规则形貌多孔BiVO_4以及氟掺杂BiVO_4的合成与其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是一项新兴的废水净化技术,催化剂是实现该技术的关键所在。作为一种非钛基可见光响应的半导体光催化剂,BiVO_4因其具有较高的光催化活性而备受关注。BiVO_4具有三种晶相结构,即四方锆石型、单斜白钨矿型和四方白钨矿型。其中,以带隙能为2.4eV单斜相BiVO_4的光催化活性最高。本文采用多种方法合成了具有规整形貌和多孔结构的单斜相BiVO_4和氟掺杂BiVO_4。利用X射线衍射(XRD)、热重与差热(TGA-DSC)、激光拉曼光谱(Laser Raman)、傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)、氮气吸附-脱附(BET)、X射线光电子能谱(XPS)、X射线荧光光谱(XRF)、紫外-可见漫反射光谱(UV-Vis DRS)等技术表征了这些光催化材料的物理性质,并考察了其在可见光照射下光催化降解苯酚、亚甲基蓝和甲基橙的催化活性。研究内容主要包括:
     (1)采用醇-水热法并以Bi(NO_3)_3H_2O和NH_4VO_3为金属源,NaOH为pH值调节剂,乙醇和乙二醇为溶剂,在十二胺(DA)、油胺(OL)或油酸(OA)存在的条件下,制得了规整形貌和多孔结构的BiVO_4样品。表面活性剂(DA、OL或OA)和pH值对所得BiVO_4样品的晶相结构和粒子形貌有着重要影响。当醇-水热温度为100oC时,以DA、OL或OA为表面活性剂并调节反应前驱液pH值为1.5或3.0时,可制得多孔橄榄球状单斜相BiVO_4;在醇-水热温度仍保持为100oC时,以DA为表面活性剂,当反应前驱液pH值升至7.0和11.0时,可分别制得短棒状单斜相BiVO_4和层状多孔球形正交相Bi_4V_2O_(11)。在这些BiVO_4样品中,比表面积为12.7m2/g的多孔橄榄球状样品在苯酚降解反应中体现出最好的可见光响应光催化活性。橄榄球状多孔单斜相BiVO_4样品之所以具有如此优异的光催化性能,是因为它具有高的比表面积和表面氧空位密度、多孔结构、低的带隙能和独特的粒子形貌。
     (2)以硝酸铋和偏钒酸铵为无机源,各种碱为pH值调节剂,通过采用三嵌段共聚物P123(HO(CH_2CH_2O)_(20)(CH_2CH(CH_3)O)_(70)(CH_2CH_2O)_(20)H)辅助水热法可制得多分枝状、多孔球状或多孔八角状单斜相BiVO_4单晶。反应前驱液pH值、表面活性剂、水热温度和碱源性质对BiVO_4样品的粒子形貌有着重要影响。P123的引入有助于形成BiVO_4材料的多孔结构。以P123辅助水热法在反应前驱液pH值为3或6时所制得的BiVO_4样品在紫外和可见光区均有较强的光吸收,因而在降解亚甲基蓝和苯酚的反应中体现出优异的光催化活性。多孔八角状单斜相BiVO_4单晶优异的可见光响应光催化活性与其高的比表面积、低的带隙能和独特的粒子形貌紧密相关。
     (3)采用水热合成法可制得多种形貌和多孔结构的单斜相BiVO_4。表面活性剂和pH值对BiVO_4样品的粒子形貌和孔结构有着重要影响。以聚乙烯吡咯烷酮(PVP)为表面活性剂,以尿素调节反应前驱液pH值为2,经100oC水热处理可制得具有多孔球形BiVO_4;以NaHCO_3调节反应前驱液pH值为7和8,在160oC水热处理可分别制得花簇状和花束状BiVO_4。采用PVP辅助的水热法所制得的BiVO_4具有更高的比表面积(5.0~8.4m~2/g)和更低的带隙能(2.45~2.49eV)。比表面积为8.4m~2/g的球状BiVO_4材料在可见光照射下降解甲基橙(MO)的反应中显示出优异的光催化活性。这一优良光催化性能与其较高的比表面积、较低的带隙能、较高的氧空位密度和独特的孔道结构有关。
     (4)以硝酸铋和偏钒酸铵为无机源,NaOH为pH值调节剂,P123为表面活性剂,采用醇-水热法制备了多种形貌的单斜BiVO_4。表面活性剂和溶液pH值对所得BiVO_4的粒子形貌具有重要影响。在醇-水热温度为180oC,pH值为2、7或10时,可分别制得多孔球状、花状和片状BiVO_4;而采用P123作表面活性剂,在醇-水热温度为180oC且pH为2时可制得棒状BiVO_4。BiVO_4形貌的不同导致这些样品的比表面积、表面氧空位密度和(040)晶面暴露率存在差异。在四个BiVO_4样品中,棒状BiVO_4样品具有最高的比表面积、氧空位密度和(040)晶面暴露率以及最低的带隙能,使其对甲基橙降解显示出最好的光催化活性。BiVO_4样品对甲基橙降解的光催化活性存在形貌效应,棒状形貌有利于提高BiVO_4的光催化性能。
     (5)通过用NH4F处理经水热法所制得的BiVO_4的方法制备了不同氟掺杂量的BiVO_4材料。氟掺杂不会改变BiVO_4样品的晶相结构。相比于未掺杂的BiVO_4样品,氟掺杂的BiVO_4样品具有更高的结晶度和表面氧空位密度、更强的吸光性能和更低的带隙能。在可见光照射且反应液中添加少量H_2O_2的条件下光催化降解苯酚溶液的反应中,比表面积和带隙能分别为14.6m~2/g和2.42eV的多孔球状氟掺杂BiVO_4样品(实际F/Bi摩尔比为0.29)显示出更好的光催化活性。氟掺杂BiVO_4样品的优异光催化性能与其高结晶度、比表面积和氧空位密度、强光吸收性能、低的带隙能和独特的粒子形貌相关。
Phtotocatalysis is an emerging technology for the purification of waste water andphotocatalyst is a key issue in the photocatalytic process. As a non-titania basedvisible-light-driven semiconductor photocatalyst, BiVO_4has recently attracted muchattention due to its excellent photocatalytic performance. BiVO_4has three crystalphases of tetragonal zircon, monoclinic scheelite, and tetragonal scheelite, amongwhich the monoclinic scheelite BiVO_4with a bandgap energy of2.4eV is the mostactive photocatalytically under visible-light irradiation. In the thesis, monoclinicBiVO_4and fluorine-doped BiVO_4with regular morphologies and/or porousstructures were fabricated by adopting various methods. Physicochemical propertiesof the as-prepared materials were characterized by means of techniques, such asX-ray diffraction (XRD), thermogavimetric analysis (TGA), differential scanningcalorimetry (DSC), laser Raman spectroscopy (Raman), Fourier transform infraredspectroscopy (FT-IR),, scanning electron microscopy (SEM), transmission electronmicroscopy (TEM), selected-area electron diffraction (SAED), N2adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS), X-rayfluorescence spectroscopy (XRF), and ultraviolet-visible diffuse reflectancespectroscopy (UV-vis DRS). Photocatalytic activities of the as-fabricated sampleswere evaluated for the degration of phenol, methylene blue (MB), and methylorange (MO) under visible-light illumination. The main results obtained in thepresent investigations are as follows:
     (1) Bismuth vanadates with multiple morphologies and/or porous structures wereprepared using the alcoho-hydrothermal strategy with bismuth nitrate andammonium metavanadate as metal source, NaOH as pH adjustor, ethanol andethylene glycol as solvent, and/or dodecylamine (DA), oleylamine (OL) or oleicacid (OA) as surfactant. It is found that the surfactant and pH value had asignificant influence on the particle morphology and even the crystalline structureof the product. Porous olive-like monoclinic BiVO_4samples could be preparedwith DA, OL or OA as surfactant at pH=1.5or3.0and alcoho-hydrothermaltemperature=100oC. With DA as surfactant at an alcoho-hydrothermaltemperature of100oC, short-rod-like monoclinic BiVO_4and porous layeredspherical orthorhombic Bi_4V_2O_(11)were obtained when the pH value of theprecursor solution was raised to7.0and11.0, respectively. Among the BiVO_4samples, the porous olive-like one with a surface area of12.7m~2/g exhibited thebest visible-light-driven photocatalytic performance for phenol degradation. It isconcluded that the excellent photocatalytic activity of the porous olive-like BiVO_4sample was associated with its higher surface area and surface oxygen vacancydensity, porous structure, lower bandgap energy, and unique morphology.
