纳米结构及阴离子取代提高复合氧化物光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发具有高能效及高活性的新型光催化剂是光催化研究领域的重要方向,本论文主要是通过两种手段来提高这两方面的性能:①复合氧化物纳米粒子的调控合成;②阴离子取代复合氧化物。纳米形貌调控在很大程度上可以改变化合物的物理化学性能,而具有纳米尺寸的光催化剂一般具有特殊的形态,高的比表面积和高效的电子-空穴分离率,因此通常具有很高的光催化活性;而对于阴离子取代的复合氧化物光催化剂来说,阴离子取代可以使其光响应范围大幅度红移,以便充分利用可见光,因此可以提高其光催化能效。
     在本论文工作中,通过无模板的水热合成路线,可以制备不同形貌的Zn_3V_2O_7(OH)_2(H_2O)_2纳米粒子,并且首次评价了其光催化活性,结果证明在低温合成的自主装纳米花球状晶体其催化活性最好,在紫外光照射80分钟内可以将亚甲基蓝降解完全。通过适当煅烧Zn_3V_2O_7(OH)_2(H_2O)_2使其脱水,可以制备可见光型Zn_3V_2O_8自组装孔状纳米花球光催化剂,通过活性评价证明此样品对亚甲基蓝的降解速率常数是传统高温固相所合成Zn_3V_2O_8的3倍。
     采用相同的水热合成方法,可以制备不同形貌的ZnWO4纳米粒子,光催化评价结果显示不同形貌的ZnWO_4具有不同的光催化活性,其中长径比值最大的ZnWO4纳米棒的催化活性最优,在紫外光照射50分钟内可以将亚甲基蓝降解完全。表征结果显示此纳米棒沿[100]方向生长,并且沿[100]方向平行生长的两个晶面—(010)和(011)面是光催化的活性面。
     通过加热回流方法可以成功制备氟离子取代Bi_2WO_6(Bi-2WO——6-XFX)光催化剂。氟离子取代改变了原有Bi_2WO_6中W和Bi原子的配位环境,并且与Bi2WO6相比,在可见光照射下对亚甲基蓝的降解活性增加了1.5倍。理论计算和实验数据证明Bi_2WO_6-XFX的高活性来源于其能带结构特征以及具有更强氧化性的光生空穴。
     同样采用加热回流的方法可以制备硫离子取代的Bi_2MoO_6(Bi_2MoS_2O_4)光催化剂。同Bi_2MoO_6相比,Bi_2MoS_2O_4对可见光的响应范围由原来的470nm扩展到630nm,并且在很大范围的可见光内都具有优良的光催化降解能力。Bi_2MoS2O_4的高能效特点是由于S3p轨道参与了价带的构成,从而减小了原有的能带间隙。并且这种加热回流的合成方法可以为我们以后设计和制备其他阴离子取代化合物提供一种思路。
Developing novel photocatalysts with high energy efficiency and high activity isvery important for photocatalytic research. In our work, composite metal oxidenanocrystals with tailored shape and composite metal oxide by anion substitution wereadopted to realize this aim. Nanostructured photocatalysts usually have highphotocatalytic activities because of their special morphologies, high surface areas andhigh efficiency of electron-hole separation. And from the viewpoint of solar energyutilization, one effective way to narrow the band gap of photocatalyst is to elevate thevalence band of photocatalysts into a more negative position by anion substitution.
     Zn_3V_2O_7(OH)_2(H_2O)_2nanocrystals with various morphologies were successfullysynthesized by a template-free hydrothermal route. Significantly, this is the first timethat Zn_3V_2O_7(OH)_2(H_2O)_2was used as a photocatalyst for organic pollutant degradationunder UV light irradiation. It was found methylene blue could be fully degraded byfloriated like nanostructures of Zn_3V_2O_7(OH)_2(H_2O)_2less than80min. Moreover,Zn3V2O8with porous floriated like nanostructures could be formed via calcination ofthe corresponding Zn_3V_2O_7(OH)_2(H_2O)_2. The reaction constant of the best qualityZn3V2O8nanostructure was three time that of the sample prepared by solid-statereaction under visible-light irradiation.
     ZnWO_4photocatalysts with various morphologies could also be successfullysynthesized by a template-free hydrothermal route. The morphologies had a significantinfluence on the photocatalytic activity. ZnWO_4nanorods with maximal aspect ratioexhibited the highest photocatalytic activity among all the samples, methylene bluecould be degraded less than50min under UV light irradiation. This ZnWO_4nanorodsgrew preferentially along the [100] direction, and the two planes along the [100]direction—(010) and (011) planes could be speculate to be more active forphotodegradation.
     F~-substituted Bi_2WO_6(Bi_2WO_6-XFX) photocatalysts with high activity could besynthesized by reflux method. F-substitution could change the original coordinationaround the W and Bi atoms. Comparing with Bi_2WO_6, the photocatalytic activity ofBi_2WO_6-XFXincreased about1.5times for degradation of MB under visible-light irradiation. Density functional calculations and experiment revealed that the highactivities of Bi_2WO_6-XFXphotocatalysts come from its special band structure whichincrease the mobility of photoexcited charge carriers and possess a stronger oxidationpower.
     S~(2-)substituted Bi2MoO6(Bi2MoS2O4) photocatalysts with high energy efficiencycould be synthesized by reflux method. The visible-light response of Bi_2MoS_2O_4couldextend from470to630nm compared with Bi_2MoO_6. Moreover, Bi_2MoS_2O_4possessexcellent photocatalytic activities in the broad range under visible light. Densityfunctional calculation revealed that Bi_2MoS_2O_4had narrower band gap compared withBi2MoO6because S3p orbital contributed to the valence band formation. Furthermore,this reflux method could afford guidance for designing and synthesizing the other anionsubstitution photocatalysts.
