基于云模型的小卫星总体优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小卫星优化设计贯穿整个小卫星总体设计阶段,是小卫星研制重要组成部分,其设计优化的结果对小卫星初步设计和详细设计有着深远的影响,直接决定了卫星设计的质量和效率。针对小卫星任务设计的需求,建立合理的优化模型、设计高效的优化算法对提高小卫星优化设计的效率、缩短研制周期、降低研制成本都有着重大的作用。本文结合国防“十一五”预研课题和国家高技术研究发展计划(863)项目,对小卫星优化设计进行深入研究,重点解决符合任务需求的小卫星优化模型的建模以及设计高效的优化算法的问题,具体工作如下:
     针对小卫星优化设计是一个包含连续变量和离散变量的混合变量优化问题,和求解空间是非凸的、不连通问题,结合太阳同步轨道对地观测小卫星观测任务的需求,建立了小卫星总体优化模型。该模型引入云模型(Cloud Model,CM),并将其与进化算法相结合,设计了基于云模型的进化算法(Evolutionary AlgorithmBased on Cloud Model,EABCM),对小卫星质量模型进行优化求解,在理论上对算法的收敛性给予了证明,在工程上采用数值仿真方法验证了EABCM优化算法的有效性。
     针对小卫星成本优化设计的需求,在对比分析常见小卫星成本估算模型基础上,根据对地观测小卫星观测任务的需求,设计基于云模型的粒子群优化算法(Particle Swarm Optimization Base on Cloud Model,PSOBCM),有效克服粒子群算法收敛速度慢、易陷入局部极值点的缺陷,并通过数值仿真验证了对于成本模型理论精度的分析以及PSOBCM优化算法的有效性。
     针对小卫星可靠性要求较高的实际需求,首先分析了小卫星可靠性设计的概念、设计步骤以及可靠性估计方法;其次根据任务设计的需求,建立了小卫星可靠性和设计成本的多目标优化模型;为求解该多目标优化问题,借鉴多目标遗传算法的排序思想,设计了基于云模型的多目标优化算法(Multi-Objective EvolutionAlgorithm Based Cloud Model,MOEABCM)对其求解,并通过数值仿真结果验证了算法的有效性。
     针对快速响应空间任务需求,首先分析了上面级航天器的总体设计思路和设计方法,并给出了上面级航天器各个分系统的设计步骤;然后依据上面级航天器总体优化设计的目标,分别构建上面级航天器总体设计的质量优化模型、成本优化模型和成本、可靠性的多目标优化模型;最后分别采用基于云模型的进化算法、基于云模型的粒子群算法和基于云模型的多目标进化算法来对三个总体设计优化模型分别求解,验证了基于云模型的优化算法的有效性和上面级航天器设计的合理性。
As an important part of the general design phase of small satellites, theoptimization design of small satellites runs throughout the whole general design process.The optimal results have a profound impact on the prelinary design and detailed designof small satellites, which directly determines the quality and efficiency of the satellitedesign. In order to meet the design needs of small satellites, establishing rationaloptimization models and designing efficient optimization algorithms have an importanteffect on improving the efficiency of small satellites design, shortening the developmentcycle and reducing the development cost. Supported by the Eleventh Five-years DefensePre-research topics and National High Technology Research and Development Program863, the optimization design of small satellites are studied deeply in this thesis whichmainly focuses on the problems about how to set up the optimization models meetingthe requirements of small satellites design and how to design efficient optimizationalgorithms. The main contents of this thesis are consisted of the following parts:
     As the optimization design of small satellites is a mixed variables optimizationproblem containing both continuous varialbes and discrete variables and its solutionspace is often non-convex and not connected. With the observation missionrequirements of sun-synchronous earth observation small satellites, a optimizationmodel of small satellites quality is established. Combining evolutionary algorithms withCloud Model(CM), which is wide used in In the field of artificial intelligence, a newoptimization method named Evolutionary Algorithm Based on Cloud Model(EABCM)is proposed. The effectiveness of EABCM method is verified by the optimizationproblem of the small satellites quality.
