含有共轭双键的多不饱和脂肪酸,是必需脂肪酸-亚油酸(linoleic acid, LA)的异构体。近年来研究发现:CLA有减轻肥胖、抗肿瘤、防止动脉粥样硬化、提高机体免疫力、增加骨密度、促进生长等多种生理功能,其中减轻肥胖的作用最受到研究者的重视。已有的研究显示,CLA减轻肥胖的作用是通过多途径、多因素发挥作用的,中枢神经系统(CNS)也是可能的途径之一。中枢神经肽、神经递质和激素在体重调节中起着非常重要的角色。有关营养物质的储存、饱腹感、对食物的口感等等都通过内分泌激素、营养代谢的信号或是联络大脑与外周的神经通路与脑发生关系。本实验通过给SD大鼠侧脑室注射CLA,与非共轭的亚油酸(LA)进行比较,观察大鼠体重、食欲、血脂、leptin及脑组织NPY、AgRP、POMCmRNA、肝脏组织CPT-1mRNA的表达,以证明CLA能够通过中枢神经系统调节全身的营养代谢,为人们用CLA的食物预防和治疗肥胖提供理论基础。
     实验方法
     雄性成年SD大鼠,单笼饲养,正常饮食。实验分组:NS对照组:脑室内注射生理盐水(N.S.),0.5μl/只;LA对照组:脑室内注射亚油酸(LA),0.5μl/只(150nmol);CLA对照组:脑室内注射共轭亚油酸(CLA),0.5μl/只(150nmol)。将大鼠麻醉后,固定于脑立体定向仪。坐标参考Bregma图谱:前囟后0.92mm,矢状缝旁开1.4mm,脑表面下3.3mm。牙科钻钻开颅骨,暴露硬脑膜。微量注射器侧脑室注射CLA0.5μl(150nmol)。分别于注射后2、4、8、12、24小时减尾采血,取动物血清,用试剂盒法测定血清中血脂水平,放射免疫法测Leptin浓度;分别于2、4、8、14天处死动物,取脏器组织,称重,用RT-PCR法测脑组织中NPY、AgRP、POMCmRNA表达和肝脏组织中CPT-1mRNA表达。
     实验结果
     1、侧脑室注射CLA对大鼠体重、食欲的影响:(1)大鼠体重的变化:侧脑室注射后,CLA组动物体重持续降低,与NS对照组(第4天后)和LA对照组(第14天)相比有显著性差异(p<0.05)。(2)CLA对摄食量的影响:与注射生理盐水相比,注射LA和CLA都能够引起大鼠食欲的下降,但是与LA组相比(6天),CLA作用的时间更为持久(>8天)。(3)脑组织食欲肽mRNA表达的改变:侧脑室注射后第2,4,8天,CLA注射组大鼠下丘脑NPYmRNA表达水平低于LA对照组和NS对照组(p<0.05),与NS对照组相比下降了大约60%; CLA注射组大鼠下丘脑AgRP mRNA表达水平低于LA对照组和NS对照组(p<0.05),与NS对照组相比下降了大约75%;CLA注射组和LA对照组大鼠下丘脑POMC mRNA表达水平基本正常。
     2、侧脑室注射CLA对大鼠脂肪代谢的影响:(1)对脂肪分布的影响:与LA组和NS组相比,注射CLA组的皮下脂肪、睾周脂肪和脂体比均有显著的改变(p<0.05);(2)大鼠血脂的改变:注射CLA后2小时血清甘油三酯有显著的增高(p<0.05);注射CLA2小时左右血清总胆固醇有显著的降低(p<0.05);注射CLA4小时左右血清高密度脂蛋白有显著的增高(p<0.05);侧脑室注射CLA2小时后血清瘦素开始升高,一直持续到12小时(p<0.05)。(3)对肝脏脂质沉积的影响:注射CLA后肝脏内甘油三酯含量减少;肝脏CPT-1mRNA表达增高,与注射前相比有显著差异(p<0.05)。
     实验结论
     1.侧脑室注射CLA后大鼠体重减轻,食欲下降;
     2.CLA抑制食欲的效应是通过影响NPY和AgRPmRNA表达发挥作用的;
     3.侧脑室注射CLA能够影响短期(48h)内血脂水平,能够减少肝脏组织的脂质沉积;
     4.CLA影响脂质沉积的机制可能与增强CPT-1的表达有关。
     5.中枢神经系统对机体食物摄取和能量代谢的影响非常复杂,脂肪酸在其中扮演了重要角色。共轭亚油酸对中枢神经系统的影响有可能是通过多个环节实现的,需要进一步的深入研究。
Conjugated linoleic acid (CLA) refers to a group of polyunsaturated fatty acids that exist as positional and geometric isomers of linoleic acid (LA; 18:2). CLA possess many physiologic properties including reduce obesity and antiatherosclerosis, anticarcinogenesis, improve immune function, antidiabetogenesis and growth. Researchs have shown: CLA can reduce obesity through multi-ways and multi-factors. Research on the function of has suggested an important role in appetite regulation and energy metabolism. It is clear that the changes of food intake occur by hypothalamic neuropeptides. By Intracerebroventricular administration of CLA compared with non-conjugated LA, we observed the change of weight, appetite, blood lipid, leptin, NPY、AgRP、POMC mRNA expression in brain and CPT-1 mRNA expression in liver. Our experiment was conducted to extend these observations to hypothalamus and other regions within the central nervous system so that the mechanism of the actions of CLA might be more easily elucidated. Accordingly, and it is also beneficial for us to prevent and cure adiposity by using foods rich in CLA or CLA supplement. Methods
