用户名: 密码: 验证码:
人工电磁材料及其在亚波长集成光学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁装置正从传统的大于或等于波长的尺度向亚波长尺度发展,一些现象甚至能在几十纳米的装置中实现。人们期望能够集成表面等离子体的,电子的和传统的光学装置于同一个芯片中,使他们各自的优点得到充分的发挥。进一步地,全光控制的集成光路也成为人们的梦想。这使古老的电磁理论再次引起人们的极大关注,相关研究层出不穷。当然,电磁现象研究的这些新进展得益于过去二十多年里理论与实验的突破性进展。
     理论上,光子晶体的提出让人们看到了人工电磁材料在调控电磁波方面的巨大潜力。光子晶体展现了众多独特的现象,这包括抑制自发辐射,以及利用其特性制作的全方位的反射镜,光子晶体光纤以及单向波导等。此后,奇异电磁材料(Meta-material)可以构造出等效的负磁导率,从而实现双负折射,也可以通过介电常数和磁导率的复杂空间分布实现电磁隐身。光子晶体中晶格周期通常在半波长的尺度范围内,相比较,奇异电磁材料主要取决于单个散射体的共振,而与周期性关系不大。这些单个散射体的尺寸远小于入射波长,以便于均匀化能够在奇异电磁材料中利用。为了在亚波长集成光学中取得应用,需要在亚波长尺度内操控电磁波,特别是光通讯波段和可见光波段的电磁波。表面等离子体因在这方面的优势而被广泛探讨,这一领域已被称为表面等离子体光子学。表面等离子体可以将光局域在金属表面非常小的范围内,而在两边的媒质中指数衰减。这使得表面等离子体可以在亚波长结构中局域和指导光,由此制成的亚波长元件可能在微型化的光电回路得到应用。
     实验上,微纳米加工技术的日益成熟为人工电磁材料走向应用提供了可能,同时也刺激更多的研究组探讨微纳米结构与电磁波的相互作用。
     表面等离子体被局域在金属表面,但局域程度越强电磁能量被金属吸收的越多。自然界存在的金属中,几种贵重金属如金和银的吸收最小,但表面等离子体的能量在其表面仍损耗很大,这大大限制了表面等离子体光学器件的应用。我们以金属粒子等离子体波导为例,波导模式能够在这种波导中存在的原因是金属粒子能够支持局域的表面等离子体共振,这是一种亚波长共振。高折射率介质粒子也能够支持亚波长共振,因此我们期盼这些介质粒子排列而成的链也支持类似的波导模式。但一些高率介质材料能够有可忽略的吸收,损耗远低于贵重金属材料。本文中我们将探讨由高折射率介质粒子链形成的波导的光学性质,由于其微型化和低耗的特性,这种波导很有吸引力。
     开口环及各种变形结构,是奇异电磁理论中主要的结构单元。开口环能够在其磁共振附近对某些极化的电磁波实现负的磁导率。但直到现在,仍没有严格的解析途径来求解其磁共振。本文中我们基于Mie散射理论严格计算了开口圆柱共振器的电磁散射问题,给出了磁共振的严格解,同时我们也从LC共振出发给出一个很好的经验公式。
     本文结构如下:在第一和第二章,我们将分别简单介绍相关的背景知识和本文中用到的研究方法,第三章我们研究光在高折射率介质粒子制成的波导中的亚波长传输特性,第四章研究开口圆柱共振器的磁共振,第五章我们对整个论文作了简短的总结。
Electromagnetic(EM) devices are experiencing physical size shrinkage and some effects can be realized using devices of tens of nanometers,which are much smaller compared to wavelength.It is expected that plasmonic,electric,and conventional photonic devices can be integrated on the same chip to take advantage of the strengths of each technology,or even that all-optical control of light can be realized on a chip by using the structured materials unavailable naturally.EM theory attracts a great deal of attention again,and the number of publications in this area is increasing exponentially. These achievement should be owed to the breakthrough development of the structured materials theoretically and experimentally in the past 20 years.
     In theory,photonic crystal first shows the potential ability of artificially structured EM materials to tune the EM wave.Photonic crystal displays distinct optical phenomena such as inhibition of spontaneous emission,high-reflecting omni-directional mirrors,photonic crystal fiber and one-way waveguide,amongst others.Matematerials have an ability to realize the double negative refraction by achieving simultaneously negativeεand negativeμat the same frequency domain.EM cloaking also has been observed using metamaterial with complex distribution ofεandμspatially.Unlike photonic crystal,for which the typical period is on the order of half of a wavelength, in matematerials all the properties mainly depend on the resonance of the single scatterer which is several time smaller than the wavelength so that homogenization can be carried out.In order to attain the application in the subwavelength integrated optics by manipulating the EM wave on the subwavelength scale,especially for EM wave in the optical communication wavelength range or the visible light region,surface plasmons are being explored for their potential and the candidate technology has been termed 'plasmonics'.Surface plasmons provide the opportunity to confine light to very small dimensions with exponentially decaying fields in both neighboring medium.The feature of surface plamons provides the possibility of localization and the guiding of light in subwavetength metallic structures,and it can be used to construct miniaturized optoelectronic circuits with subwavelength components.
     In experiment,recent advances allow material to be structured and characterized on the nanometer scale,this in turn has enabled us to explore the interaction between EM wave and artificially structured nanoscale material.
     Surface plasmons is confined to the surface of the metal.But the stronger the confinement is,the bigger the loss is because of the the metallic intrinsic absorption. Though the absorption of some noble metals like Au and Ag is the lowest for light wave,the loss in plasmonic devices made of them still significantly limits the application. Here we take metallic particle plasmon waveguides(MPPW) as an example. In MPPW,the reason that the guiding mode can exist is that metal particle can support the localized surface plasmon,which is a kind of subwavelength resonance.In fact,high index dielectric particle also can exhibit the subwavelength resonance and it is expected that the similar guided mode can occur in dielectric particle arrays due to near-field coupling between adjacent particles.But the absorption of some high index dielectric material is lower than that of the noble metals.Here we will explore the properties of dielectric particle arrays serving as waveguides which are highly desirable for the purpose of miniaturization and for their low-loss properties.