     In view of the requirements about the optimization design cost of small satellites,on the basis of analyzing and comparing. with the common cost models of smallsatellite, according to the requirements of earth observation mission, a new optimizationmethod named Particle Swarm Optimization Based on Cloud Model(PSOBCM) isproposed, which solve the defects for particle swarm optimization about convergingslowly and being easy to fall into local extreme point. By numerical simulation theanalysis results in theory about the accuracy of the cost models and the effectiveness ofthe proposed PSOBCM method areverified.
     As for the higher requirements about reliability design of small satellites, firstly theconcepts and design steps of reliability design of small satellitesas well as the estimationmethod about the reliability are analyzed; secondly according to the needs of missiondesign, a multiobjective optimization model about the reliability and design cost of thesmall satellites is set up. To solve this multiobjective optimization problem, using thesorting idea of the multiobjective genetic algorithm, a new optimization method named Multi-Objective Evolution Algorithm Based Cloud Model(MOEABCM) is designed. Atlast the effectiveness of the MOEABCM method is verified by simulation results.
     Given the requirements about the rapid response space mission, firstly the generaldesign ideas and methods of the upper-stage spacecraft is analyzed, and design steps ofthe subsystem for the upper-stage spacecraft is also shown; secondly according to thedesign objective of the upper-stage spacecraft, the quality optimization model, costoptimization model, cost and reliability multiobjective optimization model of theupper-stage spacecraft are respectively founded; at last using evolutionary algorithmbased on cloud model, particle swarm optimization based on cloud model andmulti-objective evolution algorithm based cloud model respectively, three generaloptimization design models are optimized. The effectiveness of the optimizationmethods based on cloud model and the rationality of the upper-stage spacecraft designare also verified.
引文
[1] J. D. Rendleman, Why SmallSats. AIAA SPACE2009Conference&Exposition,2009:1-7.
    [2]林来兴.小卫星技术发展和应用前景-兼谈卫星设计思想演变.航天器工程.2006,15(3):14-18.
    [3] M. Guelman, F. Ortenberg. Small Satellite’s Role in Future Hyperspectral EarthObservation Missions. AIAA57th International Astronautical Congress,2006:1-14.
    [4]林来兴.现代小卫星及其关键技术.中国空间科学技术.1995,(4):37-43.
    [5] Naveen Murali. A Systems Engineering Approach to Small Satellite MissionFormalization. Mississippi: Mississippi State University,2006:5-10.
    [6] AIAA Multidisciplinary Design Optimization Technical Committee. Current Stateof the art on Multidisciplinary Design Optimization (MDO). An AIAA WhitePaper. ISBN1-56347-021-7, September,1991:1-26.
    [7] C.D. Jilla, D.W. Miller. A Multiobjective Multidisciplinary Design OptimizationMethodology for The Conceptual Design of Distributed Satellite Systems, AIAA9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,2002:1-13.
    [8]王希季,李大耀.卫星设计学.上海:上海科学技术出版社,1997,57-65.
    [9]徐福祥主编.卫星工程概论.北京:中国宇航出版社,2004,36-40.
    [10] Larson, W. J., and Wertz, J. R., Space Mission Analysis and Design,3nded.,Published jointly by Microcosm Press, Inc and Kluwer Academic Publishers,1999,795-797.
    [11]朱亚涛,陈方,李高华.基于多学科参数化建模和灵敏度分析的飞行器分级优化设计方法.宇航学报,2011,32(4):721-726.
    [12] D. S. Lazzara, R. Haimes, K. Willcox. Multifidelity Geometry and Analysis inAircraft Conceptual Design. AIAA19th AIAA Computational Fluid Dynamics,2009:1-22.
    [13] C. A. Crawford, R. Haimes. Synthesizing an MDO Architecture in CAD. AIAA42nd Aerospace Sciences Meeting and Exhibit,2004:1-15.
    [14] W. T. Jones, D. Lazzara, R. Haimes Evolution of Geometric Sensitivity Derivativesfrom Computer Aided Design Models. AIAA13th Multidisciplinary AnalysisOptimization Conference,2010:1-23.
    [15] M. G. Hutchison, W.H. Mason, B. Grossmad. Aerodynamic Optimization of AnHSCT Configuration Using Variable-complexity Modeling. AIAA31st AerospaceSciences Meeting&Exhibit,1993:1-9.