     For the experiment, normal Sprague-Dawley rats were divided into three groups (CLA, LA, NS group) and received ICV injections of either 150 nmol CLA, or LA as non-conjugated control, or normal saline. After the rats were anesthetized, a stainless steel ICV cannula was implanted 0.95 mm anterior to the lambdoidal suture, 1.4 mm lateral to the midline, and 3.3 mm from the skull surface. We collected the blood sample at 2, 4, 8, 12, 24 hours and triglycerides, total cholesterol, HDL cholesterol concentrations in the plasma were measured using kits. The rats were dissected in 48 hours and adipose tissues (subcutaneous, mesenteric, retroperitoneal, epididymal) were removed, blotted dry, and immediately weighed. To study the effects of exogenous CLA administration for 14 days on the expression of hypothalamic neuropeptides, we quantified the expression of NPY, AgRP and POMC mRNA by reverse transcriptase–polymerase chain reaction (RT-PCR).
     Results
     1. The effect of intracerebroventricular administration of CLA on weight and appetite. (1) The change of animal weight. After ICV administration, body weight was markedly reduced in CLA rats after 2 weeks of treatment. (2) The change of feeding behavior. ICV conjugated linoleic acid resulted in a 6-8 days marked inhibition on food intake, respectively. As control, the inhibition effect of linoleic acid is for 2-4 days. The administration of Normal Saline did not cause any change. (3) ICV CLA suppressed NPY mRNA expression by ~60% compared with before treatment, suppressed AgRP expression by ~75% as compared with before treatment and hypothalamic POMC expression was not altered following ICV CLA treatment.
     2. The effect of intracerebroventricular administration of CLA on lipid metabolism. (1) The change of fat distribution. The fat/body weight, subcutaneous and retro-peritoneal adipose tissue decreased in 48 hours. (2) The change of blood lipid. The plasma triglycerides increased and total cholesterol decreased at 2 hour and HDL concentration increased at 4 hour. (3) The lack of adipose stores was mirrored in the reduced liver triacylglycerol content of CLA-treated rats (no significant difference with control). The CPT-1 mRNA expression increased.
     Conclusions
     1. The body weight and food intake is decreased by ICV CLA;
     2. The inhibition of appetite by CLA is conducted by decreasing gene expression of NPY and AgRP;
     3. CLA can affect lipid metabolism through central nervous system (CNS), which may be related with the beneficial effect on weight-loss;
     4. The effect on lipid metabolism is related with increased CPT-1 expression;
     5. The effect of CNS on food intake and energy metabolism is very complicated and fatty acid makes an important role. CLA can affect CNS by multi-ways which need further investigation.
引文
[1] Ha YL, GrimmNK, Pariza MW. Anticarcinogens from fried ground beef: Heat-altered derivatives of linoleic acid. [J] Carcinogenesis, 1987; 8: 1881-1887.
    [2] Banni S. Conjugated linoleic acid metabolism. Curr Opin Lipidol 2002; 13:261–266.
    [3] Pariza MW, Park Y, Cook ME. The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 2001; 40:283–298.
    [4] Lavillonniére F, Martin JC, Bougnoux P, et al. Analysis of conjugated linoleic acid isomers and content in French cheeses. [J] J Am Oil Chem Soc, 1998; 75: 343-352.