     (2) Monoclinic BiVO_4single-crystallites with a polyhedral, porous spherical orporous octapod-like morphology were selectively prepared using the triblockcopolymer P123(HO(CH_2CH_2O)_(20)(CH_2CH(CH_3)O)_(70)(CH_2CH_2O)_(20)H)-assistedhydrothermal method with bismuth nitrate and ammonium metavanadate as metalsource and various bases as pH adjustor. The pH value of the precursor solution,surfactant, and hydrothermal temperature had an important impact on particlearchitecture of the BiVO_4product. The introduction of P123favored thegeneration of BiVO_4with porous structures. The BiVO_4derived hydrothermallywith P123at pH=3or6possessed good optical absorption performance both inUV-and visible-light regions and hence showed excellent photocatalytic activitiesfor the degradation of MB and phenol. It is concluded that the highvisible-light-driven catalytic performance of the porous octapod-like BiVO_4single-crystallites is associated with the higher surface area, porous structure,lower band gap energy, and unique particle morphology.
     (3) Monoclinic BiVO_4with multiple morphologies and/or porous structures werefabricated using the hydrothermal strategy. It is observed that the pH value andsurfactant exerted a great effect on the morphology and pore structure of theBiVO_4product. Spherical BiVO_4with porous structures, flower-cluster-likeBiVO_4, and flower-bundle-like BiVO_4were generated hydrothermally at100oCwith poly(vinyl pyrrolidone)(PVP) and urea (pH=2) and at160oC with NaHCO_3(pH=7and8), respectively. The PVP-derived BiVO_4showed much highersurface areas (5.08.4m~2/g) and narrower bandgap energies (2.452.49eV). Thebest photocatalytic performance of the spherical BiVO_4material (surface area=8.4m~2/g) in the degradation of MO under visible-light irridiation was associatedwith its higher surface area, narrower bandgap energy, higher surface oxygenvacancy density, and unique porous architecture.
     (4) Monoclinic BiVO_4with multiple morphologies were fabricated using thealcoho-hydrothermal strategy with bismuth nitrate and ammonium metavanadateas inorganic source, NaOH as pH adjustor, and/or the triblock copolymer P123assurfactant. The surfactant and pH value had a significant influence on the particlemorphology of the BiVO_4product. Porous spherical, flower-like, and sheet-likeBiVO_4were fabricated at alcoho-hydrothermal temperature=180oC and pH=2,7or10, respectively, whereas the rod-like BiVO_4was obtained in the presence ofP123at alcoho-hydrothermal temperature=180oC and pH=2. The difference inparticle morphology of BiVO_4led to the changes in surface area, surface oxygenvacancy density, and (040) crystal plane exposure. Among the four BiVO_4samples,the rod-like one showed the highest surface area, surface oxygen vacancy density,and (040) crystal plane exposure, and the lowest bandgap energy, rendering it to exhibit the best photocatalytic activity for MO photodegradation. We believe thatthere was the presence of a morphological effect on the photocatalyticperformance of the BiVO_4material and the rod-like morphology seems to befavorable for the enhancement in photocatalytic performance.
     (5) Fluorine-doped BiVO_4materials with different fluorine concentrations werefabricated by adopting the post-treatment of the hydrothermally derived BiVO_4with NH4F. The doping of fluorine did not change the crystal structure of BiVO_4.Compared to the undoped BiVO_4, the fluorine-doped BiVO_4samples showedhigher crystallinity and surface oxygen vacancy density, better optical absorbanceperformance, and lower bandgap energy. The spherical porous BiVO_4sample witha surface area of14.6m~2/g and a bandgap energy of2.42eV (the real F/Bi molarratio was0.29) exhibited the excellent photocatalytic activity for the degradationof phenol in the presence of a small amount of H_2O2under visible-light irradiation.Such an excellent photocatalytic performance is attributed to the higher surfacearea and surface oxygen vacancy density, lower band gap energy, stronger opticalabsorbance performance, lower bandgap energy, and unique particle morphology.
引文
[1] A. Fujishima, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature1972,238(5358):3738.
    [2]张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004.
    [3] D.F. Olis, N. Seon, E. Pelizzetti. Photocatalyzed Destruction of Water Contaminants. Environ.Sci. Technol.1991,25:15221529.
    [4] P.V. Kamat. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem.Rev.1993,93:267300.
    [5] M.A. Fox, M.T. Dulay. Heterogeneous Photocatalysis. Chem. Rev.1993,93:341357.
    [6] A.L. Linsebigler, G. Lu, J.T. Rates. Photocatalysis on TiO2Surfaces: Principles, Mechanisms,and Selected Results. Chem. Rev.1995,95:735758.
    [7] F. Bertinchamps, A. Attianese, M.M. Mestdagh, et al. Catalysts for Chlorinated VOCsAbatement: Multiple Effects of Water on the Activity of VOxBased Catalysts for theCombustion of Chlorobenzene. Catal. Today2006,112:165168.
    [8] D.J. Chang, I.P. Chen, M.T. Chen, et al. Wet Air Oxidation of a Reactive Dye Solution UsingCoAlPO4-5and CeO2Catalysts. Chemosphere2003,52:943949.
    [9] M. Sharma, T. Jain, S. Singh, et al. Photocatalytic Degradation of Organic Dyes underUV–Visible Light Using Capped ZnS Nanoparticles. Solar Energy2012,86:626633.
    [10] S. Anandan, A. Vinu, T. Mori, et al. Photocatalytic Degradation of2,4,6-TrichlorophenolUsing Lanthanum Doped ZnO in Aqueous Suspension. Catal. Commun.2007,8:13771382.
    [11] W.J. Dong, X.Y. Li, J. Yu, et al. Porous SrTiO3Spheres with Enhanced PhotocatalyticPerformance. Mater. Lett.2012,67:131134.
    [12] P.A. Di, G. Marci, L. Palmisano, et al. Preparation of Polycrystalline TiO2PhotocatalystsImpregnated with Various Transition Metal Ions: Characterization and Photocatalytic Activityfor the Degradation of4-Nitrophenol. J. Phys. Chem.2002,163(3):637645.
    [13] D. Dvoranova, V. Brezova, M. Mazur. Investigations of Metal-Doped Titanium DioxidePhotocatalysts. Appl. Catal. B2002,37(2):91105.
    [14] K. Yang, Y. Dai, B. Huang. Understanding Photocatalytic Activity of S-and P-Doped TiO2under Visible Light from First-Principles. J. Phys. Chem. C2007,111(51):1898518994.
    [15] T. Urano, E. Hino, H. Ito, et al. Study of Radical Generated from Coumarin Dye-SensitizedPhoto-Initiator Systems in High-Speed Photopolymer Coating Layers Using Laser FlashPhotolysis. Polym. Adv. Technol.1998,9:825830.
    [16] K. Hara, Y. Tachibana, Y. Ohga, et al. Dye-Sensitized Nanocrystalline TiO2Solar Cells Basedon Novel Coumarin Dyes. Sol. Ener. Mater. Sol. Cells2003,77(1):89103.