     The split-ring resonator(SRR) structures,together with many variants,have served in most cases as an essential constituent of electromagnetic metamaterials.SRR provides a negative magnetic permeabilityμnear magnetic resonance for some particular polarization of the incident wave.But until now,there is no rigorously analytic approach to determine the magnetic resonance frequency.Here a systematic study is presented on the magnetic resonance frequency of slotted circular cylinder resonator (SCCR) based on Mie expansion.An approximate empirical expression is also presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system.
     The rest of the paper is organized as follows.In chapterⅠ,we will give a general introduction to the related background knowledge.In ChapterⅡ,we will briefly introduce the multiple scattering theory implemented to solve the scattering problem.In chapterⅢ,we will study the high index dielectric particle waveguide based on multiple scattering theory.In chapterⅣ,we will investigate the magnetic resonance behavior of individual two-dimensional SCCR with finite thickness based on a rigorous full-wave approach.A summary is finally given in chapterⅤ.
引文
[1]D.W.Pohl,Optics at the nanometre scale[J].Phil.Trans.R.Soc.Lond.A 362,701(2004).
    [2]W.L.Barnes,A.Dereux,and T,W.Ebbesen,Surface plasmon subwavelength optics[J].Nature,424,824(2003).
    [3]T.W.Ebbesen,C.Genet,and S.I.Bozhevolnyi,Surface-plasmon circuitry[J].Phys.today 61,44(2008).
    [4]P.G.Kik and M.L.Brongersma,Surface plasmon nanophotonics,(Springer,2007).
    [5]A.V.Zayats,I.I.Smolyaninovb,and A.A.Maradudinc,Nano-optics of surface plasmon polaritons[J].Physics Reports 408,131(2005),
    [6]J.M.Pitarke,V.M.Silkin,E.V.Chulkov,and P.M,Echenique,Theory of surface plasmons and surface-plasmon polaritons[J].Rep,Prog.Phys.70,1(2007).
    [7]S.A.Maier,M.L.Brongersma,P.G.Kik,S.Meltzer,Ari A.G.Requicha,and H.A.Atwater,Plasmonics-Route to Nanoscale Optical Devices[J].Adv.Mater.13,1501(2001),
    [8]Ch.Girard,Near fields in nanostructures[J].Rep.Prog.Phys.68,1883(2005).
    [9]B.Jalali,Silicon Photonics[J].J.lightwave,tech.24,4600(2006).
    [10]B.Jalali,Can silicon change photonics?[J].Phys.stat.sol.(a) 205,213(2008).
    [11]T.Barwicz,H.Byun,F.Gan,C.W.Holzwarth,M.A.Popovic,P.T.Rakich,M.R.Watts,E.P.Ippen,F.X.Kartner,and H.I,Smith,Silicon photonics for compact,energy-efficient interconnects[J].J.Opt.Networking,6,63(2007).
    [12]E.Ozbay,Plasmonics:merging photonics and electronics at nanoscale dimensions [J].Science 311,189(2006).
    [13]S.A.Maier,P.G.Kik,H.A.Atwater,S.Meltzer,E.Harel B.E.Koel,and A.A.G.Requicha,Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J].Nat.Mater,2,229(2003).
    [14]S.I.Bozhevolnyi,J.Erland,K.Leosson,P.M.W.Skovgaard,and J.M.Hvan,Waveguiding in surface plasmon polariton band gap structures[J],Phys.Rev.Lett.86,3008(2001).
    [15]P.Berini,Plasmon-polariton waves guided by thin lossy metal films of finite width:bound modes of symmetric structures[J].Phys.Rev.B 61,10484(2000).
    [16]J.R.Krenn,B.Lamprecht,anti H.Ditlbacher,Non-diffraction-limited light transport by gold nanowires[J].EuroPhys.Lett.60,663(2002),
    [17]K.Tanaka and M.Tanaka,Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J].Appl.Phys.Lett.82,1158(2003).
    [18]I.V.Novikov and A.A.Maradudin,Channel polaritons[J].Phys.Rev.B 66,035403(2002).
    [19]D.K.Gralnotnev and D.F.P.Pile,Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface[J].Appl.Phys.Lett.85,6323(2004).
    [20]S.A.Maier,Plasmonics:Fundamental and Applications,(Springer,New York,2007).
    [21]S.A.Maier,M.D,Friedman,P.E.Barclay,and O.Painter,Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing[J].Appl.Phys.Lett.86,071103(2005).
    [22]D.S.Citrin,Coherent Excitation Transport in Metal-Nanoparticle Chains[J].Nano Lett.4,1561(2004).
    [23]R.F.Oulton,V.J.Sorger,T.Zentgraf,R.Ma,C.Gladden,L.Dai,G.Bartal,and X.Zhang,Plasmon lasers at deep subwavelength scale[J].Nature 461,629(2009).
    [24]M.A.Noginov,G.Zhu,A.M.Belgrave,R.Bakker,V.M.Shalaev,E.E.Narimanov,S.Stoutl,E.Herz,T.Suteewong,and U.Wiesner,Demonstration of a spaser-based nanolaser[J].Nature 460,1110(2009).
    [25]A.V.Krasavin,A.V.Zayats,and N.I.Zheludev,Active control of surface plasmon-polariton waves[J].J.Opt.A:Pure Appl.Opt.7,S85(2005).
    [26]T.Nikolajsen,K.Leosson,and S.I.Bozhevolnyi,Surface plasmon polariton based modulators and switches operating at telecom wavelengths[J].Appl.plays.Lett.85,5833(2004).
    [27]A.V.Malyshev,V.A.Malyshev,and J.Knoester,Frequency-Controlled Localization of Optical Signals in Graded Plasmonic Chains[J].Nano Lett.8,2369(2008).