    [5] Chin SF, Liu W, Storkson JM, et al. Dietary source of conjugated dienoic isomers of linoleic acid, a newly recognized class of anticarcinogens. [J] J Food Compos Anal, 1992; 5: 185-197.
    [6] Jiang J, Wolk A, Vessby B. Relation between the intake of milk fat and the occurrence of conjugated linoleic acid in human adipose tissue. [J] Am J Clin Nutr, 1999; 70: 21-27.
    [7] Ritzenthaler KL, McGuire MK, Falen R, Shultz TD, Dasgupta N, McGuire MA. Estimation of conjugate linoleic acid intake by written dietary assessment methodologies underestimates actual intake evaluated by food duplicate methodology. [J] J Nutr, 2001; 131: 1548-1554.
    [8] 曹莹, 杨林, 陈振宁, 等. 共轭亚油酸的合成、分析与氧化稳定性. [J] 化学通报, 2004; 4: 257-265.
    [9] 熊向峰, 陈朝银, 赵声兰. 亚油酸异构酶及其性质. [J] 工业微生物, 2002 ; 32 (4): 51-55.
    [10] Pariza MW, Hargraves WA. A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumor by 7,12-dimethylbenz [a] anthracene.[J] Carcinogenesis, 1985; 6(4): 591-593.
    [11] Bhattacharyaa A, Banua J, Rahmana M, Causeyb J, Fernandes G. Biological effects of conjugated linoleic acids in health and disease. [J] J Nutr Biochem, 2006; 17: 789–810.
    [12] Belury MA. Inhibition of Carcinogenesis by Conjugated Linoleic Acid: Potential Mechanisms of Action. [J] J Nutr 132: 2995–2998, 2002.
    [13] Yamasaki M, Chujo H, Koga Y, Oishi A, Rikimaru T, Shimada M, et al. Potent cytotoxic effect of the trans10, cis12 isomer of conjugated linoleic acid on rat hepatoma dRLh-84 cells. [J] Cancer Lett 2002; 188: 171– 80.
    [14] Dauchy RT, Dauchy EN, Sauer LA, Blask DE, Davidson LK, Krause JA, et al. Differential inhibition of fatty acid transport in tissueisolated steroid receptor negative human breast cancer xenografts perfused in situ with isomers of conjugated linoleic acid. [J] Cancer Lett, 2004; 209: 7 – 15.
    [15] Kim EJ, Holthuizen PE, Park HS, Ha YL, Jung KC, Park JHY. Trans-10, cis-12 conjugated linoleic acid inhibits Caco-2 colon cancer cell growth. [J] Am J Physiol Gastrointest Liver Physiol 2002; 283: G357–67.
    [16] Liu KL, Belury MA. Conjugated linoleic acid reduces arachidonic acid content and PGE2 synthesis in murine keratinocytes. [J] Cancer Lett, 1998; 127: 15–22.
    [17] Banni S, Angioni E, Casu V, Melis MP, Carta G, Corongiu FP, Thompson H, Ip C. Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. [J] Carcinogenesis, 1999; 20: 1019–24.
    [18] Liu KL, Belury MA. Conjugated linoleic acid reduces arachidonic acid content and PGE2 synthesis in murine keratinocytes. [J] Cancer Lett, 1998; 127: 15–22.
    [19] Banni S, Angioni E, Casu V, Melis MP, Carta G, Corongiu FP, Thompson H, Ip C. Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. [J] Carcinogenesis, 1999; 20: 1019–24.
    [20] Lee KN, Kritchevsky D, Pariza MW. Conjugated linoleic acid and atherosclerosis in rabbits. [J] Atherosclerosis, 1994; 108: 19–25.
    [21] Lee K, Kritchevsky D, Pariza M. Conjugated linoleic acid and atherosclerosis in rabbits. [J] Atherosclerosis, 1994; 108: 19–25.
    [22] Kritchevsky D, Tepper SA, Wright S, Tso P, Czarnecki SK. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. [J] J Am Coll Nutr, 2000; 19: 472S–477S.
    [23] Kritchevsky D, Tepper SA, Wright S, Czarnecki SK. Influence of graded levels of conjugated linoleic acid (CLA) on experimental atherosclerosis in rabbits. [J] Nutr Res, 2002; 22: 1275–9.
    [24] Kritchevsky D, Tepper SA, Wright S, Czarnecki SK, Wilson TA, Nicolosi RJ. Conjugated linoleic acid isomer effects in atherosclerosis: growth and regression of lesions. [J] Lipids 2004; 39: 611–6.