    [16] T. D. Robinson, K. E. Willcox, M. S. Eldred. Multifidelity Optimization forVariable-Complexity Design. AIAA/ISSMO11th Multidisciplinary Analysis andOptimization Conference,2006:1-18.
    [17]姜哲,崔维成,黄小平.基于响应面的可变复杂度方法在桁架式Spar平台方案设计中的应用.船舶力学,2010,14(7):771-781.
    [18] N. V. Nguyen, S.M. Choi, W. S. Kim. Multidisciplinary Unmanned Combat AirVehicle-UCAV Design Optimization Using Variable Complexity Modeling. AIAA9th Aviation Technology, Integration, and Operations Conference,2009:1-14.
    [19] N. V. Nguyen, T. Maxim, S.M. Choi. Multidisciplinary Regional Jet AircraftDesign Optimization Using Advanced Variable Complexity Techniques.AIAA/ISSMO13th Multidisciplinary Analysis Optimization Conference,2010:1-13.
    [20]张勇,陆勇.基于近似模型技术的圆管耐撞性优化设计.华中科技大学学报,2010,38(9):129-132.
    [21] H. S. Chung, J. J. Alonso. Mutiobjective Optimization Using ApproximationModel-Based Genetic Algorithms. AIAA/ISSMO10th Multidisciplinary Analysisand Optimization Conference,2004:1-16.
    [22] V. V. Vytla, P. G. Huang, R. C. Penmetsa. Response Surface Based AerodynamicShape Optimization of High Speed Train Nose. AIAA48th Aerospace SciencesMeeting Including the New Horizons Forum and Aerospace Exposition,2010:1-15.
    [23] K. S. Jeon, J. W. Lee, Y. H. Byun. Multidisciplinary UCAV System Design andOptimization Using Repetitive Response Surface Enhancement Technique. AIAA48th Structures, Structural Dynamics, and Materials Conference,2007:1-12.
    [24] C. G., Raphael, T. Haftka, S. K. Bapanapalli. Dimensionality Reduction Approachfor Response Surface Approximations Application to Thermal Design. AIAAJournal2009,47(7):1700-1708.
    [25] P. K. Chandila, H. Agarwal, J. E. Renaud. An Efficient Strategy for GlobalOptimization Using Local Kriging Approximations. AIAA45th Structures,Structural Dynamics&Materials Conference,2004:1-18.
    [26] J. D. Martin, T. W. Simpson. Use of Kriging Models to Approximate DeterministicComputer Models. AIAA Journal2005,43(4):853-863.
    [27] M. P. Rumpfkeil, W. Yamazaki, D. J. Mavriplis. Dynamic Sampling Method forKriging and Cokriging Surrogate Models. AIAA49th Aerospace Sciences Meeting,2011:1-12.
    [28] R. R. Barton. Simulation Metamodels. IEEE Simulation Conference Proceedings,1998,(1):167-174.
    [29] R. C.H. Cheng, C. S.M. Currie. Optimization by Simulation MetamodellingMethods. IEEE Proceedings of the2004Winter Simulation Conference,2004:1-13.
    [30] A. Polynkin, V. Toropov, S. Shahpar. Multidisciplinary Optimization ofturbomachinary based on metamodel built by Genetic Programming.AIAA/ISSMO13th Multidisciplinary Analysis Optimization Conference,2010:1-18.
    [31] J. Sobieszczanski-Sobieski, R. T. Haftka. Multidisciplinary Aerospace DesignOptimization-Survey of Recent Developments. AIAA34th Aerospace SciencesMeeting and Exhibit,1996:1-34.
    [32] P. M. Zadeh, J. Roshanian, M. R. Farmani. Particle Swarm Optimization forMultiobjective Collaborative Multidisciplinary Design Optimization. AIAA18thStructural Dynamics, and Materials Conference,2010:1-11.
    [33] F. Castellini, M. R. Lavagna, A. Riccardi. Multidisciplinary Design OptimizationModels and Algorithms for Space Launch Vehicles. AIAA13th MultidisciplinaryAnalysis Optimization Conference,2010:1-23.