引文
[1]李琳.多相光催化在水污染治理中的应用.环境科学进展,1994,2(6):23-28.
    [2]张彭义,余刚,蒋展鹏.环境科学进展,1997,5(3):1-10.
    [3] Fujishima A, Honda K. Electrochemical photocatalysis of water at a semiconductor electrode.Nature,1972,238(5358):37-38
    [4] Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB’s in the presence of titaniumdioxide in aqueous suspensions. Bull Environ Contain Toxicol,1976,16(6):697-701.
    [5] Vidal A, Diaz A I, Hraiki A E, Romero M, Muguruza I, Senhaji F. Solar photocatalysis fordetoxification and disinfection of contaminated water: pilot plant studies. Catal Today,1999,54(2-3):283-290.
    [6] Benoit-M F, Wilkenhoner U, Simon V. VOC photodegradation at the gas-solid interface of a TiO2photocatalyst part I:1-butanol and1-butylanmine. J Photochem Photobiol A: Chem,2000,132(2):225-228.
    [7]余刚,黄俊.持久性有机污染物:备受关注的全球性环境问题.环境保护,2001,(4):37-39.
    [8]余刚,黄俊.关于Endocrine Disruptors等词的译名.科学术语研究,2001,3(3):10-11.
    [9] Yu J L, Phillip E S. Kinetics of catalytic supercritical water oxidation of phenol over TiO2.Environ Sci Technol,2000,34(15):3191-3198.
    [10] Vinodgopal K, Wynkoop D E, Kamat P V. Environmental photochemistry on semiconductorsurfaces: photosensitized degradation of a textile azo dye, acid orange7, on TiO2particles usingvisible light. Environ Sci Technol,1996,30(5):1660-1666.
    [11] Serpone N, Pelizzetti E. Photocatalysis: Fundamentals and Applications. NY, Wiley,1989.
    [12] Butterfield I M, Christensen P A, Hamnett A, Shaw K E, Walker G M, Walker S A, Howarth CR. Applied studies on immobilized titanium dioxide films as catalysts for thephotoelectrochemical detoxification of water. J Appl Electrochem,1997,27(4):385-395.
    [13] Goswami D Y, Trivedi D M, Block S S. Photocatalytic disinfection of indoor air. J Sol EnergyEng,1997,119(1):92-5.
    [14] Chen J. Rulkens W H, Bruning H. Photochemical elimination of phenols and cod in industrialwaster waters. Water Sci Technol,1997,35(4):231-238.
    [15] Sopyan I, Watanabe M, Murasawa S, Hashimoto K, Fujishima A. An efficient TiO2thin-filmphotocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. J PhotochemPhotobio A,1996,98(1-2):79-86.
    [16] Allain E, Besson S, Durand C, Moreau M, Gacoin T, Boilot J P. Transparent mesoporousnanocomposite films for self-cleaning applications. Adv Funt Mater,2007,17(4):549-554.
    [17] Fu X Z,2000National Conference on Photocatalysis (Fuzhou),2000:19.
    [18] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. P25-graphene composite as a high performance.ACS Nano,2010,4(1):380-386.
    [19] Lawless D, Serpone N, Meisel D. Role of hydroxyl radicals and trapped holes in photocatalysis.A pulse radiolysis study. J Phys Chem,1991,95(13):5166-5170.
    [20] Cunningham J, Srijaranai S. Isotope-effect evidence for hydroxyl radical involvement in alcoholphoto-oxidation sensitized by TiO2in aqueous suspension. J Photochem Photobiol A,1988,43(3):329-335.
    [21] Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radicalintermediates in the photodecomposition of water at titanium dioxide particulate systems. JPhys Chem,1979,83(24):3146-3152.
    [22] Richard C, Boule P, Aubry J M. Oxidizing species involved in photocatalytic transformations onzinc oxide. J Photochem Photobiol A: Chem,1991,60(2):235-243.
    [23] Okamoto K I. Kinetics of heterogeneous photocatalytic decomposition of phenol over anataseTiO2power. Bull Chem Soc Jpn,1985,58:2015-2023.
    [24] Choi W, Termin A, Hoffmann M R. The role of metal-ion dopants in quantum-sized TiO2correlation between photoreactivity and charge-carrier recombination dynamics. J Phys Chem,1994,98(51):13669-13679.
    [25] Xu T G, Zhao X, Zhu Y F. Synthesis of hexagonal BaTaO6nanorods and influence of defects onthe photocatalytic activity. J Phys Chem B,2006,110(51):25825-25832.
    [26] Tang J W, Zou Z G, Ye J H. Photophysical and photocatalytic properties of AgInW2O8. J PhysChem B,2003,107(51):14265-14269.
    [27] Ogura S, Sato K, Inoue Y. Effect of RuO2dispersion on photocatalytic activity for waterdecomposition of BaTi4O9with a pentagonal prism tunnel and K2Ti4O9with zigzag layerstructure. Phys Chem Chem Phys,2000,2(10):2449.
    [28] Zou Z G, Ye J H, Arakawa H. Structural properties of InNbO4and InTaO4: correlation withphotocatalytic and photophysical properties. Chem Phys Lett,2000,332(3-4):271-277.
    [29] Ye J H, Zou Z G, Oshikiri M, Matsushita A, Shimoda M, Imai M, Shishido T. A novelhydrogen-evolving photocatalyst InVO4active under visible light irradiation. Chem Phys Lett,2002,356(3-4):221-226.
    [30] Zou Z G, Arakawa H. Direct water splitting into H2and O2under visible light irradiation with anew series of mixed oxide semiconductor photocatalysts. J Photochem Photobiol A: Chem,2003,158(2-3):145-162.
    [31] Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2and O2. ChemPhys Lett,1998,295(5-6):487-492.