    [25] Nicolosi R, Rogers E, Kritchevsky D, Scimeca J, Huth P. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. [J] Artery, 1997; 22: 266–77.
    [26] Wilson TA, Nicolosi RJ, Chrysam M, Kritchevsky D. Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hypercholesterolemic hamsters. [J] Nutr Res, 2000; 20: 1795–805.
    [27] Yamasaki M, Ikeda A, Hirao A, et al. Dose-dependent effect of dietary conjugated linoleic acid on the growth of rat hepatoma dRLh-84 cells in vivo. [J] J Nutr Sci Vitaminol (Tokyo) 2002; 48: 505–11.
    [28] Nakanishi T, Koutoku T, Kawahara S, Murai A, Furuse M. Dietary conjugated linoleic acid reduces cerebral prostaglandin E(2) in mice. [J] Neurosci Lett 2003; 341: 135–138.
    [29] Toomey S, Harhen B, Roche HM, Fitzgerald D, Belton O. Profound resolution of early atherosclerosis with conjugated linoleic acid. [J] Atherosclerosis, [J] 2006; 187(1): 40-49.
    [30] YuY, Correll PH, Vanden-Heuvel JP. Conjugated linoleic acid decreasesproduction of pro-inflammatory products in macrophages: evidence for a PPAR [gamma]-dependent mechanism. [J] Biochim Biophys Acta–Mol Cell Biol Lipids 2002; 1581: 89–99.
    [31] Toomey S, Harhen B, Roche HM, et al. Profound resolution of early atherosclerosis with conjugated linoleic acid. [J] Atherosclerosis 2006; 187: 40–49.
    [32] Arbones-Mainar JM, Navarro MA, Guzman MA, et al. Selective effect of conjugated linoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice. [J] Atherosclerosis, 2006; 189(2):318-27.
    [33] Cook ME, Miller CC, Park Y, et al. Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. [J] Poult Sci 1993; 72: 1301–5.
    [34] Miller CC, Park Y, Pariza MW, et al. Feeding conjugated linoleic acid to animals partially overcomes catabolic responses due to endotoxin injection. [J] Biochem Biophys Res Commun 1994; 198: 1107–12.
    [35] Hontecillas R, Wannemeulher MJ, Zimmerman DR, et al. Nutritional regulation of porcine bacterial-induced colitis by conjugated linoleic acid. [J] J Nutr 2002; 132: 2019–27.
    [36] Whigham LD, Cook EB, Stahl JL, et al. CLA reduces antigen-induced histamine and PGE2 release from sensitized guinea pig tracheae. [J] Am J Physiol Regul Integr Comp Physiol 2001; 280: R908–12.
    [37] Whigham LD, Higbee A, Bjorling DE, et al. Decreased antigeninduced eicosanoid release in conjugated linoleic acid-fed guinea pigs. [J] Am J Physiol Reg Integr Comp Physiol 2002; 282: R1104–12.
    [38] Rise/rus U, Basu S, Jovinge S, et al. (2002b) Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: a potential link to fatty acid-induced insulin resistance. Circulation, 2002; 106: 1925–1929.
    [39] Albers R, van der Wielen RP, Brink EJ, et al. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immunefunction in healthy men. Eur J Clin Nutr, 2003; 57: 595–603.
    [40] Basu S, Rise′rus U, Turpeinen A, et al. Conjugated linoleic acid induces lipid peroxidation in men with abdominal obesity. Clin Sci, 2000; 99: 511–516.
    [41] Basu S, Smedman A, Vessby B. Conjugated linoleic acid induces lipid peroxidation in human subjects. FEBS Lett, 2000; 468: 33–36.
    [42] Smedman A, Vessby B, Basu S. Isomer-specific effects of conjugated linoleic acid on lipid peroxidation in human subjects: regulation by alpha-tocopherol and cyclo-oxygenase-2 inhibitor. Clin Sci (Lond), 2004; 106: 67–73.
    [43] Kelley DS, Taylor PC, Rudolph IL, et al. Dietary conjugated linoleic acid did not alter immune status in young healthy women. Lipids, 2000; 35: 1065–1071.
    [44] Luongo D, Bergamo P, Rossi M. Effects of conjugated linoleic acid on growth and cytokine expression in Jurkat T cells. Immunol Lett 2003; 90: 195– 201.
    [45] Yu Y, Correll PH, Vanden Heuvel JP. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPAR gamma-dependent mechanism. Biochim Biophys Acta 2002; 1581:89– 99.