    [28]L.Tong,R.R.Gattass,J.B.Ashcom,S.He,J.Lou,M.Shen,I.Maxwell,and E.Mazur,Subwavelength-diameter silica wires for low-loss optical wave guiding[J].Nature 426,816(2003).
    [29]M.Law,D.J.Sirbuly,J.C.Johnson,J.Goldberger,R.J.Saykally,and P.Yang,Nanoribbon waveguides for subwwavelength photonics integration[J].Science 305,1269(2004).
    [30]C.J.Barrelet,A.B.Grreytak,and C.M.Lieber,Nanowire photonic circuit elements [J].Nano Lett.4,1981(2004).
    [31]X.Duan,Y.Huang,R.Agarwa,and C.M.Lieber,Single-nanowire electrically driven lasers[J].Nature 421,241(2003).
    [32]M.H.Huang,S.Mao,H.Feick,H.Yah,Y.Wu,H.Kind,E.Weber,R.Russo,and P.Yang,Room-Temperature Ultraviolet Nanowire Nanolasers[J].Science 292,1897(2001).
    [33]A.Chin,S.Vaddiraju,A.Maslov,C.Z.Ning,M.Sunkara,and M.Meyyappan,Near infrared subwavelength-wire lasing[J].Appl.Phys.Lett.88,163115(2006).
    [34]A.Liu,R.Jones,L.Liao,D.Samara-Rubio,D.Rubin,O.Cohen,R.Nicolaescu,and M.Paniccia,A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J].Nature 427,615(2004).
    [35]R.F.Oulton,V.J.Sorger,D.A.Genov,D.F.P.Pile,and X.Zhang,A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J].Nat.Photon.2,496(2008).
    [36]T.W.Ebbesen,H.J.Lezec,H.F.Ghaemi,T.Thio,and P.A.Wolff,Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature 391,667(1998).
    [37]E.Kretschmann and H.Raether,Radiative decay of non-radiative surfhce plasmons excited by light[J].Z.Naturforschung,23A,2135(1968).
    [38]A.Otto,Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J].Z.Physik 216,398(1968).
    [39]E.Devaux,T.W.Ebbesen,J.Weeber,and A.Dereux,Launching and decoupling surface plasmons viamicro-gratings[J].Appl.Phys.Lett.83,4936(2003).
    [40]S.Park,G.Lee,S.H,Song,C.H.Oh,and P.S.Kim,Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings[J].Opt.Lett.28,1870(2003),
    [41]H.Ditlbacher,J.R.Krenn,N.Felidj,B.Lamprccht,G.Schider,M.Salerno,A.Leitner,and F.R.Aussenegg,Fluorescence imaging of surface plasmon ficlds[J].Appl.Phys.Lett.80,404(2002).
    [42]B.Hecht,H.Bielefeld,L.Novotny,Y.Inouye,and D.W.Pohl,Local excitation,scattering,and interference of surface plasmons[J],Phys.Rev.Lett.77,1889(1996),
    [43]S.A.Maier,M.D.Friedman,E.Paul,and O.Painter,Experimental demonstration of fiber-accessible metal nanoparticle plamon waveguides for planar energy guiding and sensing[J].Appl.Phys.Lett.86,071103(2005).
    [44]C.J.Powell and J.B.Swan,Effect of oxidation on the characteristic loss spectra of aluminum and magnesium[J].Phys.Rev.118,640(1960).
    [45]R.Vincent and J.Silcox,Dispersion of radiative surface plasmons in alurninum films by electron scattering[J].Phys.Rev.Lett.31,1487(1973).
    [46]R.B.Pettit,J.Silcox,and R.Vincent,Measurement of surface-plasrnon dispersion in oxidized aluminum films[J].Phys.Rev.B 11,3116(1975).
    [47]O.Marti,H.Bielefeld,B.Hecht,S.Herminghaus,P.Leiderer,and J.Mlynek,Mearfield optical measurement of the surface plasmon field[J].Opt.Conmmun.96,225(1993).
    [48]P.Dawson,F.de Fornel,and J-P.Goudonnet,Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope[J].Phys.Rev,Lett.72,2927(1994).
    [49]A.Passian,A.Wig,A.L.Lereu,F.Meriaudeau,T.Thundat,and T.L.Ferrell,Pholon tunneling via surface plasmon coupling[J].Appl.Phys.Lett.85,3420(2004).
    [50]H.Ditlbacher,J.R.Krenn,N.Felidj,B.Lamprecht,G.Schider,M.Salerno,A.Leitner,and F.R.Aussenegg,Fluorescence imaging of surface plasmon fields[J].Appl.Phys.Lett.80,404(2002).
    [51]H.Ditlbacher,J,R.Krenn,A.Hohenau,A.Leitner,and F.R.Aussenegg,Efficiency of local light-plasmon coupling[J].Appl.Phys.Lett.83,3665(2003).
    [52]A.Giannattasio and W.L.Barnes,Direct observation of surface plasmonpolariton dispersion[J].Opt.Express,13,428(2005).
    [53]R.A.Depine and S.Ledesma,Direct visualization of surface-plasmon bandgaps in the diffuse background of metallic gratings[J].Opt.Lett.29,2216(2004).
    [54]C.Bohren and D.Huffman,Absorption and Scattering by Small Particles,(Wiley.New York,1983).
    [55]U.Kreibig and M.Vollmer,Optical Properties of Metal Chusters,(Springer,New York,1995).
    [56]H.Frohlich,Theory of dielectric,(Oxford University Press,London,1949),
    [57]J.P.Kottmann,O.J.F.Martin,D.R.Smith,and S.Schultz,Spectral response of plasmon resonant nanoparticles with a non-regular shape[J].Opt.Express 6,213(2000).
    [58]J.P.Kottmann,O.J.F.Martin,D.R.Smith,and S.Schultz,Plasmon resonances of silver nanowires with a nonregular cross section[J].Phys.Rev.B 64,235402(2001).