    [32] Cheng S F, Tsai S J, Lee Y F. Photocatalytic decomposition of phenol over titanium-oxide ofvarious structures. Catal Today,1995,26(1):87-96.
    [33] Burdett J K, Electronic control of the geometry of rutile and related structures. Inorg Chem.1985,24(14):2244-2253.
    [34] Hagfeldt A, Gratzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev,1995,95(1):49-68.
    [35] Kamat P, Dimitrigevic N M. Colloidal semiconductors as photocatalysts for solar energyconversion. Sol Energy,1990,44(2):83-98.
    [36] Kudo A, Omori K, Kato H. A novel aqueous process for preparation of crystal form-controlledand highly crystalline BiVO4powder from layered vanadates at room temperature and itsphotocatalytic and photophysical properties. J Am Chem Soc,1999,121(49):11459-11467.
    [37] Davis A P, Huang C P. The photocatalytic oxidation of sulfur-containing organic compoundsusing cadmium sulfide and the effect on CdS photocorrosion. Water Research,1991,25(10):1273-1278.
    [38] Gerischer H. Heterogeneous electrochemical systems for solar energy conversion. Pure ApplChem,1980,52(12):2649-2667.
    [39] Lewis N S. Light work with water. Nature,2001,414(6864):589-590.
    [40] Xu H, Wang H, Yan H. Preparation and photocatalytic properties of YVO4nanopowders. JHazard Mater,2007,144(1-2):82-85.
    [41] Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2and O2overlanthanum-doped NaTaO3photocatalysts with high crystallinity and surface nanostructure. JAm Chem Soc,2003,125(10):3082-3089.
    [42] Lu X M, Xie J M, Song Y Z, Lin J M. Surfactant-assisted hydrothermal preparation ofsubmicrometer-sized two-dimensional BiFeO3plates and their photocatalytic activity. J MaterSci.2007,42(16):6824-6827.
    [43] Zhang C, Zhu Y F. Synthesis of square Bi2WO6nanoplates as high-activity visible-light-drivenphotocatalysts. Chem Mater,2005,17(13):3537-3545.
    [44] Zhu S B, Xu T G, Fu H B, Zhao J C, Zhu Y F. Synergetic effect of Bi2WO6photocatalyst withC60and enhanced photoactivity under visible irradiation. Environ Sci Technol,2007,41(17):6234-6239.
    [45] Zou Z G, Ye J H, Sayama K, Arakawa H. Direct splitting of water under visible light irradiationwith an oxide semiconductor photocatalyst. Nature,2001,414:625-627.
    [46] Zou Z G, Ye J H, Arakawa H. Surface characterization of nanoparticles of NiOX/In0.9Ni0.1TaO4:effect on photocatalytic activity. J Phys Chem B,2002,106(51):13098-13101.
    [47] Hoffman A J, Carraway E R, Hoffmann M R. Photocatalytic production of H2O2and organicperoxides on quantum-sized semiconductor colloids. Environ Sci Technol,1994,28(5):776-785.
    [48] Zhang L W, Cheng H Y, Zong R L, Zhu Y F. Photocorrosion suppression of ZnO nanoparticlesvia hybridization with graphite-like carbon and enhanced photocatalytic activity. J Phys ChemC.2009,113(6):2368-2374.
    [49] Klosek S, Raftery D. Visible light driven V-doped TiO2photocatalyst and its photooxidation ofethanol. J Phys Chem B,2001,105(14):2815-2819.
    [50] Kim S, Hwang S J, Choi W Y. Visible light active platinum-ion-doped TiO2photocatalyst. JPhys Chem B.2005,109(51):24260-24267.
    [51] Konta R, Ishii T, Kato H, Kudo A. Photocatalytic activities of noble metal ion doped SrTiO3under visible light irradiation. J Phys Chem B,2004,108(26):8992-8995.
    [52] Irie H, Maruyama Y, Kudo A. Ag+and Pb2+doped SrTiO3photocatalysts. A correlation betweenband structure and photocatalytic activity. J Phys Chem C,2007,111(4):1847-1852.
    [53] Arai T, Senda S I, Sato Y, Takahashi H, Shinoda K, Jeyadevan B, Tohji K. Cu-doped ZnShollow particle with high activity for hydrogen generation from alkaline sulfide solution undervisible light. Chem Mater,2008,20(5):1997-2000.
    [54] Kudo A, Sekizawa M. Photocatalytic H2evolution under visible light irradiation on Ni-dopedZnS photocatalyst. Chem Commun,2000:1371-1372.
    [55] Kato H, Kudo A. Visible-light-response and photocatalytic activities of TiO2and SrTiO3photocatalysts codoped with antimony and chromium. J Phys Chem B,2002,106(19):5029-5034.
    [56] Wang D F, Ye J H, Kako T, Kimura T. Photophysical and photocatalytic properties of SrTiO3doped with Cr cation on different sites. J Phys Chem B.2006,110(32):15824-15830.
    [57] Xie T H, Sun X Y, Lin J. Enhanced photocatalytic degradation of RhB driven by visiblelight-induced MMCT of Ti4+-O-Fe2+formed in Fe-doped SrTiO3. J Phys Chem C,2008,112(26):9753-9759.
    [58] Ashokkumar M, Maruthamuthu P. Preparation and characterization of doped WO3photocatalystpoweders. J Mater Sci,1989,24(6):2135-2139.
    [59] Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides.Science,2001,293(5528):269-271.
    [60] Morujawa T, Asahi R, Ohwaki T. Band-gap narrowing of titanium dioxide by nitrogen doping.Jpn J Appl Phys part2-lett,2011,40: L561-L563.
    [61] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalyticactivity of TiO2-XNXpowders. J Phys Chem B,2003,107(23):5483-5486.
    [62] Umebayashi T, Yamaki T, Itoh H, Band gap narrowing of titanium dioxide by sulfur doping.Appl Phys Lett,2002,81(3):454-456.