    [46] Yang M, Cook ME. Dietary conjugated linoleic acid decreased cachexia, macrophage tumor necrosis factor-alpha production, and modifies splenocyte cytokines production. Exp Biol Med (Maywood) 2003; 228: 51- 8.
    [47] Li Y, Seifert MF, Ney DM, et al. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J Bone Miner Res 1999; 14: 1153–62.
    [48] Kelly O, Cusack S, Jewell C, Cashman KD. The effect of polyunsaturated fatty acids, including conjugated linoleic acid, on calcium absorption andbone metabolism and composition in young growing rats. Br J Nutr 2003; 90: 743–50.
    [49] Kreider RB, Ferreira MP, Greenwood M, Wilson M, Almada AL. Effects of conjugated linoleic acid supplementation during resistance training on body composition, bone density, strength, and selected hematological markers. J Strength Cond Res 2002; 16: 325– 34.
    [50] Doyle L, Jewell C, Mullen A, Nugent AP, Roche HM, Cashman KD. Effect of dietary supplementation with conjugated linoleic acid on markers of calcium and bone metabolism in healthy adult men. Eur J Clin Nutr 2005; 59: 432– 40.
    [51] Brown RA, Petrosian M, Ilich JZ. Association between dietary conjugated linoleic acid and bone mineral density in postmenopausal women. J Am Coll Nutr, 2005; 24: 177– 81.
    [52] Park Y, Albright KJ, Liu W, et al. Effect of conjugated linoleic acid on body composition in mice. Lipids, 1997; 32: 853–858.
    [53] Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW. Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids, 1999; 34: 235–241.
    [54] Brown JM, Boysen MS, Jensen SS, Morrison RF, Storkson J, Lea-Currie R, Pariza M, Mandrup S, McIntosh MK. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes. J Lipid Res 2003; 44: 1287–1300.
    [55] Brown JM, Boysen MS, Jensen SS, Morrison RF, Storkson J, Lea-Currie R, Pariza M, Mandrup S, McIntosh MK. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes. J Lipid Res 2003; 44: 1287–1300.
    [56] Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW. Effect of conjugated linoleic acid on body composition in mice. Lipids, 1997; 32: 853–858.
    [57] West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J. Effects ofconjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 1998; 275: R667–R672.
    [58] Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW. Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids, 1999; 34: 235–241.
    [59] DeLany JP, BlohmF, Truett AA, Scimeca JA, West DB. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Am J Physiol 1999; 276: R1172–R1179.
    [60] Ryder JW, Portocarrero CP, Song XM, Cui L, Yu M, Combatsiaris T, Galuska D, Bauman DE, Barbano DM, Charron MJ, Zierath JR, Houseknecht KL. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 2001; 50: 1149–1157.
    [61] Sisk MB, Hausman DB, Martin RJ, Azain MJ. Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J Nutr 2001; 131: 1668–1674.
    [62] Sisk MB, Hausman DB, Martin RJ, Azain MJ. Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J Nutr 2001; 131: 1668–1674.
    [63] Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL. The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 2002; 132: 940–945.
    [64] Yamasaki M, Ikeda A, Oji M, Tanaka Y, Hirao A, Kasai M, Iwata T, Tachibana H, Yamada K. Modulation of body fat and serum leptin levels by dietary conjugated linoleic acid in Sprague–Dawley rats fed various fat-level diets. Nutrition 2003; 19: 30–35.
    [65] Takahashi Y, Kushiro M, Shinohara K, Ide T. Dietary conjugated linoleic acid reduces body fat mass and affects gene expression of proteins regulating energy metabolism in mice. Comp Biochem Physiol B 2002; 133:395–404.
    [66] Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 2000; 49: 1534–1542.
    [67] Tricon S, Burdge GC, Kew S, et al. Opposing effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am J Clin Nutr 2004; 80: 614–20.
    [68] West DB, Blohm FY, Truett AA, DeLany JP. Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 2000; 130: 2471–2477.
    [69] West DB, Blohm FY, Truett AA, DeLany JP. Conjugated linoleic acid persistently increases total energy expenditure in AKR/J mice without increasing uncoupling protein gene expression. J Nutr 2000; 130: 2471–2477.
    [70] Ostrowska E, Muralitharan M, Cross RF, Bauman DE, Dunshea FR. Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs. J Nutr 1999; 129: 2037–2042.
    [71] Ohnuki K, Haramizu S, Oki K, Ishihara K, Fushiki T. A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids 2001; 36: 583–587.