    [17] S. Yang, X. Quan, X. Li, et al. Preparation, Characterization and PhotoelectrocatalyticProperties of Nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2CompositeElectoreds towards Pentachlorophenol Degradation. Phys. Chem. Chem. Phys.2004,6(3):659664.
    [18] R.Q. Long, R.T. Yang. Selective Catalytic Oxidation of Ammonia to Nitrogen overFe2O3-TiO2Prepared with a Sol-Gel Method. J. Catal.2002,207(2):158165.
    [19] V. Keller, F. Garin. Photocatalytic Behavior of a New Composite Ternary System:WO3/SiC-TiO2Effect of Coupling of Semiconductor and Oxides in Photoctalytic Oxidationof Methylethyketone in the Gas Phase. Catal. Commun.2003,4(8):373383.
    [20] X. Zhao, T.G. Xu, W.Q. Yao, et al. Photoelectrocatalytic Degradation of4-Chlorophenol atBi2WO6Nanoflake Film Electrode under Visible Light Irradiation. Appl. Catal. B2007,72(12):9297.
    [21] T.H. Noh, D.W. Kim, S.W. Seo, et al. Facile Hydrothermal Synthesis of InVO4Microspheresand Their Visible-Light Photocatalytic Activities. Mater. Lett.2012,72:98100.
    [22] J.W. Tang, Z.G. Zou, M. Katagiri, et al. Photocatalytic Degradation of MB on MIn2O4(M=Alkali Earth Metal) under Visible Light: Effects of Crystal and Electronic Structure on thePhotocatalytic Activity. Catal. Today2004,93(5):885889.
    [23] J. Yin, Z.G. Zou, J.H. Ye. Photophysical and Photocatalytic Properties of New PhotocatalystsMCrO4(M=Sr, Ba). Chem. Phys. Lett.2003,378(12):2428.
    [24] A. Kudo, K. Ueda, H. Kato, et al. Efficient Methylene Blue Removal over HydrothermallySynthesized Starlike BiVO4. Catal. Lett.1998,53:229230.
    [25] S. Tokunaga, H. Kato, A. Kudo. Selective Preparation of Monoclinic and Tetragonal BiVO4with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater.2001,13:46244628.
    [26] Y.N. Guo, X. Yang, F.Y. Ma, et al. Additive-Free Controllable Fabrication of BismuthVanadates and Their Photocatalytic Activity toward Dye Degradation. Appl. Surf. Sci.2010,256(7):22152222.
    [27] Y. Zhao, Y. Xie, X. Zhu, et al. Surfactant-Free Synthesis of Hyperbranched MonoclinicBismuth Vanadate and Its Applications in Photocatalysis, Gas Sensing, and Lithium-IonBatteries. Chem. Eur. J.2008,14:16011606.
    [28] Y. Shen, M.L. Huang, Y. Huang, et al. The Synthesis of Bismuth Vanadate Powders and TheirPhotocatalytic Properties under Visible Light Irradiation. J. Alloys Compd.2010,496:287292.
    [29] Y. Zhou, K. Vuille, A. Heel, et al. An Inorganic Hydrothermal Route to PhotocatalyticallyActive Bismuth Vanadate. Appl. Catal. A2010,375:140148.
    [30] S.M. Sun, W.Z. Wang, L. Zhou, et al. Efficient Methylene Blue Removal overHydrothermally Synthesized Starlike BiVO4. Ind. Eng. Chem. Res.2009,48:17351739.
    [31] D.N. Ke, T.Y. Peng, L. Ma, et al. Effects of Hydrothermal Temperature on theMicrostructures of BiVO4and Its Photocatalytic O2Evolution Activity under Visible Light.Inorg. Chem.2009,48:46854691.
    [32] L. Zhang, D.R. Chen, X.L. Jiao. Monoclinic Structured BiVO4Nanosheets: HydrothermalPreparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys.Chem. B2006,110:26682673.
    [33] X. Meng, L. Zhang, H.X. Dai, et al. Surfactant-Assisted Hydrothermal Fabrication andVisible-Light-Driven Photocatalytic Degradation of Methylene Blue over MultipleMorphological BiVO4Single-Crystallites. Mater. Chem. Phys.2011,125:5965.
    [34] L. Dong, S. Guo, S.Y. Zhu, et al. Sunlight Responsive BiVO4Photocatalyst: Effects of pH onL-Cysteine-Assisted Hydrothermal Treatment and Enhanced Degradation of Ofloxacin. Catal.Commun.2011,16:250254.
    [35] H.B. Li, G.C. Liu, S.G. Chen, et al. Synthesis and Characterization of Monoclinic BiVO4Nanorods and Nanoplates via Microemulsion-Mediated Hydrothermal Method. Physica E2011,43:13231328.
    [36] M.L. Guan, D.K. Ma, S.W. Hu, et al. From Hollow Olive-Shaped BiVO4to n-p Core-ShellBiVO4@Bi2O3Microspheres: Controlled Synthesis and Enhanced Visible-Light-ResponsivePhotocatalytic Properties. Inorg. Chem.2011,50:800805.
    [37] W. Liu, Y.Q. Yu, L.X. Cao, et al. Synthesis of Monoclinic Structured BiVO4SpindlyMicrotubes in Deep Eutectic Solvent and Their Application for Dye Degradation. J. Hazard.Mater.2010,181:11021108.
    [38] J.Q. Yu, Y. Zhang, A. Kudo. Synthesis and Photocatalytic Performances of BiVO4byAmmonia Co-Precipitation Process. J. Solid State Chem.2009,182:223228.
    [39] D.N. Ke, T.Y. Peng, L. Ma, et al. Photocatalytic Water Splitting for O2Production underVisible-Light Irradiation on BiVO4Nanoparticles in Different Sacrificial Reagent Solutions.Appl. Catal. A2008,350:111117.
    [40] L.Z. Li, B. Yan. BiVO4/Bi2O3Submicrometer Sphere Composite: Microstructure andPhotocatalytic Activity under Visible-Light Irradiation. J. Alloys Compd.2009,476:624628.
    [41] H.X. Li, Z.F. Bian, J. Zhu, et al. Mesoporous Titania Spheres with Tunable ChamberStructure and Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129:84068407.
    [42] E.B. Flint, K.S. Suslick. The Temperature of Cavitation. Science1991,253:13971399.
    [43] M. Shang, W.Z. Wang, S.M. Sun, et al. Efficient Visible Light-Induced PhotocatalyticDegradation of Contaminant by Spindle-like PANI/BiVO4. J. Phys. Chem. C2009,113:2022820233.
    [44] M. Shang, W.Z. Wang, L. Zhou, et al. Nanosized BiVO4with High Visible-Light-InducedPhotocatalytic Activity: Ultrasonic-Assisted Synthesis and Protective Effect of Surfactant. J.Hazard. Mater.2009,172:338344.
    [45] M.A.B. Barata, M.C. Neves, C.P. Neto, et al. Growth of BiVO4Particles in Cellulosic Fibresby in situ Reaction. Dyes Pigments2005,65:125127.
    [46] L. Zhou, W.Z. Wang, L.S. Zhang, et al. Single-Crystalline BiVO4Microtubes with SquareCross-Sections: Microstructure, Growth Mechanism, and Photocatalytic Property. J. Phys.Chem. C2007,111:1365913664.
    [47] W.Z. Yin, W.Z. Wang, L. Zhou, et al. CTAB-Assisted Synthesis of Monoclinic BiVO4Photocatalyst and Its Highly Efficient Degradation of Organic Dye under Visible-LightIrradiation. J. Hazard. Mater.2010,173:194199.