    [63] Umebayashi T, Yamaki T, Tanaka S, Visible light-induced degradation of methylene blue onS-doped TiO2. Chem Lett,2003,32(4):330-331.
    [64] Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2photocatalyst undervisible light. Chem Lett,2003,32(4):364-365.
    [65] Ohno T. Akiyoshi M, Umebayashi T, Preparation of S-doped TiO2photocatalysts and theirphotocatalytic activities under visible light. Appl Catal A: Gen,2004,265(1):115-121.
    [66] Yu J C, Yu J G, Ho W K, Effect of F-doping on the photocatalytic activity and microstructuresof nanocrystalline TiO2powders. Chem Mater,2002,14(9):3808-3816.
    [67] Zhang J C, Li Q, Cao W L. Preparation of TiO2-MoO3nano-composite photo-catalyst bysupercritical fluid dry method. J Environ Sci China,2005,17(2):350-352.
    [68] Kato H, Kobayashi H, Kudo A. Role of Ag+in the band structures and photocatalytic propertiesof AgMO3(M: Ta and Na) with the perovskite structure. J Phys Chem B,2002,106(48):12441-12447.
    [69] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxidephotocatalysts operating under visbiel light irradiation. J Catal,2003,216(1-2):505-516.
    [70] Sung-H M, Choi J R, Hah H J. Comparison of Ag deposition effects on the photocatalyticactivity of nanoparticulate TiO2under visible and UV light irradiation. J Photochem PhotobiolA: Chem,2004,163(1-2):37-44.
    [71] Kato H, Kudo A. Water splitting into H2and O2on alkali tantalate photocatalysts ATaO3(A=Li,Na, and K) J Phys Chem B,2001,105(19):4285-4292.
    [72] Kudo A, Kato H, Nakagawa S. Water splitting into H2and O2on New Sr2M2O7(M=Nb and Ta)photocatalysts with layered perovskite structures: factors affecting the photocatalytic activity. JPhys Chem B,2000,104(3):571-575.
    [73] Bedja I, Kamat P V. Capped semiconductor colloids-synthesis and photoelectrochemicalbehavior of TiO2-capped SnO2nanocrystallities. J Phys Chem,1995,99(22):9182-9188.
    [74] Do Y R, Lee W, Dwight K, Wold A. The effect of WO3on the photocatalytic activity of TiO2. JSolid State Chem,1994,108(1):198-201.
    [75] Takahashi Y, Ngaotrakanwiwat P, Tatsuma T. Energy storage TiO2-MoO3photocatalysts.Electrochimica Acta,2004,49(12):2025-2029.
    [76] Rabani J. Sandwich colloids of zinc oxide and zinc sulfide in aqueous solutions. J Phys Chem,1989,93(22):7707-7713.
    [77] Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2coupledsemiconductors-photocatalytic oxidation of indole. J Mol Catal A: Chem,2001,165(1-2):265-273.
    [78] Zhang M L, An T C, Hu X H, Preparation and photocatalytic properties of a nanometerZnO-SnO2coupled oxide. Appl Catal A-Gen,2004,260(2):215-222.
    [79] Contreras M, Ramanathan K, Abushama J. Diode (characteristics in state-of-the-artZnO/CdS/Cu(In(1-X)GaX))Se2-solar cells. Prog Photovolt,2005,13(3):209-216.
    [80] Nozik A J. p-n Photoelectrolysis cell. Appl Phys Lett,1976,29(3):150-153.
    [81] Rajeshwar K, Tacconi N R, Chenthamarakshan C R. Semiconductor based composite matericals:preparation, properties, and performace. Chem Mater,2001,13(9):2765-2782.
    [82]虞丽生.半导体异质结物理[M].第2版.北京:科学出版社,2006.
    [83] Wagner F T, Somorjai G A. Photocatalytic hydrogen production from water on Pt-free SrTiO3inalkali hydroxide solutions. Nature,1980,285(5766):559-560.
    [84] Avudaithai M, Kutty T R. Ultrafine powders of SrTiO3from the hydrothermal preparation andtheir catalytic activity in the photolysisi of water. Mater Res Bull,1987,22(5):641-650.
    [85] Kudo A, Sakata T. Effect of ion exchange on photoluminescence of layered niobates K4Nb6O17and KNb3O8. J Phys Chem,1996,100(43):17323-17326.
    [86] Iwase A, Kato H, Kudo A. Nanosized Au particles as an efficient cocatalyst for photocatalyticoverall water splitting. Catal Lett,2006,108(1-2):6-9.
    [87] Inoue Y, Kubokawa T, Sato K. Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with atunnel structure for decomposition of water. J Chem Soc Chem Commun,1990,(19):1298-1299.
    [88] Inoue Y, Niiyama T, Asai Y, Sato K. Stable photocatalytic activity of BaTi4O9combined withruthenium oxide for decomposition of water. J Chem Soc Chem Commun,1992,(7):579-580.
    [89] Karunakaran C, Senthilvelan S. Photocatalytsis with ZrO2: Oxidation of aniline. J Mol Catal A:Chem,2005,233(1-2):1-8.
    [90] Murase T, Irie H, Hashimoto K. Visible light sensitive photocatalysts, nitrogen-doped Ta2O5powedrs. J Phys Chem B,2004,108(40):15803-15807.
    [91] Ikeda S, Hara M, Kondo J N, Domen K, Takahashi H, Okubo T, Kakihana M. Preparation ofK2La2Ti3O10by polymerized complex method and photocatalytic decomposition of water.Chem Mater,1998,10(1):72-77.
    [92] Hou J G, Wang Z, Cao R, Jiao S Q, Zhu H M. Preparation of polyaniline modified TaON withenhanced visible light photocatalytic activities. Dalton Trans,2011, doi:10.1039/C0DT01847C.