    [72] Erlanson-Albertsson C. The role of uncoupling proteins in the regulation of metabolism. [J] Acta Physiol Scand, 2003; 178: 405-412.
    [73] Roche HM, Noone E, Sewter C, Mc Bennett S, Savage D, Gibney MJ, O’Rahilly S, Vidal-Puig AJ. Isomer-dependent metabolic effects of conjugated linoleic acid: insights from molecular markers sterol regulatory element-binding protein-1c and LXR-alpha. Diabetes 2002; 51: 2037–2044.
    [74] Evans M, Geigerman C, Cook J, Curtis L, Kuebler B, McIntosh M. Conjugated linoleic acid suppresses triglyceride accumulation and inducesapoptosis in 3T3-L1 preadipocytes. Lipids 2000; 35: 899–910.
    [75] Brown M, Evans M, McIntosh M. Linoleic acid partially restores the triglyceride content of conjugated linoleic acid-treated cultures of 3T3-L1 preadipocytes. J Nutr Biochem 2001; 12: 381–387.
    [76] Brodie AE, Manning VA, Ferguson KR, Jewell DE, Hu CY. Conjugated linoleic acid inhibits differentiation of pre- and post- confluent 3T3-L1 preadipocytes but inhibits cell proliferation only in preconfluent cells. J Nutr 1999; 129: 602–606.
    [77] Satory DL, Smith SB. Conjugated linoleic acid inhibits proliferation but stimulates lipid filling of murine 3T3-L1 preadipocytes. J Nutr 1999; 129: 92–97.
    [78] Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr 2000; 130: 3122S–3126S.
    [79] Hwang CS, Loftus TM, Mandrup S, Lane MD. Adipocyte differentiation and leptin expression. Annu Rev Cell Dev Biol 1997; 13: 231–259.
    [80] Kang K, Liu W, Albright KJ, Park Y, Pariza MW. Trans-10, cis-12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression. Biochem Biophys Res Commun 2003; 303: 795–799.
    [81] 张文斌,季爱玲,曹瑞等, 共轭亚油酸对肥胖大鼠脂肪组织瘦素的影响.中国公共卫生,2005;
    [82] Brown JM, Boysen MS, Chung S, et al. Conjugated linoleic acid (CLA)induces human adipocytes delipidation: autocrine/paracrine regulation of MEK/ERK signaling by adipocytokines. [J] J Biol Chem, 2004; 279: 26735-26747.
    [83] Miner JL, Cederberg CA, Nielsen MK, et al. Conjugated linoleic acid (CLA), body fat, and apoptosis. [J] Obes Res, 2001; 9: 129-134.
    [84] Akahoshi A, Goto Y, Murao K, Miyazaki T, Yamasaki M, Nonaka M, Yamada K, Sugano M. Conjugated linoleic acid reduces body fats and cytokine levels of mice. Biosci Biotechnol Biochem 2002; 66: 916–920.
    [85] Lee KN, Storkson JM, Pariza MW. Dietary conjugated linoleic acidchanges fatty acid composition in different tissues by decreasing monounsaturated fatty acids. IFT Annual Meeting: Book of Abstracts; 1995. p. 183.
    [86] Belury MA, Moya-Camarena SY, Liu KL, et al. Dietary conjugated linoleic acid induces preoxisome-specific enzyme accumulation and ornithine decarboxylase acitivity in mouse liver. [J] J Nutr Biochem, 1997; 8: 579-584.
    [87] 曹瑞,季爱玲,张文斌等。共轭亚油酸对肥胖大鼠肝脏脂质代谢酶及PPARγ 基因表达的影响。军事医学科学院院刊,2007;:
    [88] Peters JM, Park Y, Gonzales FJ, et al. Influence of conjugated linoleic acid on body composition and target gene expression in peroxisome proliferators-acivated receptor alpha null mice. [J] Biochem Biophys Acta, 2001; 1533: 233-242.
    [89] Zhang Y, Proenca R, Maffel M, Barone M, Leopold L, Friedman JM: Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425– 432.
    [90] Tschop M, Heiman ML. Rodent obesity models: an overview. Exp Clin Endocrinol Diabetes. 2001; 109: 307–19.
    [91] Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med, 1996; 334: 292–295.
    [92] Banks WA, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. Am J Physiol Endocrinol Metab. 2003; 285: E10 –5.
    [93] Lambert, P. D. et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl Acad. Sci. USA, 2001; 98, 4652–4657.