    [48] H.Q. Jiang, H. Endo, H. Natori, et al. Fabrication and Photoactivities of Spherical-ShapedBiVO4Photocatalysts through Solution Combustion Synthesis Method. J. Eur. Ceram. Soc.2008,28:29552962.
    [49] Z.J. Zhang, W.Z. Wang, M. Shang, et al. Photocatalytic Degradation of Rhodamine B andPhenol by Solution Combustion Synthesized BiVO4Photocatalyst. Catal. Commun.2010,11:982986.
    [50] G.S. Li, D.Q. Zhang, J.C. Yu. Ordered Mesoporous BiVO4through Nanocasting: A SuperiorVisible Light-Driven Photocatalyst. Chem. Mater.2008,20:39833992.
    [51] W.Z. Yin, W.Z. Wang, M. Shang, et al. BiVO4Hollow Nanospheres: Anchoring Synthesis,Growth Mechanism, and Their Application in Photocatalysis. Eur. J. Inorg. Chem.2009:43794384.
    [52] A. Galembeck, O.L. Alves. Bismuth Vanadate Synthesis by Metallo-Organic Decomposition:Thermal Decomposition Study and Particle Size Control. J. Mater. Sci.2002,37:19231927.
    [53] C.Y. Chung, C.H. Lu. Reverse-Microemulsion Preparation of Visible-Light-DrivenNano-Sized BiVO4. J. Alloys Compd.2010,502: L1L5.
    [54] H.M. Zhang, J.B. Liu, H. Wang, et al. Rapid Mcrowave-Asisted Snthesis of Pase CntrolledBiVO4Nanocrystals and Research on Photocatalytic Properties under Visible LightIrradiation. J. Nanopart. Res.2008,10:767774.
    [55] N.C. Castillo, A. Heel, T. Graule, et al. Flame-Assisted Synthesis of Nanoscale, Amorphousand Crystalline, Spherical BiVO4with Visible-Light Photocatalytic Activity. Appl. Catal. B2010,95:335347.
    [56] S.S. Dunkle, R.J. Helmich, K.S. Suslick. BiVO4as a Visible-Light Photocatalyst Prepared byUltrasonic Spray Pyrolysis. J. Phys. Chem. C2009,113:1198011983.
    [57] Y. Liu, J.F. Ma, Z.S. Liu, et al. Low-Temperature Synthesis of BiVO4Crystallites in MoltenSalt Medium and Their UV–Vis Absorption. Ceram. Int.2010,36(7):20732077.
    [58] L. Zhou, W.Z. Wang, S.W. Liu, et al. A Sonochemical Route to Visible-Light-DrivenHigh-Activity BiVO4Photocatalyst. J. Mol. Catal. A2006,252:120124.
    [59] A.P. Zhang, J.Z. Zhang, N.Y. Cui, et al. Effects of pH on Hydrothermal Synthesis andCharacterization of Visible-Light-Driven BiVO4Photocatalyst. J. Mol. Catal. A2009,304:2832.
    [60] H.M. Fan, D.J. Wang, L.L. Wang, et al. Hydrothermal Synthesis and Photoelectric Propertiesof BiVO4with Different Morphologies: An Efficient Visible-Light Photocatalyst. Appl. Surf.Sci.2011,257:77587762.
    [61] C.M. Huang, G.T. Pan, P.Y. Peng, et al. In situ DRIFT Study of Photocatalytic Degradation ofGaseous Isopropanol over BiVO4under Indoor Illumination. J. Mol. Catal. A2010,327:3844.
    [62] M.C. Long, W.M. Cai, J. Cai, et al. Efficient Photocatalytic Degradation of Phenol overCo3O4/BiVO4Composite under Visible Light Irradiation. J. Phys. Chem. B2006,110:2021120216.
    [63] B. Zhou, X. Zhao, H.J. Liu, et al. Visible-Light Sensitive Cobalt-Doped BiVO4(Co-BiVO4)Photocatalytic Composites for the Degradation of Methylene Blue Dye in Dilute AqueousSolutions. Appl. Catal. B2010,99:214221.
    [64] M.C. Long, W.M. Cai, H. Kisch. Visible Light Induced Photoelectrochemical Properties ofn-BiVO4and n-BiVO4/p-Co3O4. J. Phys. Chem. C2008,112:548554.
    [65] H. Xu, H.M. Li, C.D. Wu, et al. Preparation, Characterization and Photocatalytic Activity ofTransition Metal-Loaded BiVO4. Mater. Sci. Eng. B2008,147:5256.
    [66] H. Xu. H.M. Li, C.D. Wu, et al. Preparation, Characterization and Photocatalytic Propertiesof Cu-loaded BiVO4. J. Hazard. Mater.2008,153:877884.
    [67] H.Q. Jiang, H. Endo, H. Natori, et al. Fabrication and Efficient Photocatalytic Degradation ofMethylene Blue over CuO/BiVO4Composite under Visible-Light Irradiation. Mater. Res.Bull.2009,44:700706.
    [68] M. Guillodo, J. Fouletier, L. Dessemond, et al. Electrical Properties of Dense Me-DopedBismuth Vanadate (Me=Cu, Co) pO2-Dependent Conductivity Determined by ImpedanceSpectroscopy. J. Eur. Ceram. Soc.2001,21:23312344.
    [69] Y.L. Yang, L. Qiu, A.J. Jacobson. Manganese Doped Bismuth Vanadate Solid Electrolytes:Oxygen Permeation in Bi2V0.8Mn0.2O5.3. J. Mater. Chem.1997,7(6):937941.
    [70] L.B. Qiu, Y.M.L. Yang, A.J. Jacobson. Manganese-Doped Bismuth Vanadate SolidElectrolytes. Part2.—Electrical Conductivity of Bi2V1xMnxO5.5x. J. Mater. Chem.1997,7(2):249253.
    [71] N. Kumari, S.B. Krupanidhi, K.B.R. Varma. Spectroscopic Ellipsometry Investigations of theOptical Properties of Manganese Doped Bismuth Vanadate Thin Films. Mater. Res. Bull.2010,45:464473.
    [72] H.Q. Jiang, M. Nagai, K. Kobayashi. Enhanced Photocatalytic Activity for Degradation ofMethylene Blue over V2O5/BiVO4Composite. J. Alloys Compd.2009,479:821827.
    [73] P. Chatchai, Y. Murakami, S. Kishioka1, et al. Efficient Photocatalytic Activity of WaterOxidation over WO3/BiVO4Composite under Visible Light Irradiation. Electrochim. Acta2009,54:11471152.
    [74] J.J. Xu, Y.H. Ao, D.G. Fu, et al. A Simple Route for the Preparation of Eu, N-Codoped TiO2Nanoparticles with Enhanced Visible Light-Induced Photocatalytic Activity. J. Colloid Interf.Sci.2008,328:447451.
    [75] Y. Xie, C. Yuan, X. Li. Photosensitized and Photocatalyzed Degradation of Azo Dye UsingLnn+–TiO2Sol in Aqueous Solution under Visible Light Irradiation. Mater. Sci. Eng. B2005,117:325333.
    [76] M.C.Neves, M. Lehocky, R. Soares, et al. Chemical Bath Deposition of Cerium DopedBiVO4. Dyes Pigments2003,59:181184.
    [77] S. Beg, N.A.S. Al-Areqi. Structural and Electrical Study of CeIV-Substituted BismuthVanadate. J. Phy. Chem. Solids2009,70:10001007.
    [78] A.P. Zhang, J.Z. Zhang. Effects of Europium Doping on the Photocatalytic Behavior ofBiVO4. J. Hazard. Mater.2010,173:265272.
    [79] C.K. Lee, C.S. Ong. Synthesis and Characterisation of Rare Earth Substituted BismuthVanadate Solid Electrolytes. Solid State Ionics1999,117:301310.