    [34] A. J. Wit, F. V. Keulen. Overview of Methods for MultiLevel and/orMultiDisciplinary Optimization. AIAA18th Structures, Structural Dynamics, andMaterials Conference,2010:1-21.
    [35] G. Seber, H. Ran, J. A. Schetz. Multidisciplinary Design Optimization of a TrussBraced Wing Aircraft with Upgraded Aerodynamic Analyses, AIAA29th AppliedAerodynamics Conference,2011:1-15.
    [36]余熊庆.多学科设计算法及其在飞机设计中的应用研究.南京:南京航空航天大学博士论文.1999:6-25.
    [37]陈小前.飞行器总体优化设计理论与应用研究.长沙:国防科学技术大学博士论文.2001:98-113.
    [38]陈琪峰.飞行器分布式协同进化多学科设计优化方法研究.长沙:国防科学技术大学博士论文,2003:107-118.
    [39] M. McDonald, All-at-Once Multidisciplinary Optimization with System andComponent Level Reliability ConstraintsS. Mahadevan. AIAA/ISSMO12thMultidisciplinary Analysis and Optimization Conference,2008:1-9.
    [40] R. S. Sellar, S. M. Batill. Concurrent Subspace Optimization UsingGradient-enhanced Neural Network Approximations. AIAA, NASA, and ISSMO,6th Symposium on Multidisciplinary Analysis and Optimization,1996:1-14.
    [41] W. Yao., X.Q. Chen. A Concurrent Subspace Optimization Procedure Based onMultidisciplinary Active Regional Crossover Optimization. AIAA/ASME18thStructures, Structural Dynamics, and Materials Conference,2010:1-19.
    [42]车竞,王文正,何开锋.高超声速飞行器并行子空间优化设计.航空动力学报,2010,25(4):912-917.
    [43] I. Sobieski, I. Kroo. Aircraft Design Using Collaborative Optimization. AIAA34thAerospace Sciences Meeting and Exhibit,1996:1-13.
    [44] P. M. Zadeh, V. V. Toropov, A. S. Wood. Collaborative Optimization FrameworkBased on the Interaction of Low-and High-Fidelity Models and the Moving LeastSquares Method. AIAA,47th Structures, Structural Dynamics, and MaterialsConference.2006:1-18.
    [45]裴晓强,黄海.协同优化在卫星多学科设计优化中的初步应用.宇航学报,2006,27(5):1054-1058.
    [46]李海燕,井元伟,张嗣瀛.多学科协同优化方法的分析与改进.东北大学学报(自然科学版),2011,32(3):314-317.
    [47] R. T. Haftka. Simultaneous Analysis and Design. AIAA Journal,1985,23(7):1099-1103.
    [48] C. E. Orozco, O. N. Ghattas. A Reduced SAND Method for Nonlinear DesignProblems in Mechanics. AIAA.37th Structures, Structural Dynamics andMaterials Conference and Exhibit,1996:1-10.
    [49] J. Sobieszczanski-Sobieski, M. Emiley, J. Agte. Advancement of Bi-LevelIntegrated Svas tem Synthesis. AIAA,38th Aerospace Sciences Meeting&Exhibit,2000:1-23.
    [50]陈伟,杨树兴,赵良玉. BLISS方法的基本理论及应用.飞行力学,2006,24(4):229-232.
    [51] J. Allison, D. Walsh, M. Kokkolaras. Analytical Target Cascading in AircraftDesign. AIAA,44th Aerospace Sciences Meeting and Exhibit,2006:1-17.
    [52] M. Kokkolaras. Reliability Allocation in Probabilistic Design Optimization ofDecomposed Systems Using Analytical Target Cascading. AIAA/ISSMO12thMultidisciplinary Analysis and Optimization Conference,2008:1-11.
    [53] N. P. Tedford, J. R. A. Martins. On the Common Structure of MDO Problems: AComparison of Architectures. AIAA/ISSMO11th Multidisciplinary Analysis andOptimization Conference,2006:1-16.
    [54] A. J. de Wit. F. V. Keulen. Numerical Comparison of Multi-Level OptimizationTechniques. AIAA/ASME/ASCE/AHS48th Structures, Structural Dynamics, andMaterials Conference,2007:1-25.