    [93] Kato H, Kudo A. Photocatalytic water splitting into H2and O2over various tantalatephotocatalysts. Catal Today,2003,78(1-4):561-569.
    [94] Kudo A, Miseki Y. Heterogenous photocatalyst materials for water splitting. Chem Soc Rev.2009,38(1):253-278.
    [95] Zou Z G, Ye J H, Abe R, Arakawa H. Photocatalytic decomposition of water with Bi2InNbO7.Catal Lett,2000,68(3-4):235-239.
    [96] Zou Z G, Ye J H, Arakawa H. Optical and electrical properties of solid photocatalyst Bi2InNbO7.J Mater Res,2000,15(10):2073-2075.
    [97] Zou Z G, Ye J H, Arakawa H. Preparation, structureal and optical properties of a new class ofcompounds, Bi2MNbO7(M=Al, Ga, In). Mater Sci Eng B,2001,79(1):83-85.
    [98] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. Photocatalytic activity of a Bi-basedoxychloride Bi4NbO8Cl. J Mater Chem,2007,17(20):2145-2150.
    [99] Lin X P, Huang T, Huang F Q, Wang W D, Shi J L. Photocatalytic activity of a Bi-Basedoxychloride Bi3O4Cl. J Phys Chem B.2006,110(48):24629-24634.
    [100] Zhang K L, Liu C M, Huang F W Q. Study of the electronic and photocatalytic activity of theBiOCl photocatalyst. Appl Catal B: Environ,2006,68(3-4):125-129.
    [101] Wang W D, Huang F Q, Li K Q. Visible light responsive photocatalysts xBiOBr-(1-x)BiOI.Catal Commun,2008,9(1):8-12.
    [102] Noorjahan M, Kumari V D, Subrahmanyam M, A novel and efficient photocatalyst:TiO2-HZSM-5combinate thin film. Appl Catal B: Environ,2004,47(3):209-213.
    [103] Shang J, Li W, Zhu Y F. Structure and photocatalytic characteristics of TiO2film photocatalystcoated on stainless steel webet. J Mol Catal A: Chem,2003,202(1-2):187-195.
    [104] Huang G L, Zhang C, Zhu Y F. ZnWO4photocatalyst with high activity for degradation oforganic contaminant. J Alloy Comp,2007,432(1-2):269-276.
    [105] Huang G L, Zhu Y F. Synthesis and photocatalytic performance of ZnWO4catalyst. Mater SciEng B,2007,139(2-3):201-208.
    [106] Fu H B, Lin J, Zhang L W, Zhu Y F. Photocatalytic activities of a novel ZnWO4catalystprepared by a hydrothermal process. Appl Catal A-Gen,2006,306:58-67.
    [107] Lin J, Lin J, Zhu Y F. Controlled synthesis of the ZnWO4nanostructure and effects on thephotocatalytic performace. Inorg Chem.2007,46(20):8372-8378.
    [108] Wang D F, Tang J W, Zou Z G, Ye J H. Photophysical and photocatalytic properties of a newseries of visible-light-driven photocatalysts M3V2O8(M=Mg, Ni, Zn). Chem Mater,2005,17(20):5177-5182.
    [109] Fu H B, Pan C S, Yao W Q. Visbile-light-induced degradation of rhodamine B by nanosizedBi2WO6. J Phys Chem B,2005,109(47):22432-22439.
    [110] Fu H B, Zhang L W, Yao W Q, Zhu Y F. Photocatalytic properties of nanosized Bi2WO6catalysts synthesized via a hydrothermal process. Appl Catal B-Environ,2006,66(1-2):100-110.
    [111] Man Y, Zong R L, Zhu Y F. Preparation and photoelectrochemical properties of Bi2MoO6films.Acta Phys Chim Sinica,2007,23(11):1671-1676
    [112] Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydratedferric salts in2-pyrrolidone: mechanism leading to Fe3O4. Angew Chem Int Ed,2005,44(1):123-126.
    [113] Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc,2002,124(28):8204-8205.
    [114] Mcbride R A, Kelly J M, Moccormack D E. Growth of well-defined ZnO microparticles byhydroxide ion hydrolysis of zinc salts. J Mater Chem,2003,13(5):1196-1201.
    [115] Khan S U, Shahry M A, Lngler W B. Efficient photochemical water splitting by a chemicallymodified n-TiO2. Science,2002,297(5590):2243-2245.
    [116] Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts.Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc,1978,100(13):4317-4318.
    [117] Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. AngewChem Int Ed,2003,42(40):4908-4911.
    [118] Fu H B, Zhang L W, Zhang S C, Zhu Y F. Electron spin resonance spin-trapping detection ofradical intermediates in N-doped TiO2-assisted photodegradation of4-chlorophenol. J PhysChem B,2006,110(7):3061-3065.
    [119] Zhang L Z, Djerdj I, Cao M H, Antonietti M, Niederberger M. Nonaqueous sol-gel synthesis ofa nanocrystalline InNbO4visible-light photocatalyst. Adv Mater,2007,19(16):2083-2086.
    [120] Tang J W, Zou Z G, Ye J H. Efficient photocatalytic decomposition of organic contaminantsover CaBi2O4under visible-light irradiation. Angew Chem Int Ed,2004,43(34):4463-4466.
    [121] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. Visible-light photocatalytic degradation of BiTaO4photocatalyst and mechanism of photocorrosion suppression. J Phys Chem C,2010,114(14):6472-6477.
    [122] Tang J W, Ye J H. Photocatalytic and photophysical properties of visible-light-drivenphotocatalyst ZnBi12O20. Chem Phys Lett.2005,410(1-3):104-107.
    [123] Oshikiri M, Boero M, Ye J H, Zou Z G, Kido G. Electronic structures of promisingphotocatalysts InMO4(M=V, Nb, Ta) and BiVO4for water decomposition in the visiblewavelength region. J Chem Phys,2002,117(15):7313-7318.