    [94] Ettinger MP, Littlejohn TW, Schwartz SL, et al. Recombinant variant ofciliary neurotrophic factor for weight loss in obese adults: a randomized, dose-ranging study. JAMA. 2003; 289(14):1826-32.
    [95] Schurgin S, Siegel RD. Pharmacotherapy of obesity: an update. Nutr Clin Care. 2003; 6(1):27-37.
    [96] Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab. 10, 211–216 (1999).
    [97] Yeo, G. S., Farooqi, I. S., Challis, B. G., Jackson, R. S. & O’Rahilly, S. The role of melanocortin signalling in the control of body weight: evidence from human and murine genetic models. Q. J. Med. 93, 7–14 (2000).
    [98] Thornton, J. E., Cheung, C. C., Clifton, D. K. & Steiner, R. A. Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology 138, 5063–5066 (1997).
    [99] Gantz, I. et al. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem. 268, 8246–8250 (1993).
    [100] Roselli-Rehfuss, L. et al. Identification of a receptor for γ-melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl Acad. Sci. USA 90, 8856–8860 (1993).
    [101] Gantz, I. et al. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 268, 15174–15179 (1993).
    [102] [102] Mountjoy, K. G., Mortrud, M. T., Low, M. J., Simerly, R. B. & Cone, R. D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8, 1298–1308 (1994).
    [103] Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 (1997).
    [104] Farooqi, I. S. et al. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiencies. J. Clin. Invest. 106, 271–279 (2000).
    [105] Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262(2000).
    [106] Hinney, A. et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab. 84, 1483–1486 (1999).
    [107] Vaisse, C. et al. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J. Clin. Invest. 106, 253–262 (2000).
    [108] Chen, A. S. et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nature Genet. 26, 97–102 (2000).
    [109] Butler, A. A. et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141, 3518–3521 (2000).
    [110] Fetissov SO, Meguid MM, Chen C, et al. Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience, 2000, 101(3): 657-663.
    [111] Leibowitz SF, Alexander JT. Hypothalamic serotonin in control of eating behaving meal size and body weight. Society of Biological Psychiatry, 1998, 44, 851-864.
    [112] Sinansky KJ. Serotonergic control of the organization of feeding and satiety. Behavior Brain Research, 1996, 73: 27-42.)
    [113] Fetissov SO, Meguid MM, Chen C, et al. Synchronized release of dopamine and serotonin in the medial and lateral hypothalamus of rats. Neuroscience, 2000, 101(3): 657-663.
    [114] Choi SJ, Jonak EM, Sinpson L, et al. Intermittent chronic fenfluramine administration to rats repeatedly suppresses food intake despite substantial brain serotonin reduction. Brain Research, 2002, 928: 30-39.
    [115] Vichers SP, Dourish CT, Kennett GA. Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rats is mediated by 5-HT2creceptors. Neurophamacology, 2001, 41: 200-209.
    [116] Hartig, P.R. Molecular pharmacology of serotonin receptors. EXS, 1994; 71, 93–102.
    [117] Hartig, P.R. Molecular pharmacology of serotonin receptors. EXS, 1994; 71, 93–102.
    [118] Lambert PD, Wilding JP, Dokhayell AA, et al. A role for neuropeptide-Y, dynorphin, and noradrenaline in the central control of food intake after food deprivation. Endocrinology,1993, 133:29-32.
    [119] Michel MC, Beck-Sickimger A, Cox H, et al. International Union of Pharmacology Recommendations for the Nomenclature of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Receptors. Phamacol, Rev, 1996, 50: 143-150.
    [120] Marsh DJ, Hollopeter G, kafer KE, et al. Nat Med, 1998, 4: 718-721
    [121] pedraini T, Seydoux J, Kunstner P, et al. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nat Med, 1998(4): 722-726.
    [122] Marsh DJ, Hollopeter G, kafer KE, et al. Role of the Y5 neuropeptide Y receptor in feeding and obesity. Nat Med, 1998, 4: 718-721
    [123] Criscione L, Rigoller, P,Batal-Hartmann C, et al. Clin Invest, 1998, 102:2136-2145
    [124] 蔡姝冰. 中枢黑皮素系统与肥胖. 国外医学内分泌分册, 2003; 23(3): 189-191.
    [125] Della-Zuana O. Presse F, Ottola C, et al. Acute and chronic administralion of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. Int J Obes Relat Metab Disord, 2002, 26:1289-1295.