    [55] D. H. Wolpert, W. G. Macready. No Free Lunch Theorems for Optimization. IEEETransactions on Evolutionary Computation,1997,1(1):67-82.
    [56]吴至友.全局优化的几种确定性方法.上海:上海大学博士论文.2003:3-9.
    [57]计明军.若干随机性全局优化算法的研究.大连:大连理工大学博士论文.2004:1-8.
    [58]张晓伟.全局优化的若干随机性算法.西安:西安电子科技大学博士论文.2008:4-7.
    [59]吴锋,李秀梅,朱旭辉.最速下降法的若干重要改进.广西大学学报(自然科学版),2010,35(4):596-600.
    [60]陈玉春,徐思远,屠秋野.求解航空发动机非线性方程组的变步长牛顿法.航空计算技术,2009,39(1):39-41.
    [61] M. Rivaie, M. Fauzi, M. Mamat. A New Family of Conjugate Gradient Methodsfor Unconstrained Optimization. IEEE Modeling4th International Conference onSimulation and Applied Optimization,2011:1-8.
    [62] J. L. Hu, Z. P. Wu. Sequential Quadratic Programming Method for Solution ofElectromagnetic Inverse Problems. IEEE Transactions on Antennas andPropagation,2005,53(8):2680-2687.
    [63] Horst, Pardalos, Thoai. Introduction to global optimization. Kluwer,2000:25-39.
    [64]申培萍,全局优化算法.北京:科学出版社,2006:80-106.
    [65]李静.全局最优化的填充修正打洞函数法.温州大学学报,2008,29(6):1-6.
    [66]沈臻,田蔚文,邬冬华.解非线性互补问题的积分水平集方法.应用数学与计算数学学报,1999,13(2):19-29.
    [67] M. Toulouse, T. G. Crainic, B. Sans, Self-Organization in Cooperative Tabu SearchAlgorithms. IEEE International Conference on Systems Man and Cybernetics,1998:1-17.
    [68]王民生.禁忌搜索算法及其混合策略的应用研究.大连:大连交通大学博士论文.2005:4-10.
    [69] H. Su, L. L. Gu, C. L. Gong. Hybrid Simulated Annealing Algorithm Based on theParallel Strategy. IEEE International Symposium on Computational Intelligenceand Design (ISCID),2010:1-14.
    [70] H. B. Shan, S. X. Li, D. G. Gong. Genetic Simulated Annealing Algorithm-basedAssembly Sequence Planning. IEEE. International Technology and InnovationConference,2006:1-11.
    [71]李敏强,寇纪淞,林丹.遗传算法的基本理论与应用.北京:科学出版社,2002:16-29.
    [72] Q. Y. Ju, J. Y. Zhu. Improved Immune Genetic Algorithm For JSP. Proceedings ofthe7th World Congress on Intelligent Control and Automation,2008:1-19.
    [73] Y. Gao, T. Zheng. Chaos Genetic Algorithm for Aircraft Route Planning Problem.IEEE Second WRI Global Congress on Intelligent Systems,2010:1-12.
    [74] H. M.,Liu, N.,L. Xu. An Improved Niche Genetic Algorithm. IEEE InternationalConference on Intelligent Computing and Intelligent Systems,2009:1-8.
    [75]戴朝华,朱云芳,陈维荣.云遗传算法.西安交通大学学报,2006,41(6):729-732.
    [76]戴朝华,朱云芳,陈维荣.云遗传算法及其应用.电子学报,2007,35(7):1419-1424.
    [77]谢怀勤,陈幸开,陈辉.基于神经网络遗传算法的GFRP拉挤双目标优化.材料科学与工艺,2010,18(4):535-539.
    [78] M. Dorigo, V. Maniezzo, A. Colorni. Ant system: Optimization by a Colony ofCooperating Agents. IEEE Transactions on Systems Man and Cybernetics, Part B,1996,26(1):29-41.
    [79] M. Birattari, P. Pellegrini, M. Dorigo. On the Invariance of Ant ColonyOptimization. IEEE Transactions on Evolutionary Computation,2007,11(6):732-742.
    [80] J. Kennedy, R. C. Eberhart. Particle Swarm Optimization, Proceedings of IEEEInternational Conference on Neural Networks, Perth,1995:1942-1948.