    [80] S. Beg, N.A.S. Al-Areqi. Study on Phase Stability and Ionic Conductivity in HfIV-SubstitutedBismuth Vanadate. Mater. Chem. Phys.2009,118:1520.
    [81] M. Ni, M.K.H. Leung, D.Y.C. Leung, et al. A Review and Recent Developments inPhotocatalytic Water Splitting Using TiO2for Hydrogen Production. Renew. Sustain. EnergyRev.2007,11:401405.
    [82] S. Kohtani, J. Hiro, N. Yamamoto, et al. Adsorptive and Photocatalytic Properties ofAg-Loaded BiVO4on the Degradation of4-n-Alkylphenols under Visible Light Irradiation.Catal. Commun.2005,6:185189.
    [83] S. Kohtani, M. Tomohiro, K. Tokumura, et al. Photooxidation Reactions of PolycyclicAromatic Hydrocarbons over Pure and Ag-Loaded BiVO4Photocatalysts. Appl. Catal. B2005,58:265272.
    [84] X. Zhang, Y. Zhang, X. Quan, et al. Preparation of Ag Doped BiVO4Film and Its EnhancedPhotoelectrocatalytic (PEC) Ability of Phenol Degradation under Visible Light. J. Hazard.Mater.2009,167:911914.
    [85] A.P. Zhang, J.Z. Zhang. Synthesis and Characterization of Ag/BiVO4CompositePhotocatalyst. Appl. Surf. Sci.2010,256:32243227.
    [86] A.P. Zhang, J.Z. Zhang. Characterization and Photocatalytic Properties of Au/BiVO4Composites. J. Alloys Compd.2010,491:631635.
    [87] L. Ge. Novel Pd/BiVO4Composite Photocatalysts for Efficient Degradation of MethylOrange under Visible Light Irradiation. Mater. Chem. Phys.2008,107:465470.
    [88] L. Ge. Novel Visible-Light-Driven Pt/BiVO4Photocatalyst for Efficient Degradation ofMethyl Orange. J. Mol. Catal. A2008,282:6266.
    [89] T. Hirakawa, P.V. Kamat. Charge Separation and Catalytic Activity of Ag@TiO2Core–ShellComposite Clusters under UV-Irradiation. J. Am. Chem. Soc.2005,127:39283934.
    [90] Y.Y. Liu, Z.Y. Wang, B.B. Huang, et al. Enhanced Photocatalytic Degradation of OrganicPollutants over Basic Bismuth (III) Nitrate/BiVO4Composite. J. Colloid Interf. Sci.2010,348:211215.
    [91] X.F. Zhang, X. Quan, S. Chen, et al. Effect of Si Doping on PhotoelectrocatalyticDecomposition of Phenol of BiVO4Film under Visible Light. J. Hazard. Mater.2010,177:914917.
    [92] D.K. Lee, I.S. Cho, S. Lee, et al. Effects of Carbon Content on the Photocatalytic Activity ofC/BiVO4Composites under Visible Light Irradiation. Mater. Chem. Phys.2010,119:106111.
    [93] M. Alga, A. Ammar, R. Essalim, et al. Synthesis, Sintering and Electrical Properties ofP-Doped Bi4V2O11Ceramics. Solid State Sci.2005,7:11731179.
    [94] L.X. Yang, Y. Liang, H. Chen, et al. Controlled Synthesis of Mn3O4and MnCO3in aSolvothermal System. Mater. Res. Bull.2009,44:17531759.
    [95] A.W. Sleight, H.Y. Chen, A. Ferretti, et al. Crystal Growth and Structure of BiVO4. Mater.Res. Bull.1979,14:15711581.
    [96] X. Zhang, Z.H. Ai, F.L. Jia, et al. Selective Synthesis and Visible-Light PhotocatalyticActivities of BiVO4with Different Crystalline Phases. Mater. Chem. Phys.2007,103:162167.
    [97] M.C. Neves, T. Trindade. Chemical Bath Deposition of BiVO4. Thin Solid Films2002,406:9397.
    [98] K. Sayama, A. Nomura, Z.G. Zou, et al. Photoelectrochemical Decomposition of Water onNanocrystalline BiVO4Film Electrodes under Visible Light. Chem. Commun.2003:29082909.
    [99] T. Lu, B.C.H. Steele. Electrical Conductivity of Polycrystalline BiVO4Samples Having theScheelite Structure. Solid State Ionics1986,21:339342.
    [100] K. Hirota, G. Komatsu, M. Yamashita, et al. Formation, Characterization and Sintering ofAlkoxy-Derived Bismuth Vanadate. Mater. Res. Bull.1992,27:823830.
    [101] J.C. Yu, X.C. Wang, X.Z. Fu. Pore-Wall Chemistry and Photocatalytic Activity ofMesoporous Titania Molecular Sieve Films. Chem. Mater.2004,16:15231530.
    [102] M.A. Lillo-Ródenas, A.J. Fletcher, K.M. Thomas, et al. Competitive Adsorption of aBenzene–Toluene Mixture on Activated Carbons at Low Concentration. Carbon2006,44(8):14551463.
    [103] P.A.M. Mour o, P.J.M. Carrott, M.M.L. Ribeiro Carrott. Application of Different Equationsto Adsorption Isotherms of Phenolic Compounds on Activated Carbons Prepared from Cork.Carbon,2006,44(12):24222429.
    [104] P. Haapea, T. Tuhkanen. Integrated Treatment of PAH Contaminated Soil by Soil Washing,Ozonation and Biological Treatment. J. Hazard. Mater.2006,136(2):244250.
    [105] D. Suryaman, K. Hasegawa, S. Kagaya. Combined Biological and Photocatalytic Treatmentfor the Mineralization of Phenol in Water. Chemosphere2006,65(11):25022506.
    [106] L. Zhao, J. Ma, Z.Z. Sun, et al. Influencing Mechanism of Temperature on the Degradationof Nitrobenzene in Aqueous Solution by Ceramic Honeycomb Catalytic Ozonation. J. Hazard.Mater.2009,167(1-3):11191125.
    [107] C.H. Wu, C.Y. Kuo, C.L. Chang. Decolorization of C.I. Reactive Red2by CatalyticOzonation Processes. J. Hazard. Mater.2008,153(3):10521058.
    [108] F.T. Li, Y. Zhao, Y. Liu, et al. Solution Combustion Synthesis and Visible Light-InducedPhotocatalytic Activity of Mixed Amorphous and Crystalline MgAl2O4Nanopowders.Chem. Eng. J.2011,173(3):750759.
    [109] G. Busca, S. Berardinelli, C. Resini, et al. Technologies for the Removal of Phenol fromFluid Streams: A Short Review of Recent Developments. J. Hazard. Mater.2008,160:265288.
    [110] S. Ray, J.A. Lalman, N. Biswas. Using the Box-Benkhen Technique to Statistically ModelPhenol Photocatalytic Degradation by Titanium Dioxide Nanoparticles. Chem. Eng. J.2009,150:1524.
    [111] A. Zaleska, E. Grabowsk, J.W. Sobczak, et al. Photocatalytic Activity of Boron-ModifiedTiO2under Visible Light: The Effect of Boron Content, Calcination Temperature and TiO2Matrix. Appl. Catal. B2009,89:469475.
    [112] Z.J. Zhang, W.Z. Wang, W.Z. Yin, et al. Inducing Photocatalysis by Visible Light beyond theAbsorption Edge: Effect of Upconversion Agent on the Photocatalytic Activity of Bi2WO6.Appl. Catal. B2010,101:6873.
    [113] W.Z. Yin, W.Z. Wang, S.M. Sun. Photocatalytic Degradation of Phenol over Cage-LikeBi2MoO6Hollow Spheres under Visible-Light Irradiation. Catal. Commun.2010,11:647650.