    [59]R.Chern,X.Liu,and C.Chang,Particle plasrnons of metal nanospheres:Application of multiple scattering approach[J].Phys.Rev.E 76,016609(2007).
    [60]W.Lu and C.M.Lieber,Semiconductor nanowires[J].J.Phys.D:Appl.Phys.39,R387(2006).
    [61]R.Agarwal and C,M.lieber,Semiconductor nanowires:optics and optoelectronics [J].Appl.Phys.A 85,209(2006).
    [62]P.J.Pauzauskie and P,Yang,Nanowire Photonics[J].Materials Today 9,36(2006).
    [63]D.J.Sirbuly,M.Law,H.Yan,and P.Yang,Semiconductor Nanowires for Subwavelength Photonics Integration[J].J.Phys.Chem.B 109,15190(2005).
    [64]P.Yang,The Chemistry and Physics of Semiconductor Nanowires[J].MRS Bulletin 30,85(2005).
    [65]M.Chin,C.Lee,S.Lee,and S.Darmawan,High-index-contrast waveguides and devices[J].Appl.Opt.44,3077(2005).
    [66]L.Tong,J.Lou,and E.Mazur,Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides[J].Opt.Express 12,1025(2004).
    [67]J.B.Pendry,Negative refraction[J].Contemp.Phys.45,191(2004).
    [68]J.T.Shen and P.M.Platzmann,Near field imaging with negative dielectric constant lenses[J].Appl.Phys.Lett.80,3286(2002).
    [69]J.B.Pendry,A.J.Holden,W.J.Stewart,and I.Youngs,Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Phys.Rev.Lett.76,4773(71996).
    [70]J.B.Pendry,A.J.Holden,D.J.Robbins,and W.J.Stewart,Magnetism from conductors and enhanced linear media[J].IEEE Trans.Microwave Theory Tech.47,2075(1999).
    [71]D,R.Smith,W.J.Padilla,D.C.Vier,S.C,Nemat-Nasser,and S.Schultz,Composite Medium with Simultaneously Negative Permeability and Permittivity[J].Phys,Rev.Lett.84,41.84(2000).
    [72]R.A.Shelby,D.R.Smith,and S.Schultz,Experimental verification of a negative index of refraction[J].Science 292,77(2001).
    [73]S.A.Ramakrishna,Physics of negative refraction index materials[J].Rep.Prog.Phys.68,449(2005).
    [74].I.B.Pendry,A.J.Holden,D.J.Robbins,and W.J.Steward,Low frequency plasmons in thin-wire structures[J].J.Phys.:Condens.Matter 10,4785(1998).
    [75]D.F.Sievenpiper,M.E.Sickmiller,and E.Yablonovitch,3D Wire Mesh Photonic Crystals[J].Phys.Rev.Lett.76,2480(1996).
    [76]D.P.Makhnovsky and L.V.Panina,Field dependent permittivity of composite materials containing ferromagnetic wires[J].J.Appl.Phys.93,4120(2003).
    [77]P.W.Anderson,Plasmons,Gauge Invariance,and Mass[J].Phys.Rev.130,439(1963).
    [78]C.G.Parazzoli,R.B.Greegor,K.Li,B.E.C.Kontenbah,and M.H.Tanielian,Experimental Verification and Simulation of Negative lndex of Refraction Using Snell's Law[J].Plays.Rev.Lett.90,107401(2003).
    [79]K.Li,S.J.McLean,R.B.Greegor;C.G.Parazzoli,and M.H.Tanielian,Freespace focused-beam characterization of left-handed materials[J].Appl.Phys.Lett.82,2535(2003).
    [80]T.J.Yen,W.J.Padilla,N.Fang,D.C.Vier,D.R.Smith,J.B.Pendry,D.N.Basov,and X.Zhang,Terahertz magnetic response from artificial materials[J].Science 303,1494(2004).
    [81]P.Gay-Balmaz and O.J.F.Martin,Electromagnetic resonances in individual and coupled split-ring resonators[J].J.Appl.Phys.92,2929(2002).
    [82]P.Gay-Balmaz and O.J.F.Martin,Efficient isotropic magnetic resonators[J],Appl.Phys.Lett.81,939(2002).
    [83]A.C.Hsu,Y.K.Cheng,K.H.Chen,J.L.Chern,S.C.Wu,C.F.Chen,H.Chang,Y.H.Lien,and J.T.Shy,Far-infrared resonance in split ring resonators[J].Japan.J.Appl.Phys.43,L176(2004).
    [84]P.Markos and C.M.Soukoulis,Transmission studies of left-handed materials[J].Phys.Rev.B,65,033401(2002),
    [185]V.G,Veselago,Electrodinamics of materials both permittivity and permeability being negative[J].Usp.Fiz.Nauk 92,517(1967).
    [86]V,G.Veselago,The electrodynamics of substances with simultaneously negative values of ε and μ[J].Sov.Phys.Usp.10,509(1968).
    [87]S.Zhang,W.Van,B.K.Minhas,A,Frauenglass,K.J.Malloy,and S.R.J.Brueck,Midinfrared resonant magnetic nanostrucmres exhibiting a negative permeability [J].Phys.Rev.Lett.94,037402(2005).
    [88]W.J.Padilla,A.J.Taylor,C.Highstrete,M.Lee,and R.D.Averitt,Dynamical electric and magnetic metamaterial response at terahertz frequencies[J].Phys.Rev.Lett.96,107401(2006).
    [89]H.T.Chen,W.J.Padillal,J.M.O.Zide,A.C.Gossard,A.J.Taylor,and R.D.Averitt,Active terahertz metamaterial devices[J].Nature 444,597(2006).
    [90]H.K.Yuan,U.K.Chettiar,W.Cai,A.V.Kildishev,A.Boltasseva,V.P.Drachev,and V.M.Shalaev,A negative permeability material at red light[J].Opt.Express 15,1076(2007).