    [81] G. Venter, J. Sobieszxzanski-Sobieski. Multidisciplinary Optimization of aTransport Aircraft Wing Using Particle Swarm Optimization, Structural andMultidisciplinary Optimization,2004,26(1-2):121-131.
    [82] W. Q. Zhang, S. Fujimura. Improved Vector Evaluated Genetic Algorithm withArchive for Solving Multiobjective PPS Problem, IEEE International Conferenceon E-Product E-Service and E-Entertainment,2010:1-23.
    [83] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay. Multiobjective GeneticAlgorithm-Based Fuzzy Clustering of Categorical Attributes. IEEE Transactionson Evolutionary Computation,2009,13(5):991-1005.
    [84] A. S. Karthik, P. Thanapal. A Hybrid Evolutionary Approach for Optimal FuzzyClassifier Design.2010IEEE International Conference on CommunicationControl and Computing Technologies,2010:1-22.
    [85] N. Srinivas, K. Deb. Multiobjective Optimization Using Nondominated Sorting inGenetic Algorithms, Evolutionary Computation,1994,2:221-248.
    [86] A. B. Kadrovach, J. B. Zydallis, G. B. Lamont. Use of Mendelian Pressure in aMulti-objective Genetic Algorithm. Proceeding of the IEEE World Congress onComputational Intelligence,2002:1-13.
    [87] S. Tiwari, G. Fadel, P. Koch. Performance Assessment of the Hybrid Archive-basedMicro Genetic Algorithm (AMGA) on the CEC09Test Problems, IEEE Congresson Evolutionary Computation,2009:1-12.
    [88] J. D. Knowles, D. W. Corne. The Pareto Archived Evolution Strategy: A newBaseline Algorithm for Pareto Multiobjective Optimization. IEEE World Congresson Evolutionary Computation,1999:1-15.
    [89] D. W. Corne, J. D. Knowles, M. J. Oates. The Patero Envelope-based SelectionAlgorithm for Multiobjective Optimization. Proceedings of the Parallel ProblemSolving from Nature6th Conference,2000:1-9.
    [90]陈琪锋,戴金海.卫星星座系统多学科设计优化研究.宇航学报,2003,24(5):502-509.
    [91] A. Ravanbakhsh. and M. Mortazavi. Multidisciplinary Design OptimizationApproach to Conceptual Design of a LEO Earth Observation Microsatellite. AIAASpaceOps2008Conference,2008:1-10.
    [92] A. B. Hoskins. E. M. Atkins. Satellite Formation Design with a Multi-ObjectiveOptimization Technique. AIAA/AAS Astrodynamics Specialist Conference andExhibit,2006:1-12.
    [93] R. A. Hassan, W. A. Crossley. Multi-Objective Optimization of Conceptual Designof Communication Satellites with a Two-Branch Tournament Genetic Algorithm.AIAA/ASME/ASCE/AHS/ASC43rd Structures, Structural Dynamics, andMaterials Conference,2002:1-11.
    [94] M. J. Magnin, D. P. Thunnissen, S. K. Au. Multi-Objective Optimization UnderUncertainty of Satellite Systems Via Simulated Annealing. AIAA/ISSMO12thMultidisciplinary Analysis and Optimization Conference,2008:1-12.
    [95]杨维维.快速机动小卫星总体设计及控制技术研究.长沙:国防科技大学硕士论文.2006:33-41.
    [96] S. Rajagopal. Multidisciplinary Design Optimization of a UAV Wing using Krigingbased Multi-Objective Genetic Algorithm. AIAA/ASME50th Structures,Structural Dynamics, and Materials Conference,2009:1-18.
    [97]李德毅,孟海军,史雪梅.隶属云和隶属云发生器.计算机研究与发展,1995,32(6):15-20.
    [98]李德毅.知识表示中的不确定性.中国工程科学,2000,2(10):73-79.
    [99]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28-34.
    [100]蒋嵘,李德毅,陈晖.基于云模型的时间序列预测.解放军理工大学学报,2000,1(5),13-18.
    [101]张飞舟,范跃祖,沈程智.基于隶属云发生器的智能控制.航空学报,1999,20(1):89-92.