    [114] B.P. Xie, H.X. Zhang, P.X. Cai, et al. Simultaneous Photocatalytic Reduction of Cr(VI) andOxidation of Phenol over Monoclinic BiVO4under Visible Light Irradiation. Chemosphere2006,63:956963.
    [115] N.C. Castillo, L. Ding, A. Heel, et al. On the Photocatalytic Degradation of Phenol andDichloroacetate by BiVO4: The Need of a Sacrificial Electron Acceptor. J. Photochem.Photobiol. A2010,216:221227.
    [116] W.B. Bu, Z.X. Chen, F. Chen, et al. Oleic Acid/Oleylamine Cooperative-ControlledCrystallization Mechanism for Monodisperse Tetragonal Bipyramid NaLa(MoO4)2Nanocrystals J. Phys. Chem. C2009,113:1217612185.
    [117] A.P. Jadhav, C.W. Kim, H.G. Cha, et al. Effect of Different Surfactants on the Size Controland Optical Properties of Y2O3:Eu3+Nanoparticles Prepared by Coprecipitation Method. J.Phys. Chem. C2009,113:1360013604.
    [118] S. Kinge, T. Gang, W.J.M. Naber, et al. Low-Temperature Solution Synthesis of ChemicallyFunctional Ferromagnetic FePtAu Nanoparticles. Nano Lett.2009,9:32203224.
    [119] G.Z. Wang, L. Zhang, H.X. Dai, et al. P123-Assisted Hydrothermal Synthesis andCharacterization of Rectangular Parallelepiped and Hexagonal Prism Single-CrystallineMgO with Three-Dimensional Wormholelike Mesopores. Inorg. Chem.2008,47(8):40154022.
    [120] Z.X. Zhao, L. Zhang, H.X. Dai, et al. Surfactant-Assisted Solvo-or HydrothermalFabrication and Characterization of High-Surface-Area Porous Calcium Carbonate withMultiple Morphologies. Micropor. Mesopor. Mater.2011,138:191199.
    [121] Y.S. Xia, H.X. Dai, L. Zhang, et al. Ultrasound-Assisted Nanocasting Fabrication andExcellent Catalytic Performance of Three-Dimensionally Ordered Mesoporous Chromia forthe Combustion of Formaldehyde, Acetone, and Methanol. Appl. Catal. B2010,100:229237.
    [122] J.Q. Yu, A. Kudo. Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate. Chem. Lett.2005,34:850851.
    [123] R.L. Frost, D.A. Henry, M.L. Weier, et al. Raman Spectroscopy of Three Polymorphs ofBiVO4Clinobisvanite, Dreyerite and Pucherite, with Comparisons to (VO4)3-BearingMinerals Namibite, Pottsite and Schumacherite. J. Raman Spectrosc.2006,37:722732.
    [124] M. Goti, S. Musi, M. Ivanda, et al. Synthesis and Characterisation of Bismuth(III)Vanadate. J. Mol. Struct.2005,744747:535540.
    [125] Q. Sheng, S. Yuan, J. Zhang, et al. Synthesis of Mesoporous Titania with HighPhotocatalytic Activity by Nanocrystalline Particle Assembly. Micropor. Mesopor. Mater.2006,87:177184.
    [126] J.H. Choy, H. Jung, Y.S. Han, et al. New CoO SiO2-Sol Pillared Clays as Catalysts for NOxConversion. Chem. Mater.2002,14:38233828.
    [127] Y.F. Sun, Y. Xie, C.Z. Wu, et al. First Experimental Identification of BiVO4·0.4H2O and ItsEvolution Mechanism to Final Monoclinic BiVO4.Cryst. Growth Des.2010,10(2):602–607.
    [128] J.A. Gadsden. Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths.London, UK,1975.
    [129] W. Liu, L.X. Cao, G. Su, et al. Ultrasound Assisted Synthesis of Monoclinic StructuredSpindle BiVO4Particles with Hollow Structure and Its Photocatalytic Property. Ultrason.Sonochem.2010,17:669674.
    [130] X.Y. Chen, Z.J. Zhang, S.W. Lee. Selective Solution-Phase Synthesis of BiOCl, BiVO4andδ-Bi2O3Nanocrystals in the Reaction System of BiCl3–NH4VO3–NaOH. J. Solid StateChem.2008,181:166174.
    [131] X.G. Peng, L. Manna, W.D. Yang, et al. Shape Control of CdSe Nanocrystals. Nature2000,404:5961.
    [132] F. Bai, D.S. Wang, Z.Y. Huo, et al. A Versatile Bottom-up Assembly Approach to ColloidalSpheres from Nanocrystals Angew. Chem. Int. Ed.2007,46:66506653.
    [133] Q. Peng, Y.J. Dong, Y.D. Li. ZnSe Semiconductor Hollow Microspheres. Angew. Chem. Int.Ed.2003,42:30273030.
    [134] L. Zhou, W.Z. Wang, H.L, Xu. Controllable Synthesis of Three-Dimensional Well-DefinedBiVO4Mesocrystals via a Facile Additive-Free Aqueous Strategy. Cryst. Growth Des.2008,8:728733.
    [135] S.J. Gregg, K.S.W. Sing. Adsorption, Surface Area and Porosity, second ed., AcademicPress, London, UK,1982.
    [136] W.C. Li, A.H. Lu, C. Weidenthaler, et al. Hard-Templating Pathway to Create MesoporousMagnesium Oxide. Chem. Mater.2004,16:56765681.
    [137] L. Gou, C.J. Murphy. Controlling the Size of Cu2O Nanocubes from200to25nm. J. Mater.Chem.2004,14:735738.
    [138] S. Poulston, N.J. Price, C. Weeks, et al. Surface Redox Characteristics of Mixed OxideCatalysts Used for Selective Oxidation. J. Catal.1998,178:658667.
    [139] W. Liu, S.Y. Lai, H.X. Dai, et al. Oxidative Dehydrogenation of n-Butane over MesoporousVOx/SBA-15Catalysts. Catal. Lett.2007,113:147154.
    [140] G. Colón, M.C. Hidalgo, G. Munuera, et al. Structural and Surface Approach to theEnhanced Photocatalytic Activity of Sulfated TiO2Photocatalyst. Appl. Catal. B2006,63:4559.
    [141] G.U. Kulkarni, C.N.R. Rao, M.W. Roberts. Nature of the Oxygen Species at Ni(110) andNi(100) Surfaces Revealed by Exposure to Oxygen and Oxygen-Ammonia Mixtures:Evidence for the Surface Reactivity of O-Type Species. J. Phys. Chem.1995,99:33103316.
    [142] J.Q. Yu, A. Kudo. Effects of Structural Variation on the Photocatalytic Performance ofHydrothermally Synthesized BiVO4. Adv. Funct. Mater.2006,16:21632169.
    [143] D.L. Liao, B.Q. Liao. Shape, Size and Photocatalytic Activity Control of TiO2Nanoparticleswith Surfactants. J. Photochem. Photobiol. A2007,187:363369.
    [144] J.S. Valente, F. Tzompantzi, J. Prince, et al. Adsorption and Photocatalytic Degradation ofPhenol and2,4Dichlorophenoxiacetic Acid by Mg–Zn–Al Layered Double Hydroxides.Appl. Catal. B2009,90:330338.
    [145] M. Sun, D.Z. Li, W.J. Zhang, et al. Photocatalyst Cd2Sb2O6.8with High PhotocatalyticActivity toward Benzene and Dyes. J. Phys. Chem. C2009,113:1491614921.
    [146] C.H. Chiou, C.Y. Wu, R.S. Juang. Influence of Operating Parameters on PhotocatalyticDegradation of Phenol in UV/TiO2Process. Chem. Eng. J.2008,139:322329.