    [91]V.M.Shalaev,W.Cai,U.K.Chettiar,H.Yuan,A.K.Sarychev,V.P.Drachev,and A.V.Kildishev,Negative index of refraction in optical metamaterials[J].Opt.Lett.30,3356(2005).
    [92]S.Zhang,W.Fan,N.C.Panoiu,K.J.Malloy,R.M.Osgood,and S.R.J.Brueck,Experimental demonstration of near-infrared negative-index metamaterials[J].Phys.Rev.Lett.95,137404(2005).
    [93]S.Zhang,W.Fan,K.J.Malloy,S.R.J.Brueck,N.C.Panoiu,and R.M.Osgood,Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies[J].J.Opt.Soc.Am.B 23,434(2006).
    [94]G.Dolling,C.Enkrich,M.Wegener,C.M.Soukoulis,and S.Linden,Low-loss negative-index metamaterial at telecommunication wavelengths[J].Opt.Lett.31,1800(2006).
    [95]N.C.Panoiu and R.M.Osgood,Numerical investigations of negative refractive index metamaterials at infrared and optical frequencies[J].Opt.Commun.223,331(2003).
    [96]V.M.Shalaev,Optical negative-index metamaterials[J].Nature Photonics 1,41(2007).
    [97]N.Liu,H.Guo,L.Fu,S.Kaiser,H.Schweizer,and H.Giessen,Three-dimensional photonic metamaterials at optical frequencies[J].Nature Mater.7,31(2008).
    [98]S.Linden,C.Enkrich,M.Wegener,J.Zhou,T.Koschny,and C.M.Soukoulis,Magnetic response of metamaterials at 100 terahertz[J].Science 306,1351(2004).
    [99]C.M.Soukoulis,S.Linden,and M.Wegener,Negative refractive index at optical frequencies[J].Science 315,47(2007).
    [100]G.Dolling,M.Wegener,and S.Linden,Realization of a three-functional-layer negative-index photonic metamaterial[J].Opt.Lett.32,551(2007).
    [101]A.Alu and N.Engheta,Three-dimensional nanotransmission lines at optical frequencies:A recipe for broad band negative-refraction optical metamaterials[J].Phys.Rev.B 75,024304(2007).
    [102]J.Yao,Z.Liu,Y.Liu,Y.Wang,C.Sun,G.Bartal,A.M.Stacy,and X.Zhang,Optical Negative Refraction in Bulk Metamaterials of Nanowires[J].Science,321,930(2008)
    [103]J.Valentine,S.Zhang,T.Zentgraf,E.Ulin-Avila,D.A.Genov,G.Bartal,and X.Zhang,Three-dimensional optical metamaterial with a negative refractive index [J].Nature 455,376(2008).
    [104]J.B.Pendry,Negative refraction makes a perfect lens[J].Phys.Rev.Lett.85,3966(2000).
    [105]D,R.Smith,J.B.Pendry,and M.C.K.Wiltshire,Metamaterials and Negative Refractive Index[J].Science,305,788(2004).
    [106]D.R.Smith,D.Schurig,M.Rosenbluth,S.Schultz,S.A.Ramakrishna,and J.B.Pendry,Limitations on subdiffraction imaging with a negative refractive index slab[J].Appl.Phys.Lett.82,1506(2003).
    [107]I.A.Larkin and M.I.Stockman,Imperfect perfect lens[J].Nano Lett.5,339(2005).
    [108]A.Grbic and G.V,Eleftheriades,Overcoming the diffraction limit with a planar left-handed transmission-line lens[J].Phys.Rev.Lett.92,117403(2004).
    [109]A.A.Houck,J.B.Brock,and I.L.Chuang,Experimental observations of a lefthanded material that obeys Snell's law[J].Phys.Rev.Lett.90,137401(2003).
    [110]A.N.Lagarkov and V.N.Kissel,Near-perfect imaging in a focusing system based on a left-handedmaterial plate[J].Phys.Rev.Lett.92,077401(2004).
    [111]N.Fang,H.Lee,C.Sun,and X.Zhang,Sub-diffraction-limited optical imaging with a silver superlens[J].Science 308,534(2005).
    [112]H.Lee,Y.Xiong,N.Fang.W.Srituravanich,S.Durant,M.Ambati,C.Sun,and X.Zhang,Realization of optical superlens imaging below the diffraction limit[J].New J.Phys.7,255(2005).
    [113]D.Melville and R.Blaikie,Super-resolution imaging through a planar silver layer[J].Opt.Express 13,2127(2005).
    [114]S.Durant,Z.Liu,J.M.Steele,and X.Zhang,Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit[J].J.Opt.Soc.Am.B 23,2383(2006).
    [115]Z.Liu,S.Durant,H.Lee,Y.Pikus,N.Fang,Y.Xiong,C.Sun,and X.Zhang,Far-field optical superlens[J].Nano Lett.7,403(2007).
    [116]Z.Liu,S.Durant,H.Lee,Y.Pikus,Y.Xiong,C.Sun,and X.Zhang,Experimental studies of far-field superlens for sub-diffractional optical imaging[J].Opt.Express 15,6947(2007).
    [117]Z.Jacob,L.V.Alekseyev,and E.Narimanov,Optical hyperlens:far-field imaging beyond the diffraction limit[f].Opt.Express 14,8247(2006).
    [118]A.Salandrino and N.Engheta,Far-field subdiffraction optical microscopy using metamaterial crystals:theory and simulations[J].Phys.Rev.B 74,075103(2006).
    [119]H.Lee,Z.Liu,Y.Xiong,C.Sun,and X.Zhang,Development of optical hyperlens for imaging below the diffraction limit[J].Opt.Express.15,15886(2007).
    [120]Z.Liu,H.Lee,Y.Xiong,and C.Xun,and X.Zhang,Far-field optical hyperlens magnifying sub-diffraction-limited objects[J].Science 315,1686(2007).
    [121]I.I.Smolyaninov,Y.J.Huang,and C.C.Davis,Magnifying superlens in the visible frequency range[J].Science 315,1699(2007).