    [124] Yu J Q, Kudo A. Effect of structural variation on the photocatalytic performance ofhydrothermally synthesized BiVO4. Adv Funct Mater,2006,16(16):2163-2169.
    [125] Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4withscheelite structure and their photocatalytic properties. Chem Mater,2001,13(12):4624-4628.
    [126] Ai Z H, Zhang L Z, Lee S C. Efficient visible light photocatalytic oxidation of NO on aerosolflow-synthesized nanocrystalline InVO4. J Phys Chem C,2010,114(43):18594-18600.
    [127] Saito K, Kudo A. Niobium-complex-based syntheses of sodium niobate nanowires possessingsuperior photocatalytic properties. Inorg Chem,2101,49(5):2017-2019.
    [128] Wang C H, Shao C L, Zhang X T, Liu Y C. SnO2nanostructures-TiO2nanofibersheterostructures: controlled fabrication and high photocatalytic properties. Inorg Chem,2009,48(15):7261-7268.
    [129] Wang L, Wang W W, Shang M, Sun S M, Yin W Z, Ren J, Zhou J. Visible light responsivebismuth niobate photoctalyst: enhanced contaminant degradation and hydrogen generation. JMater Chem,2010,20(38):8405-8410.
    [130] Gudiksen M S, Lauhon L J, Wang J F, Smith D C, Lieber C M. Growth of nanowiresuperlattice structures for nanoscale photonics and electronics. Nature,2002,415:617-620.
    [131] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H. One-dimensionalnanostructures: synthesis, characterization, and applications. Adv Mater,2003,15(5):353-389.
    [132] Apte S K, Garaje S N, Bolade R D, Ambekar J D, Kulkarni M V, Naik S D, Gosavi S W, BaegJ O, Kale B B. Hierarchical nanostructures of CdIn2S4via hydrothermal and microwavemethods: efficient solat-light-driven photocatalysts. J Mater Chem,2010,20(29):6095-6102.
    [133] Parida K M, Martha S, Biswal N. Facile fabrication of hierarchical N-doped GaZn mixedoxides for water splitting reactions. J Mater Chem,2010,20(34):7144-7149.
    [134] Zhou L, Wang W Z, Xu H L, Sun S M, Shang M. Bi2O3hierarchical nanostructures:controllable synthesis, growth mechanism, and their application in photocatalysis. Chem Eur J,2009,15(7):1776-1782.
    [135] Zhang L S, Wang W Z, Zhou L, Xu H L. Bi2WO6nano-and microstructures: shape control andassociated visible-light-driven photocatalytic activities. Small,2007,3(9):1618-1625.
    [136] Zhao Q R, Xie Y, Zhang Z G, Bai X. Size-selective synthesis of zinc sulfide hierarchicalstructures and their photocatalytic acitivity. Cryst Growth Des,2007,7(1):153-158.
    [137] Kudo A, Tsuji I, Kato H. AgInZn7S9solid solution photocatalysts for H2evolution fromaqueous solution under visible light irradiation. Chem Commun,2002,1958-1959.
    [138] Kuznetsov V N, Serpone N. Visible light absorption by various titanium dioxide specimens. JPhys Chem B,2006,110(50),25203-25209.
    [139] Zhang L W, Wang L, Zhu Y F. Synthesis and perofrmance of BaAl2O4with a wide spectralrange of optical absorption. Adv Funct Mater,2007,17(18):3781-3790.
    [140] Maeda K, Domen K. New non-oxide photocatalysts designed for overall water splitting undervisible light. J Phys Chem C,2007,111(22):7851-7861
    [141] Lv H J, Ma L, Zeng P, Ke D N, Peng T Y. Synthesis of floriated ZnFe2O4with porous nanorodstructures and its photocatalytic hydrogen production under visible light. J Mater Chem,2010,20(18):3665-3672.
    [142] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synthesis of tetrahexahedral platinumnanocrystal with high-index facets and high electro-oxidation activity. Science,2007,316(5825):732-735.
    [143] Yin Y D, Alivisators A P. Colloidal nanocrystal synthesis and the organic-inorganic interface.Nature,2005,437:664-670.
    [144] Wang C, Daimon H, Onodera T, Koda T, Sun S. A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. AngewChem Int Ed,2008,47(19):3588-3591.
    [145] Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small,2008,4(3):310-325.
    [146] Jun Y W, Choi J S, Cheon J W. Shape control of semiconductor and metal oxide nanocrystalsthrough nonhydrolytic colloidal routes. Angew Chem Int Ed,2006,45(21):3414-3439.
    [147] Chen D, Ye J H. SrSnO3nanostructures: synthesis, characterization, and photocatalyticproperties. Chem Mater,2007,19(18):4585-4591.
    [148] Xiong S L, Xi B J, Wang C M, Xu D C, Feng X M, Zhu Z C, Qian Y T. Tunable synthesis ofvarious wurzite ZnS architectural structures and their photocatalytic properties. Adv FunctMater,2007,17(15):2728-2738.
    [149] Hameed A, Montini T, Gombac V, Fornasiero P. Surface phases and photocatalytic activitycorrelation of Bi2O3/Bi2O4-Xnanocomposite. J Am Chem Soc,2008,130(30):9658-9659.
    [150] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Importance of relationship between surface phases andphotocatalytic activity of TiO2. Angew Chem Int Ed,2008,47(9):1766-1769.
    [151] Xi G C, Ye J H. Synthesis of bismuth vanadate nanoplate with exposed {011} facets andenhanced visible-light photocatalytic properties. Chem Commun,2010,46:1893-1895.
    [152] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q.Solvthermal synthesis and photoreactivity of anatase TiO2nanosheets with dominant{001}facets. J Am Chem Soc,2009,131(11):4078-4083.