    [147] S. Senthilkumaara, K. Porkodia, R. Vidyalakshmi. Photodegradation of a Textile DyeCatalyzed by Sol–Gel Derived Nanocrystalline TiO2via Ultrasonic Irradiation. J.Photochem. Photobiol. A2005,170:225232.
    [148] R.W. Matthews. Photocatalytic Oxidation and Adsorption of Methylene Blue on Thin Filmsof Near-Ultraviolet-Illuminated TiO2. J. Chem. Soc., Faraday Trans.1989,85:12911302.
    [149] W.I.F. David, I.G. Wood. Ferroelastic Phase-Transitions in BiVO4.6. Some Comments onthe Relationship between Spontaneous Deformation and Domain-Walls in Ferroelastics. J.Phys. C1983,16:51275148.
    [150] D. Barreca, L.E. Depero, V. Di Noto, et al. Thin Films of Bismuth Vanadates withModifiable Conduction Properties. Chem. Mater.1999,11:255261.
    [151] A. Kudo, K. Omori, H. Kato. A Novel Aqueous Process for Preparation of CrystalForm-Controlled and Highly Crystalline BiVO4Powder from Layered Vanadates at RoomTemperature and Its Photocatalytic and Photophysical Properties. J. Am. Chem. Soc.1999,121:1145911467.
    [152] J.B. Liu, H. Wang, S. Wang, et al. Hydrothermal Preparation of BiVO4Powders. Mater. Sci.Eng. B2003,104:3639.
    [153] H.B. Li, G.C. Liu, X.C. Duan. Monoclinic BiVO4with Regular Morphologies:Hydrothermal Synthesis, Characterization and Photocatalytic Properties. Mater. Chem.Phys.2009,115:913.
    [154] A. Galembeck, O.L. Alves. BiVO4Thin Film Preparation by Metalorganic Decomposition.Thin Solid Films2000,365:9093.
    [155] A.P. Zhang, J.Z. Zhang. Characterization of Visible-Light-Driven BiVO4PhotocatalystsSynthesized via a Surfactant-Assisted Hydrothermal Method. Spectrochim. Acta A2009,73:336341.
    [156] C.X. Liu, L. Zhang, J.G. Deng, et al. Surfactant-Aided Hydrothermal Synthesis and CarbonDioxide Adsorption Behavior of Three-Dimensionally Mesoporous Calcium OxideSingle-Crystallites with Tri-, Tetra-and Hexagonal Morphologies. J. Phys. Chem. C2008,112:1924819256.
    [157] H.N. Li, L. Zhang, H.X. Dai, et al. Facile Synthesis and Unique Physicochemical Propertiesof Three-Dimensionally Ordered Macroporous Magnesium Oxide, Gamma-Alumina, andCeria-Zirconia Solid Solutions with Crystalline Mesoporous Walls. Inorg. Chem.2009,48:44214434.
    [158] H.Y. Jiang, H.X. Dai, X. Meng, et al. Morphology-Dependent Photocatalytic Performance ofMonoclinic BiVO4for Methyl Orange Degradation under Visible-Light Irradiation. Chin. J.Catal.2011,32:939949.
    [159] H.Y. Jiang, H.X. Dai, X. Meng, et al. Porous Olive-like BiVO4: Alcoho-HydrothermalPreparation and Excellent Visible-Light-Driven Photocatalytic Performance for theDegradation of Phenol. Appl. Catal. B2011,105:326334.
    [160] A.W. Xu, M. Antonietti, H. C lfen, et al. Uniform Hexagonal Plates of Vaterite CaCO3Mesocrystals Formed by Biomimetic Mineralization. Adv. Funct. Mater.2006,16:903908.
    [161] O. Grassmann, P. L bmann. Morphogenetic Control of Calcite Crystal Growth in SulfonicAcid Based Hydrogels. Chem. Eur. J.2003,9:13101316.
    [162] S.H. Yu, H. C lfen. Bio-Inspired Crystal Morphogenesis by Hydrophilic Polymers. J. Mater.Chem.2004,14:21242147.
    [163] T.P. Wang, M. Antonietti, H. Colfen. Calcite Mesocrystals:"Morphing" Crystals by aPolyelectrolyte. Chem. Eur. J.2006,12:57225730.
    [164] Q. Gong, X.F. Qian, X.D. Ma, et al. Large-Scale Fabrication of Novel Hierarchical3DCaMoO4and SrMoO4Mesocrystals via a Microemulsion-Mediated Route. Cryst. GrowthDes.2006,6:18211825.
    [165] X.H. Guo, S.H. Yu. Controlled Mineralization of Barium Carbonate Mesocrystals in aMixed Solvent and at the Air/Solution Interface Using a Double Hydrophilic BlockCopolymer as a Crystal Modifier. Cryst. Growth Des.2007,7:354359.
    [166] Y.-W. Jun, J.-S. Choi, J. Cheon. Shape Control of Semiconductor and Metal OxideNanocrystals through Nonhydrolytic Colloidal Routes. Angew. Chem. Int. Ed.2006,45:34143439.
    [167] C. Burda, X.B. Chen, R. Narayanan, et al. Chemistry and Properties of Nanocrystals ofDifferent Shapes. Chem. Rev.2005,105:10251102.
    [168] Y.J. Zhang, L. Zhang, J.G. Deng, et al. Controlled Synthesis, Characterization, andMorphology-Dependent Reducibility of Ceria-Zirconia-Yttria Solid Solutions withNanorod-like, Microspherical, Microbowknot-like, and Micro-Octahedral Shapes. Inorg.Chem.2009,48:21812192.
    [169] C. Zhang, Y.F. Zhu. Synthesis of Square Bi2WO6Nanoplates as High-ActivityVisible-Light-Driven Photocatalysts. Chem. Mater.2005,17:35373545.
    [170] M.A. Butler. Photoelectrolysis and Physical-Properties of Semiconducting Electrode WO3. J.Appl. Phys.1977,48:19141920.
    [171] J.C. Yu, J.G. Yu, W.K. Ho, et al. Effects of F-doping on the Photocatalytic Activity andMicrostructures of Nanocrystalline TiO2Powders. Chem. Mater.2002,14:38083816.
    [172] J.G. Yu, J.C. Yu, W.K. Ho, et al. Effects of Calcination Temperature on the PhotocatalyticActivity and Photo-Induced Super-Hydrophilicity of Mesoporous TiO2Thin Films. New J.Chem.2002,26:607613.
    [173] W.F. Yao, H. Iwai, J.H. Ye. Effects of Molybdenum Substitution on the PhotocatalyticBehavior of BiVO4. Dalton Trans.2008:14261430.
    [174] D.P. Das, N. Baliarsingh, K.M. Parida. Photocatalytic Decolonization of Methylene Blue(MB) over Titania Pillared Zirconium Phosphate (ZrP) and Titanium Phosphate (TiP) underSolar Radiation. J. Mol. Catal. A2007,261:254261.
    [175] Q. Xiao, J. Zhang, C. Xiao, et al. Photocatalytic Degradation of Methylene Blue overCo3O4/Bi2WO6Composite under Visible Light Irradiation. Catal. Commun.2008,9:12471253.
    [176] Z.H. Ai, W.K. Ho, S.C. Lee, et al. Efficient Photocatalytic Removal of NO in Indoor Airwith Hierarchical Bismuth Oxybromide Nanoplate Microspheres under Visible Light.Environ. Sci. Technol.2009,43:41434150.
    [177] M.R. Hoffmann, S.T. Martin, W. Choi, et al. Environmental Applications of SemiconductorPhotocatalysis. Chem. Rev.1995,95:6996.