    [122]X.Zhang and Z.Liu,Superlenses to overcome the diffraction limit[J].Nature Mater.7,435(2008).
    [1]G.Mie,Contributions to the optics of turbid media,especially colloidal metal suspensions,Ann.Phys.(Leipzig) 25,377(1908)
    [2]L.V.Lorenz,In:Oeuvres Scientifiques de L.Lorenz,revues et annotees par H.Valentiner,(Librairie Lehman et Stage,Copenhagen,1898).
    [3]B.Peterson and S.Strom,T Matrix for Electromagnetic Scattering from an Arbitrary Number of Scatterers and Representations of E(3)[J].Phys.Rev.D 8.3661(1973).
    [4]D.W.Mackowski,Calculation of total cross sections of multiple-sphere clusters [J].J.Opt.Soc.Am.A 11,2851(1994)
    [5]D.W.Mackowski and.M.I.Mishchenko,Calculation of the T matrix and the scattering matrix for ensembles of spheres[J].J.Opt.Soc.Am.A 13,2266(1996).
    [6]Y.L.Xu,Electromagnetic scattering by an aggregate of spheres[J].Appl.Opt.34,4573(1995);37,6494(E)(1999);40,5508(E)(2001).
    [7]Y.L.Xu,Electromagnetic scattering by an aggregate of spheres:far field[J].Appl.Opt.36,9496(1997).
    [8]Y.L.Xu,Electromagnetic scattering by an aggregate of spheres:asymmetry parameter[J].Phys.Lett.A 249,30(1998).
    [9]Y.L.Xu and R.T.Wang,Electromagnetic scattering by an aggregate of spheres:Theoretical and experimental study of the amplitude scattering matrix[J].Phys.Rev.E 58,3931(1998).
    [10]Y.L.Xu,B.A.S.Gustafson,F.Giovane,J.Blum,and S.Tehranian,Calculation of the heat-source function in photophoresis of aggregated spheres[J].Phys.Rev.E 60,2347(1999);64,039903(2001).
    [11]Y.L.Xu and B.A.S.Gustafson,A generalized multiparticle Mie-solution:further experimental verification[J].J.Quant.Spectrosc.Radiat.Tranf.70,395(2001).
    [12]Y.L.Xu and N.G.Khlebtsov,Orientation-averaged radiative properties of an arbitrary configuration of scatterers[J].J.Quant.Spectrosc.Radiat.Transf.79-80,1121(2003).
    [13]C.F.Bohren and D.R.Huffman,Absorption and Scattering of Light by Small Particles,(John Wiley & Sons 1983).
    [14]J.A.Stratton,Electromagnetic Theory,(McGraw-Hill,Inc,1941).
    [15]W.C.Chew,Waves and Fields in Inhomogeneous Media,(IEEE Press,New York,1995).
    [1]E.Ozbay,Plasmonics:merging photonics and electronics at nanoscale dimensions [J].Science 311,189(2006).
    [2]W.L.Barnes,A.Dereux,and T.W,Ebbesen,Surface plasmon subwavelength optics[J].Nature 424,824(2003).
    [3]R.Zia,J.A.Schuller,A.Chandran,and M.L.Brongersma,Plasmonics:the next chip-scale technology[J].Materials today 9,20(2006),
    [4]S,A,Maier,P.G.Kik,H.A.Atwater,S.Meltzer,E.Harel,B.E.Koel,and A.A.G.Requicha,Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J].Nat.Mater.2,229(2003).
    [5]S.I.Bozhevolnyi,J.Erland,K.Leosson,P.M.W.Skovgaard,and J.M.Hvan,Waveguiding in surface plasmon polariton band gap structures[J].Plays.Rev.Lett.86,3008(2001).
    [6]P.Berini,Plasmon-polariton waves guided by thin lossy metal films of finite width:bound modes of symmetric structures[J].Phys.Rev.B,61,10484(2000).
    [7]J.R.Krenn,B,Lamprecht,and H.Ditlbacher,Non-diffraction-limited light transport by gold nanowires[J].EuroPhys.Lett.60,663(2002),
    [8]K.Tanaka and M.Tanaka,Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide[J].Appl.Phys.Lett.82,1158(2003).
    [9]I.V.Novikov and A.A.Maradudin,Channel polaritons[J].Phys.Rev.B 66,035403(2002).
    [10]D.K.Gramotnev and D.F.P.Pile,Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface[J].Appl.Phys.Lett.85,6323(2004).
    [11]S.A.Maier,Plasmonics." Fundamental and Applications,(Springer,New York,2007).
    [12]L.Tong,R.R.Gattass,J.B.Ashcom,S.He,J,Lou,M.Shen,I.Maxwell,and E.Mazur,Subwavelength-diameter silica wires for low-loss optical wave guiding[J].Nature 426,816(2003).
    [13]M.Law,D.J.Sirbuly,J.C.Johnson,J.Goldberger,R.J.Saykally,and P.Yang,Nanoribbon waveguides for subwwavelength photonics integration[J].Science 305,1269(2004).
    [14]C.J.Barrelet,A.B.Grreytak,and C.M.Lieber,Nanowire photonic circuit elements [J].Nano Lett.4,1981(2004).
    [15]J.Takahara,S.Yamagishi,H.Taki,A.Morimoto,and T.Kobayashi,Guiding of a one-dimensional optical beam with nanometer diameter[J].Opt.Lett.22,475(1997).
    [16]R.M.Dickson and L.A.Lyon,Unidirectional Plasmon Propagation in Metallic Nanowires[J].J.Phys.Chem.B 104,6095(2000).
    [19]R.F.Oulton,V.J.Sorger,D.A.Genov,D.F.P.Pile,and X.Zhang,A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation [J].Nat.Photon.2,496(2008).
    [18]Y.Hara,T.Mukaiyama,K.Takeda,and M.Kuwata-Gonokami,Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersire microspheres[J].Phys.Rev.Lett.94,203905(2005).