    [102]刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示.计算机工程与应用,2004,2:32-35.
    [103]张光卫,何锐,刘禹.基于云模型的进化算法.计算机学报,2008,31(7):1082-1091.
    [104]张光卫,康建初,李鹤松.基于云模型的全局最优化算法.北京航空航天大学学报,2007,33(4):486-490.
    [105]张光卫,李德毅,李鹏.基于云模型的协同过滤推荐算法.电子学报,2009,37(8):2403-2411.
    [106]刘禹,李德毅,张光卫.云模型雾化特性及在进化算法中的应用.电子学报,2009,37(8):1651-1658.
    [107]韦杏琼,周永权,黄华娟.云自适应粒子群算法.计算机工程与应用,2009,45(1):48-50.
    [108]J. P. Wen, B. G. Cao. A Modified Particle Swarm Optimizer Based on CloudModel. Proceedings of the2008IEEE/ASME International Conference onAdvanced Intelligent Mechatronics,2008:1-10.
    [109]胡景明,罗清勇,张恒.现代小卫星技术与应用专题讲座(三)第5讲小卫星在民用对地观测中的应用及关键技术.军事通信技术,2006,27(4):70-74.
    [110]R. J. Boain. A-B-Cs of Sun-Synchronous Orbit Mission Design,14th AAS/AIAASpace Flight Mechanics Conference,2004:1-13.
    [111]D. J. Barnhart, T. Vladimirova, M. N. Sweeting. Very-Small-Satellite Design forDistributed Space Missions. Journal of Spacecraft and Rockets,2007,44(6):1294-1306.
    [112]D. J. Richie, V. J. Lappas, P. L. Palmer. Sizing/Optimization of a Small SatelliteEnergy Storage and Attitude Control System. Journal of Spacecraft and Rockets,2007,44(4):940-952.
    [113]姚雯,不确定性MDO理论及其在卫星总体设计中的应用研究.长沙:国防科技大学硕士论文.2007:73-77.
    [114]张帆,光学遥感小卫星星座总体优化设计与系统分析.哈尔滨:哈尔滨工业大学博士论文.2001:10-25.
    [115]J.H. Holland. Adaptation in Natural and Artificial Systems. The University ofMichigan Press,1975:8-19.
    [116]H. P. Schwefel. Numerical Optimization of Computer Models. John Wiley,Chichester,UK,1981:101-136.
    [117]L. J. Fogel, A. J. Owens, M. J. Walsh. Artificial Intelligence through SimulatedEvolution. John Wiley, New York.1966:215-232.
    [118]张琦,董梁,蒋馥.多目标进化计算收敛到Pareto最优解集的证明.系统工程与电子技术,2000,22(8):17-21.
    [119]曾建潮,介婧,崔志华.微粒群算法.北京:科学出版社,2004:12-36.
    [120]D. A. Bearden, R. L. Abramson.“Small Satellite Cost Study–Risk and QualityAssessment.2nd International Symposium on Small Satellites Systems andServices,1994:1-15.
    [121]T. Mosher, M. Barrera, N. Lao, Integration of Small Satellite Cost and DesignModels for Improved Conceptual Design-to-Cost. IEEE Aerospace Conference,1998:1-12.
    [122]J. P. Stephens. Developing National Space Capability with Small Low CostSatellites. IEEE International Conference on Recent Advances in SpaceTechnologies,2003:1-12.
    [123]朱毅麟.小卫星的成本估算.中国空间科学与技术,1998,4:36-42.
    [124]张帆,曹喜滨,邹泾湘.用模糊BP神经网估算小卫星成本.系统工程与电子技术,2000,22(10):75-78.
    [125]R. L. Abramson, D. A. Bearden. Cost Analysis Methodology forHigh-Performance Small Satellites. SPIE International Symposium on Aerospaceand Remote Sensing, Small Satellite Technology and Application,1993:1-19.
    [126]D. A. Bearden, N.Y. Lao. Comparison of NEAR Costs with a Small-SpacecraftCost Model. AIAA/USU10th Annual Small Satellite Conference,1996:1-13.