    [153] Han X G, Kuang Q, Jin M S, Xie Z X, Zheng L S. Synthesis of titania nanosheets with highpercentage of exposed (001)facets and related photocatalytic properties. J Am Chem Soc,2009,131(9):3152-3153.
    [154] Yang H G, Sun C H, Qiao S Z, Zou J, Liu G, Smith S C, Cheng H M, Lu G Q. Anatase TiO2single crystals with a large percentage of reactive facets. Nature,2008,453:638-641.
    [155] Bonanni M, Spanhel L, Lerch M, Fuglein E, Muller G. Conversion of colloidal ZnO-WO3heteroaggregates into strongly blue luminescing ZnWO4xerogel and films. Chem Mater,1998,10(1):304-310.
    [156] Zhao X, Zhu Y F. Synergetic degradation of rhodamine B at a porous ZnWO4film electrodeby combined electro-oxidation and photocatalysis. Environ Sci Technol,2006,40(10):3367-3372.
    [157] Huang G L, Zhang S C, Xu T G, Zhu Y F. Fluorination of ZnWO4photocatalyst and influenceon the degradation mechanism for4-chlorophenol. Environ Sci Technol,2008,42(22):8516-8521.
    [158] Fu H B, Pan C S, Zhang L W, Zhu Y F. Synthesis, characterization and photocatalyticproperties of nanosized Bi2WO6, PbWO4and ZnWO4catalysts. Mater Res Bull,2007,42(4):696-706.
    [159] Sleight A W, Accurate cell dimensions for ABO4molybdates and tungstates. Acta Crst,1972,B28:2899-2902.
    [160] Schofield P F, Knight K S, Redfern S A T, Gressey G. Distrotion characteristics across thestructural phase transition in Cu1-XZnXWO4. Acta Crystallogr B,1997,53(1):102-112.
    [161] Phani A R, Passacantdando M, Lozzi L, Santucci S. Structural characterization of bulk ZnWO4prepared by solid state method. J Mater Sci,2000,35(19):4879-4883.
    [162] Ryu J H, Lim C S, Auh K H. Synthesis of ZnWO4nanocrystalline powders, by thepolymerized complex method. Mater Lett,2003,57(9-10):1550-1554.
    [163] Wen F S, Zhao X, Huo H, Chen J S, Lin E S, Zhang J H. Hydrothermal synthesis andphotoluminescent properties of ZnWO4and Eu3+-doped ZnWO4. Mater lett.2002,55(3):152-157.
    [164] Yu S H, Liu B, Mo M S, Huang J H, Liu X M, Qian Y T. General synthesis of single-crystaltungstate nanorods/nanowires: A facile, low-temperature solution approach. Adv Funct Mater,2003,13(8):639-647.
    [165] Liu B, Yu S H, Li L J, Zhang F, Zhang Q, Yoshimurra M, Shen P K. Nanorod-direct orientedattachment growth and promoted crystallization processes evidenced in case of ZnWO4. JPhys Chem B,2004,108(9):2788-2792
    [166] Mullin J, Crystallization,3rded, Butterworth-heinemann, Oxford, UK,1997.
    [167] Kanan S M, Lu Z X, Cox J K, Bernhardt G, Tripp C P. Identification of surface sites onmonoclinic WO3powders by infrared spectroscopy. Langmuir,2002,18(5):1707-1712.
    [168] Chen H J, Chen Y W. Hydrothermal synthesis of barium titanate. Ind Eng Chem Res.2003,42(3):473-483.
    [169] Li Z S, Yu T, Zou Z G, Ye J H. Degradation in photocatalytic activity induced byhydrogen-related defects in nano-LiNbO3material. Appl Phys Lett,2006,88(7):71917-3
    [170] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications ofsemiconductor photocatalysis. Chem Rev,1995,95(1):69-96.
    [171] Tao X, Ma W H, Zhang T Y, Zhao J C. Efficient photooxidative degradation of organiccompounds in the presence of iron tetrasulfophthalocyanine under visible light irradiation.Angew Chem Int Ed,2001,40(16):3014-3016.
    [172] Belhekar A A, Awate S V, Anand R. Photocatalytic activity of titania modified mesoporoussilica for pollution control. Catal Commun.2002,3(10):453-458.
    [173] Falconer J L, Magrini B K. Photocatalytic and thermal catalytic oxidataion of acetaledhyde onPt/TiO2. J Catal,1998,179(1):171-178.
    [174] Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6under visible light irradiation. Catal Lett,2004,92(1-2):53-56.
    [175] Kudo A, Hijii A. H2and O2evolution from aqueous solutions on layered oxide photocatalystsconsisting of Bi3+with6s (2) configuration and d (0) transition metal ions. Chem Lett,1999,28(10):1103-1104.
    [176] Minero C, Mariella G, Maurino V, Pelizzetti E. Photocatalytic transformation of organiccompounds in the presence of inorganic anions.1. hydroxyl-mediated and directelectron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir,2000,16(6):2632-2641.
    [177] Minero C, Mariella G, Maurino, V, Vione D, Pelizzetti E. Photocatalytic transformation oforganic compounds in the presence of inorganic ions.2. Competitive reaction of phenol andalcohols on a titanium dioxide-fluoride system. Langmuir,2000,16(23):8964-8972.
    [178] Vohra M S, Kim S, Choi W. Effects of surface fluorination of TiO2on the photocatalyticdegradation of tetramethylammonium. J Photochem Photobiol A,2003,160(1-2):55-60.
    [179] Hattori A, Tada H. High photocatalytic activity of F-doped TiO2film on glass. J Sol-Gel SciTechnol,2001,22(1-2):47-52.