    [19]A.M.Kapitonov and V.N.Astratov,Observation ofnanojet-induced modes with small propagation losses in chains of coupled spherical cavities[J].Opt.Lett.32,409(2007).
    [20]L.I.Deych and O.Roslyak,Photonic band mixing in linear chains of optically coupled microspheres[J].Phys.Rev.E 73,036606(2006).
    [21]A.L.Burin,H..Cao,G.C.Schatz,and M.A.Rather,High quality optical modes in low-dimensional arrays of nanoparticles:Application to random lasers[J].J.Opt.Soc.Am.B 21,121(2004).
    [22]G.S.Blaustein,M.i.Gozman,O.Samoylova,I.Ya.Polishchuk,and A.L.Burin,Guiding optical modes in chains of dielectric particles[J],Opt.Express 15,17380(2007).
    [23]J.Du,S.Liu,Z.Lin,J.Zi,and S.T.Chui,Guiding electromagnetic energy below the diffraction limit with dielectric particle arrays[J].Phys.Rev.A 79,051801(R)(2009).
    [24]J.-C.Weeber,A.Dereux,Ch.,Girard,des Francs G.Colas,J.R.Krenn,and J.P.Goudonnet,Optical addressing at the subwavelength scale[J].Phys.Rev.E 62,7381(2000).
    [25]R.Quidant,J.-C.Weeber,A.D.Dereux,P.Ch.Girard,and Y.Chen,Spatially resolved photonic transfer through mesoscopic heterowires[J].Phys.Rev.E 65,036616(2002).
    [26]M.Quinten,A,Leitner,J.R.Krenn,and F.R.Aussenegg,Electromagnetic energy transport via linear chains of silver nanoparticles[J].Opt.Lett.23,1331(1998).
    [27]M.L.Brongersma,J.W.Hartman,and H.A.Atwater,Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit[J].Phys.Rev.B 62,16356(R)(2000).
    [28]S.A.Maier,P.G.Kik,and H.A.Atwater,Optical pulse propagation in metal nanoparticle chain waveguides[J].Phys.Rev.B 67,205402(2003).
    [29]S,A.Maier,M.D.Friedman,P.E.Barclay,and O,Painter,Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing[J].Appl.Phys.Lett.86,071103,(2005).
    [30]D.S.Citrin,Coherent Excitation Transport in Metal-Nanoparticle Chains[J].Nano Lett.4,1561,(2004).
    [31]L.A.Sweatlock,S.A.Maier,H.A.Atwater,and J.J.Penninkhof,A.Polman Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles [J].Plays.Rev.B 71,235408(2005).
    [32]E.D.Palik,Handbook of Optical Constants of Solids,(Academic Press;New York,1998).
    [33]W.H.Weber and G.W.Ford,Propagation of optical excitations by dipolar interactions in metal nanoparticle chains[J].Phys.Rev.B 70,125429(2004).
    [34]K.H.Fung and C.T.Chan,Plasmonic modes in periodic metal nanoparticlechains:a direct dynamic eigenmode analysis[J].Opt.Lett.32,973(2007).
    [35]S.A.Maier,M.L.Brongersma,P,G.Kik,S.Meltzer,Ari A.G.Requicha,and H.A.Awater,Plasmonics-A Route to Nanoscale Optical Devices[J].Adv.Mater.13,1501(2001).
    [36]S.A.Maier,M.L.Brongersma,and H.A.Atwater,Electromagnetic energy transport along Yagi arrays[J].Materials Science and Engineering C 19,291(2002).
    [37]S.A.Maier,M.L.Brongersma,and H.A.Atwatera,Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices[J].Appl.Phys.Lett.78,16(2001).
    [1]J.B.Pendry,Negative Refraction Makes a Perfect Lens[J].Phys.Rev.Lett.85,3966(2000).
    [2]D.R.Smith,W.J.Padilla,D.C.Vier,S.C.Nemat-Nasser,and S.Schultz,Composite Medium with Simultaneously Negative Permeability and Permittivity[J].Phys.Rev.Lett.84,4184(2000);R.A.Shelby,D.R.Smith,and S.Schulz,Experimental Verification of a Negative Index of Refraction[J].Science 292,77(2001).
    [3]S.Enoch,G.Tayeb,P.Sabouroux,N.Guerin,and P.Vincent,A Metamaterial for Directive Emission[J].Phys.Rev.Lett.89,213902(2002).
    [4]X.H.Hu,C.T.Chan,J.Zi,M.Li,and K.M.Ho,Diamagnetic Response of Metallic Photonic Crystals at Infrared and Visible Frequencies[J].Phys.Rev.Lett.96,223901(2006).
    [5]D.Schurig,J.J.Mock,B.J.Justice,S.A.Cummer,J.B.Pendry,A.F.Starr,and D.R.Smith,Metamaterial Electromagnetic Cloak at Microwave Frequencies[J].Science 314,977(2006).
    [6]D.Felbacq,and Bouchitte,Left-handed media and homogenization of photonic crystals[J].Opt.Lett.30,1189(2005).
    [7]J.B.Pendry,A.J.Holden,W.J.Stewart,and I.Youngs,Extremely Low Frequency Plasmons in Metallic Mesostructures[J].Phys.Rev.Lett.76,4773(1996).
    [8]J.B.Pendry,A.J.Holden,D.J.Robbins,and W.J.Stewart,Magnetism from Conductors and Enhanced Non-Linear Phenomena[J].IEEE Trans.Microwave Theory Tech.47,2075(1999).
    [9]A.Radkovskaya,M.Shamonin,C.J.Stevens,G.Faulkner,D.J.Edwards,E.Shamonina,and L.Solymar,Resonant Frequencies of a combination of split rings:experimental analytical and numerical study[J].Microwave Opt.Technol.Lett.46,473(2005).