    [127]D. A. Bearden. Small-Satellite Costs. The Aerospace Corporation,http://www.aero.org/publications/crosslink/winter2001/04.html,2001
    [128]E. Mahr, G. Richardson. Development of The Small Satellite Cost Model (SSCM)Edition2002. IEEE Aerospace Conference,2003:1-21.
    [129]M. A. Broder, E. M. Mahr. Review of Three Small-Satellite Cost Models. AIAASPACE2009Conference&Exposition,2009:1-11.
    [130]J. F. Castet, J. H. Saleh. Satellite Reliability: Statistical Data Analysis andModeling. Journal of Spacecraft and Rockets,2009,46(5):1065-1076.
    [131]邵瑞芝,范本尧.长寿命通信卫星的可靠性研究.中国空间科学技术,1996,4:24-33.
    [132]侯成杰,刘碌炜,朱北园.卫星可靠性技术-计算机辅助可靠性分析.航天控制,2002,1:60-64.
    [133]舒适,俞洁,周志涛.基于产品保证的卫星可靠性保证机制与作用的研究.航天器环境工程,2010,27(2):237-242.
    [134]韩品尧,荆武兴.卫星可靠性分配优化方法研究.哈尔滨工业大学学报,1996,28(2):37-40.
    [135]Z. W. Guo, Z. Cheng, X. M. Zhang Satellite Reliability Assessment Based onBayesian Theory. AIAA57th International Astronautical Congress,2006:1-12.
    [136]H. W. Brandhorst, J. A. Rodiek. Reliability and Cost Reduction of Solar Arrays forGEO Satellites.5th International Energy Conversion Engineering Conference andExhibit,2007:1-23.
    [137]崔逊学.多目标进化算法及其应用.北京:国防工业出版社,2006:5-20..
    [138]W. A. Crossley. Genetic Algorithm Approaches for Multiobjective Design of RotorSystems. AIAA6th Symposium on Multidisciplinary Analysis and Optimization,1996:1-15.
    [139]R. C. Randall, Responsive Space: Transformation of the National Space Capability.AIAA1st Responsive Space Conference, Redondo Beach, CAUSA,2003:1-10.
    [140]L. J. Jeffrey, Implementing Standard Micro Satellites for Responsive Space. AIAA1st Responsive Space Conference, Redondo Beach, CAUSA,2003:1-12.
    [141]M. S. Ronald, Plan for Operationally Responsive Space. A Report toCongressional Defense Committees,2007:1-26.
    [142]E. Richard, V. Allen, T. Bauer, Responsive Low Cost Access to Space with ELVISan Expendable Launch Vehicle with Integrated Spacecraft. Annual USU/AIAASmall Satellite Conference,2003:1-13.
    [143]耿云海,张迎春.快速空间响应的上面级航天器技术.快速空间响应系统技术研讨会论文集,2007
    [144]孙兆伟,邢雷,徐国栋.基于可重构技术的上面级航天器综合电子系统.光学精密工程,2012,20(2):296-304.
    [145]赵丹.星箭一体化航天器时变计算机技术研究.哈尔滨:哈尔滨工业大学博士论文,2010:28-30.
    [146]R. Linares, J. Crassidis, P. Singla. On-Orbit Gyro Calibration for OperationallyResponsive Space Systems. AIAA/AAS Astrodynamics Specialist Conference,Toronto, Ontario,2010:1-14.
    [147]O. Michael. Optimal Vehicle Design Using the Integrated System and CostModeling Tool Suite. AIAA-2010-9087,13th AIAA/ISSMO MultidisciplinaryAnalysis Optimization Conference, Fort Worth, Texas,2010:1-16.
    [148]C. C. Naval, P. Welker, J. Pullano. Development and On-Orbit Performance of aPressure Regulation Control System for Upper Stage. AIAA-2010-6731,46thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN,2010:1-13.
    [149]赵艳彬,孙杰,张云.快速空间响应对航天器技术需求分析.快速空间响应系统技术研讨会论文集,2007:205~213.
    [150]罗鹰,张晓敏.小卫星快速空间响应及其关键技术分析.快速空间响应系统技术研讨会论文集,2007:362~370.
    [151]刘杰,及莉,郑威.快速响应卫星概念机器关键技术研究.快速空间响应系统技术研讨会论文集,2007:396~410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700