    [180] Hattori A, Shimoda K, Tada H, Ito S. Photoreactivity of sol-gel TiO2films formed onsoda-lime glass substrates: effect of SiO2underlayer containing fluorine. Langmuir,1999,15(16):5422-5425.
    [181] Li D, Haneda H, Labhsetwar N K, Hishita S, Ohashi N. Visible-light-driven photocatalysis onfluorine-doped TiO2powders by the creation of surface oxygen. Chem Phys Lett,2005,401(4-6):579-584.
    [182] Huang G L, Zhu Y F. Enhanced photocatalytic activity of ZnWO4catalyst via fluorine doping.J Phys Chem C,2007,111(32):11952-11958.
    [183] Fu H B, Zhang S C, Xu T G, Zhu Y F. Chem J M. Photocatalytic degradation of RhB byfluorinated Bi2WO6and distributions of the intermediate products. Environ Sci Technol,2008,42(6):2085-2091.
    [184] Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical propertiesof nitrogen-doped TiO2. J Phys Chem B,2004,108(50):19384-19387.
    [185] Payen M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimizationtechniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients.Rev Mod Phys,1992,64(4):1045-1097.
    [186] Segall M D, Lindan P J, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C.First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter,2002,14(11):2717-2744.
    [187] Dreizler R M, Gross E K. Density functional theory: An approach to the quantum many-bodyproblem. Springer-Verlag: Berlin,1990.
    [188] Hosogi Y, Shimodaira Y, Kato H, Kobayashi H, Kudo A. Role of Sn2+in the band structure ofSnM2O6and Sn2M2O7(M=Nb and Ta) and their photocatalytic properties. Chem Mater,2008,20(4):1299-1307.
    [189] Li J Q, Zheng L, Li L P, Xian Y Z, Jin L T. Fabrication of TiO2/Ti electrode by laser-assistedanodic oxidation and its application on photoelectrocatalytic degradation of methylene blue. JHazard Mater.2007,139(1):72-78.
    [190] Zhang L W, Fu H B, Zhu Y F. Efficient TiO2photocatalysts from surface hybridization of TiO2particles with graphite-like carbon. Adv Funct Mater.2008,18(15):2180-2189.
    [191] Yang K, Dai Y, Huang B B, Whangbo M H. Density functional characterization of the bandedges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem Mater.2008,20(20):6528-6534.
    [192] Chen X B, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, andapplications. Chem Rev,2007,107(7):2891-2959.
    [193] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2evolution reaction aqueous solutionsover band structure-controlled (AgIn)XZn2(1-X)S2solid solution photocatalytsts withvisible-light response and their surface nanostructures. J Am Chem Soc,2004,126(41):13406-13413.
    [194] Tsuji I, Kato H, Kudo A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2solidsolution photocatalysts with wide visible light absorption bands. Chem Mater,2006,18(7):1969-1975.
    [195] Kako T, Zou Z G, Katagiri M, Ye J H. Decomposition of organic compounds over NaBiO3under visible light irradiation. Chem Mater,2007,19(2):198-202.
    [196] Tang J W, Zou Z G, Ye J H. Efficient photocatalysis on BaBiO3driven by visible light. J PhysChem C.2007,111(34):12779-12785.
    [197] Ouyang S X, Zhang H T, Li D F, Yu T, Ye J H, Zou Z G. Electronic structure andphotocatalytic characterization of a novel photocatalyst AgAlO2. J Phys Chem B,2006,110(24):11677-11682
    [198] Niishiro R, Konta R, Kato H, Chun W J, Asakura K, Kudo A. Photocatalytic O2evolution ofrhodium and antimony-codoped rutile-type TiO2under visible light irradiation. J Phys Chem C,2007,111(46):17420-17426.
    [199] Hamal D B, Klabunde K J. Synthesis, characterization, and visible light activity of newnanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. J Coll Inter Sci,2007,311(2):514-522.
    [200] Ogisu K, Ishikawa A, Teramura K, Toda K, Hara M, Domen K. Lanthanum-lndium oxysulfideas a visible light driven photocatalyst for water splitting. Chem Lett,2007,36(7):854-855.
    [201] Ikeue K, Ando S, Mitsuyama T, Ohta Y, Arayama K, Tsutsumi A, Machida M. Photocatalyticproperty and electronic structure of lanthanide-based oxysulfides. Top Catal,2008,47(3-4):175-180.
    [202] Lei Z B, Ma G J, Liu M Y, You W S, Yan H J, Wu G P, Takata T, Hara M, Domen K, Li C.Sulfur-substituted and zine-doped In(OH)3: a new class of catalyst for photocatalytic H2production from water under visible light illumination. J Catal,2006,237(2):322-329.
    [203] Ishikawa A, Takata T, Kondo J N, Hara M, Kobayashi H, Domen K. Oxysulfide Sm2TiO5S2asa stable photocatalyst for water oxidation and reduction under visible light lrradiation (λ≤650nm). J Am Chem Soc,2002,124(45):13547-13553.
    [204] Tsuji I, Kato H, Kudo A. Visible-light-induced H2evolution from an aqueous solutioncontaining sulfide and sulfite over a ZnS-CuInS2-AgInS2solid-solution photocatalyst. AngewChem Int Ed,2005,44(23):3565-3568.
    [205] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2evolution under visible-lightirradiation over band-structure-controlled (CuIn)XZn2(1-X)S2solid solutions. J Phys Chem B,2005,109(15):7323-7329.
    [206] Shi Y H, Feng S H, Cao C S. Hydrothermal synthesis and characterization of Bi2MoO6andBi2WO6. Mater Lett,2000,44(3-4):215-218.
    [207] Zhang L W, Fu H B, Zhang C, Zhu Y F. Effect of Ta5+substitution on the structure andphotocatalytic behavior of the Ca2Nb2O7photocatalyst. J Phys Chem C,2008,112(8):3126-3133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700