    [10]K.Aydin,I.Bulu,K.Guven,M.Kafesaki,C.M.Soukoulis,and E.Ozbay.Investigation of magnetic resonances for different split-ring resonator parameters and designs[J].New J.Phys.7,168(2005).
    [11]L.Zhou and S.T.Chui,Eigenmodes of metallic ring systems:A rigorous approach [J].Phys.Rev.B 74,035419(2006).
    [12]C.M.Soukoulis,T.Koschny,J.Zhou,M,Kafesaki,and.E.N.Economou,Magnetic response of split ring resonators at terahertz frequencies[J].Phys.Stat.Sol.(b) 244,1181(2007).
    [13]S.Linden,C.Enkrich,M.Wegener,J.Zhou,T.Koschny,and C.M.Soukoulis,Magnetic Response of Metamaterials at 100 Terahertz[J].Science 306,1351(20O4).
    [14]R.Marques,F.Medina,and R.Rafii-El-Idrissi,Role of bianisotropy in negative permeability and left-handed metamaterials[J].Phys.Rev.B 65,144440(2002).
    [15]B.Sauviac,C.R.Simovski,and S.A.Tretyakov,Double split-ring resonators:Analytical modeling and numerical simulations[J].Electromagnetics 24,317(2004).
    [116]M.Shamonin,E.Shamonina,V.A.Kalinin,and L.Solymar,Properties of a metamaterial element:Analytical solutions and numerical simulations for a singly split double ring[J].J.Appl.Phys.95,3778(2004).
    [17]M.Shamonin,E.Shamonina,V.A.Kalinin,and L.Solymar,Resonant frequencies of a split-ring resonator:Analytical solutions and numerical simulations[J].Microwave Opt.Technol.Lett.44,133(2005).
    [18]S O'Brien and J B Pendry,Magnetic activity at infrared frequencies in structured metallic photonic crystals[J].J.Phys.:Condens.Matter 14,6383(2002).
    [19]T.J.Yen,W.J.Padilla,N.Fang,D.C.Vier,D.R.Smith,J.B.Pendry,D.N.Basov,and X.Zhang,Terahertz Magnetic Response from Artificial Materials[J].Science 303,1494(2004).
    [20]R.Marques,F.Martin,and M.Sorolla,Metamaterials with Negative Parameters:Theory,Design and Microwave Applications,(Wiley,New York,2008).
    [21]R.Marques,F.Mesa,J.Martel,and F.Medina,Comparative Analysis of Edge- and Broadside-Coupled Split Ring Resonators for Metamaterial Design Theory and Experiments[J].IEEE Trans.Antennas Propag.51,2572(2003).
    [22]J.D.Baena,J.Bonache,F.Martin,R.Marques,F.Falcone,T.Lopetegi,M.A.G.Laso,J.Garcia-Garcia,M.F.Portillo,and M.Sorolla,Equivalent-Circuit Models for Split-Ring Resonators and Complementary Split-Ring Resonators Coupled to Planar Transmission Lines[J].IEEE Trans.Microwave Theory Tech.53,1451(2005).
    [23]I.Bulu,H.Caglayan,and E.Ozbay,Experimental demonstration of labyrinthbased left-handed metamaterials[J].Opt.Express 13,10238(2005).
    [24]R.S.Penciu,K,Aydin,M.Kafesaki,Th.Koschny,E.Ozbay,E.N.Economou,and C.M.Soukoulis,Multi-gap individual and coupled split-ring resonator structures [J].Opt.Express 16,18131(2008).
    [25]K.Aydin and E.Ozbay,Capacitor-loaded split ring resonators as tunable metamaterial components[J].J.Appl.Phys.101,024911(2007).
    [26]M.C.K.Wiltshire,J.B.Pendry,I.R.Young,D.J.Larkman,D.J.Gilderdale,and J.V.Hajnal,Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging[J].Science 291,849(2001).
    [27]H.A.H.Boot and J.T.Randall,Historical notes on the cavity magnetron[J].IEEE Trans.Electron Devices 23,724(1976).
    [28]W.H.Hardy and L.A.Whitehead,Split-ring resonator for use in magnetic resonance from 200-2000 MHz[J].Rev.Sci.Instrum,52,213(1981).
    [29]P M Morse and H Feshbach,Method of Theoretical Physics,(McGraw-Hill,Inc,1953).
    [30]J.D.Baena,R.Marques,F.Medina,and J.Martel,Artificial magnetic metamaterial design by using spiral resonators[J].Phys.Rev.B 69,014402(2004).
    [31]W.R.Smythe,Static and Dynamic Electricity,(McGraw-Hill Book Company,New York,1968).
    [32]R.W.Ziolkowski and J.B.Grant.Scattering from cavity-backed apertures:The generalized dual series solution of the concentrically located E-Pol slit cylinder problem[J].IEEE Trans.Antennas Propag.35,504(1987).
    [33]W.A.Johnson and R.W.Ziolkowski,The scattering of an H-polarized plane wave from an axially slotted infinite cylinder:A dual series approach[J].Radio Sci.19,275(1984).
    [34]D.Colak,A.I.Nosich,and A.Altintas,Radar cross section study of cylindrical cavity-backed apertures with outer or inner material coating:The case of Epolarization [J].IEEE Trans.Antennas Propag.41,1551(1993).
    [35]D.Colak,A.I.Nosich,and A.Altintas,Radar cross-section study of cylindrical cavity-backed apertures with outer or inner material coating:The case of Hpolarization [J].IEEE Trans.Antennas Propag.43,440(1995).
    [36]A.E.Serebryannikov and A.I.Nosich,TE-case RCS analysis of finite-thickness slotted circular cylinder loaded with Lossy fitting[J].IEEE Trans.Antennas Propag.53,4 1426(2005).
    [37]A.E.Serebryannikov and A.I.Nosich,TE-Wave Penetration Into Finite-Thickness Slotted Circular Cylinder With Lossy and Lossless Inner Coatings[J].IEEE Trans.Electromagn.Compat.47,4 709(2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700