    [126] Gomori A, Ishihara Alto M, et a1. Chronic intracerebroventricular infusion of MCH causes obesity in mice. Am J Physiol Endocrinol Metab, 2003; 284: E583-E588.
    [127] Ito M, Gomuri A, Ishihara .A, et al. Characterization of MCH-mediatedobesity in mice. Am J Physiol Endocrinol Metab, 2003, 284; E940-E945.
    [128] Segal-Liebetman G. Bradley KL, Kokkotou E, et al. Melatun-concentrating hormone is a critical mediator of the leptin deficient phenotype. Proc Natl Acad Sci USA, 2003, 100: 10085-10090.
    [129] Elliott JC, fiarrold JA. Brodin P, et al. Increases in melanin-concentrating hormone and MCH receptor levels in the hypothalamus of dietary obese rats. Brain Res Mol Brain Res, 2004; 128: 150-159.
    [130] Kokkotou E, Jeon JF. Wang X, et al. Mice with MCH ablation resist diet induced obesity through strain-specific mechanisms. Am J Physiol Regal Integr Comp Physiol, 2005, 289: R117-R124.
    [131] Chen Y, Hu CK, Hsu CK, et al. Targeted dismption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology, 2003; 143: 2469-2477.
    [132] Astrand A, Bohlooly YM, Latsdotter S, et al. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity. Am J Physiol Regal Integr Comp Physiol, 2004; 287: 8749-8758.
    [133] Meyre D,Lecoeur C, Delplanque J, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes, 2000; 53: 803-811.
    [134] Funahashi H, Takenoya F, Guan JL, et al. Hypothalamic neuronal networks and feeding-related peptides involved in the regulation of feeding. [J] Anat Sci Int, 2003; 78(3): 123-138.
    [135] Switonska MM,Kaczmarek P, Malendowicz LK, et al. Orexins and adipoinsular axis function in the rat. [J] Regul Pept, 2002, 104(1-3): 69-73.
    [136] Switonska MM,Kaczmarek P, Malendowicz LK, et al. Orexins and adipoinsular axis function in the rat. [J] Regul Pept, 2002, 104(1-3): 69-73.
    [137] Beck B, Bichy S. Hypothalamic hypocretin/orexin and neuropeptide Y: divergent interaction with energy depletion and leptin. [J] Biochem Biophys Res Commun, 1999, 258: 119-122.
    [138] Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake [J]. Diabetes, 2002, 51(3): 271–5.
    [139] Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis [J]. Cell Metabolism, 2005, 1(1):53-61.
    [140] Lopez M, Tovar S, Vazquez MJ, Nogueiras R, Senar?s R, Dieguez C. Sensing the fat: Fatty acid metabolism in the hypothalamus and the melanocortin system [J]. Peptides, 2005, 26(9), 1753–1758.
    [141] 郭秀兰, 王康宁, 唐仁勇. 神经肽 Y 的促摄食作用及其调控.[J] 中国畜牧兽医, 2005; 32(4): 6-9.
    [142] Rossi M , Kim MS, Morgan DG, et al. A Gterminal fragment of agouti-related protein increase feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology, 1998, 139(10): 4428.
    [143] Effect of dietary conjugated linoleic acid on the composition of egg yolk lipids. [J] Poult Sci, 78: 1639-1645(1999).
    [144] 曹瑞, 王枫, 季爱玲等. 共轭亚油酸对肥胖大鼠肝脏脂质代谢的影响. [J] 解放军预防医学杂志, 2006; 24(2): 88-91.
    [145] Pocai A, Obici S, Schwartz GJ, et al.A brain-liver circuit regulates glucose homeostasis. [J] Cell Metabolism, 2005; 1: 53-61.
    [146] Takahashi Y, Kushiro M, Shinohara K, et al. Acitivity and mRNA levels of enzymes involved in hepatic fatty acid synthesis and oxidation in mice fed conjugated linoleic acid. [J] Biochem Biophys Acta, 203; 1631: 265-273.
    [147] Degrace P, Demizieux L, Gresti J, et al. Hepatic steatosis is not due to impaires fatty acid oxidation capacities in C57BL/6J mice fed the conjugated trans-10, cis-12-isomer of linoleic acid. [J] J Nutr, 2004; 134: 861-867.
    [148] Macarulla MT, Fernandez-Quintela A, Zabala A, et al. Effects of conjugated linoleic acid on liver composition and fatty acid oxidation are isomer-dependent in hamster. [J] Nutrition, 2005; 21(4): 512-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700