    [178] Y. Chen, D.D. Dionysiou. Effect of Calcination Temperature on the Photocatalytic Activityand Adhesion of TiO2Films Prepared by the P-25Powder-Modified Sol–Gel Method. J.Mol. Catal. A2006,244:7382.
    [179] F.D. Hardcastle, I.E. Wachs, H. Eckert, et al. Vanadium (V) Environments in BismuthVanadates: A Structural Investigation Using Raman Spectroscopy and Solid State51V NMR.J. Solid State Chem.1991,90:194210.
    [180] F. Amano, A. Yamakata, K. Nogami, et al. Visible Light Responsive Pristine Metal OxidePhotocatalyst: Enhancement of Activity by Crystallization under Hydrothermal Treatment. J.Am. Chem. Soc.2008,130:1765017651.
    [181] Z. Ai, L. Zhang, S. Lee. Efficient Visible Light Photocatalytic Oxidation of NO on AerosolFlow-Synthesized Nanocrystalline InVO4Hollow Microspheres. J. Phys. Chem. C2010,114:1859418600.
    [182] J. Su, L. Guo, S. Yoriya, et al. Aqueous Growth of Pyramidal-Shaped BiVO4NanowireArrays and Structural Characterization: Application to Photoelectrochemical Water Splitting,Cryst. Growth Des.2010,10:856861.
    [183] R.L. Penn, J.F. Banfield. Imperfect Oriented Attachment: A Mechanism for DislocationGeneration in Defect-Free Nanocrystals. Science1998,281:969971.
    [184] G. Cheng, J. Wu, F. Xiao, et al. Synthesis of Bismuth Micro-and Nanospheres by a SimpleRefluxing Method. Mater. Lett.2009,63:22392242.
    [185] H. Zhu, C. Zhang, Y. Yin. Rapid Synthesis of Copper Nanoparticles by SodiumHypophosphite Reduction in Ethylene Glycol under Microwave Irradiation. J. Cryst.Growth2004,270:722728.
    [186] H. Zhu, J. Wang, G. Xu. Fast Synthesis of Cu2O Hollow Microspheres and TheirApplication in DNA Biosensor of Hepatitis B Virus. Cryst. Growth Des.2009,9:633638.
    [187] W.K. Chang, K.K. Rao, H.C. Kuo, et al. A Novel Core-Shell like CompositeIn2O3@CaIn2O4for Efficient Degradation of Methylene Blue by Visible Light. Appl. Catal.A2007,321:16.
    [188] R.Z. Zhang, H.X. Dai, Y.C. Du, et al. P123-PMMA Dual-Templating Generation and UniquePhysicochemical Properties of Three-Dimensionally Ordered Macroporous Iron Oxideswith Nanovoids in the Crystalline Walls. Inorg. Chem.2011,50:25342544.
    [189] G.R. Li, T. Hu, G.L. Pan, et al. Morphology-Function Relationship of ZnO: Polar Planes,Oxygen Vacancies, and Activity. J. Phys. Chem. C2008,112:1185911864.
    [190] A. Mclaren, T. Valdes-Solis, G.Q. Li, S.C. Tsang. Shape and Size Effects of ZnONanocrystals on Photocatalytic Activity. J. Am. Chem. Soc.2009,131:1254012541.
    [191] G.C. Xi, J.H. Ye. Synthesis of Bismuth Vanadate Nanoplates with Exposed {001} Facets andEnhanced Visible-Light Photocatalytic Properties. Chem. Commun.2010,46:18931895.
    [192] D.G. Wang, H.F. Jiang, X. Zong, et al. Crystal Facet Dependence of Water Oxidation onBiVO4Sheets under Visible Light Irradiation. Chem. Eur. J.2011,17:12751282.
    [193]张妍,于建强,工藤昭彦,等. BiVO4-MCM-41复合催化剂的制备及其对亚甲基蓝降解的光催化活性.催化学报,2008,29(7):624628.
    [194]索静,柳丽芬,杨凤林.负载型Cu-BiVO4复合光催化剂的制备及可见光降解气相甲苯.催化学报,2009,30(4):323327.
    [195] L.M. Chen, Y.N. Liu, Z.G. Lu, et al. Shape-Controlled Synthesis and Characterization ofInVO4Particles. J. Colloid Interf. Sci.2006,295:440444.
    [196] N. Yamazoe, Y. Teraoka, T. Seiyama. TPD and XPS Study on Thermal Behavior ofAdsorbed Oxygen in Lanthanum Strontium Cobalt Oxide (La1-xSrxCoO3). Chem. Lett.1981,12:17671770.
    [197] J.G. Yu, J.F. Xiong, B. Cheng, et al. Fabrication and Characterization of Ag–TiO2MultiphaseNanocomposite Thin Films with Enhanced Photocatalytic Activity. Appl. Catal. B2005,60:211221.
    [198] M.S. Mohajerani, A. Lak, A. Simchi. Effect of Morphology on the Solar PhotocatalyticBehavior of ZnO Nanostructures. J. Alloys Compd.2009,485:616620.
    [199] R.A. Lucky, P.A. Charpentier. N-Doped ZrO2/TiO2Bimetallic Materials Synthesized inSupercritical CO2: Morphology and Photocatalytic Activity. Appl. Catal. B2010,96:516523.
    [200] Y.X. Wang, X.Y. Li, N. Wang, et al. Controllable Synthesis of ZnO Nanoflowers and TheirMorphology-Dependent Photocatalytic Activities. Sep. Purif. Technol.2008,62:727732.
    [201] J.S. Wang, S. Yin, Q.W. Zhang, et al. Mechanochemical Synthesis of SrTiO3-xFxwith HighVisible Light Photocatalytic Activities for Nitrogen Monoxide Destruction. J. Mater. Chem.2003,13:23482352.
    [202] S.M. Vohra, S. Kim, W. Choi. Effects of Surface Fuorination of TiO2on the PhotocatalyticDegradation of Tetramethylammonium. J. Photochem. Photobiol. A2003,160:5560.
    [203] C.L. Yu, J.C. Yu, M. Chan. Sonochemical Fabrication of Fuorinated Mesoporous TitaniumDioxide Microspheres. J. Solid State Chem.2009,182:10611069.
    [204] H.B. Fu, S.C. Zhang, T.G. Xu, et al. Photocatalytic Degradation of RhB by FluorinatedBi2WO6and Distributions of the Intermediate Products. Environ. Sci. Technol.2008,42:20852091.
    [205] D. Li, H. Haneda, S. Hishita, et al. Fluorine-Doped TiO2Powders Prepared by SprayPyrolysis and Their Improved Photocatalytic Activity for Decomposition of Gas-PhaseAcetaldehyde. J. Fluorine Chem.2005,126:6977.
    [206] Y.Y. Lv, L.S. Yu, H.Y. Huang, et al. Preparation of F-doped Titania Nanoparticles with aHighly Thermally Stable Anatase Phase by Alcoholysis of TiCl4. Appl. Surf. Sci.2009,255:95489552.
    [207] J.J. Xu, Y.H. Ao, D.G. Fu, et al. Low-Temperature Preparation of F-Doped TiO2Film and ItsPhotocatalytic Activity under Solar Light. Appl. Surf. Sci.2008,254:30333038.
    [208] G.L. Huang, Y.F. Zhu. Enhanced Photocatalytic Activity of ZnWO4Catalyst via FluorineDoping. J. Phys. Chem. C2007,111:1195211958.
    [209] H.Park, W.J. Choi. Effects of TiO2Surface Fluorination on Photocatalytic Reactions andPhotoelectrochemical Behaviors. Phys. Chem. B2004,108:40864093.
    [210] J.S. Wang, S. Yin, Q.W. Zhang, et al. Influences of the Factors on Photocatalysis ofFluorine-Doped SrTiO3Made by Mechanochemical Method. Solid State Ionics2004,172:191195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700