稀土掺杂氧化铋可见光响应催化剂制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料废水是工业废水的重要组成部分之一,中国是染织大国,染料废水排放量巨大,其中含有的偶氮、芳香类化合物、重金属等成分对生物体有毒害作用,并且由于其高色度、高COD,可生物降解性差等,使染料废水的处理技术普遍成本高,处理效果较差。因此,选用高效节能的污水处理方法来处理染料废水是目前的研究方向。
     光催化技术就是一种先进的高级氧化技术,由于它可以受光能激发产生具有强氧化性的活性物质,因此具有可以利用太阳能这种清洁能源的优势。以目前的研究成果来看,对TiO_2的研究最多,但由于TiO_2的禁带宽度较大,对光能的利用率低,限制了它的应用。人们的研究方向转向开发新型窄带隙光催化剂和利用掺杂等方法拓宽催化剂的吸光范围。
     基于以上内容,本文以铋系材料为基础,利用非晶态络合法成功的制备得到了掺杂Eu的Bi_2O_3催化剂样品。制得的催化剂样品中组成元素为Bi(III)、Eu (III)和Ce(IV),并且都是以氧化物形式存在。对掺杂Eu的Bi_2O_3样品进行XRD分析可知,Eu的掺杂比例对样品的晶体结构有很大影响,增加Eu的掺杂比例,可以使催化剂样品的晶体结构由四角晶型的Bi_2O_3向立方晶型的Bi_(0.25)(Bi_(0.375)Eu_(0.375))O_(1.5)转变,同时掺杂Eu的Bi_2O_3催化剂样品具有较小的禁带宽度,因此能够有效地吸收可见光。其中Eu掺杂量为1:8和1:4的催化剂样品的禁带宽度都仅为2.75eV,但当掺杂量增加到1:1时,禁带宽度达到了3.3eV。根据光催化剂光催化效果确定Eu的最佳掺杂比例为1:4,在此条件下制备的催化剂光生电子-空穴对分离能力最强,对甲基橙的降解率可以达到97.6%。
     通过改变灼烧温度和时间来研究灼烧过程对掺杂Eu的Bi_2O_3催化剂样品结构及性质的影响,制备过程中温度的升高会使催化剂晶体结晶度增加,同时也产生团聚现象,并且在500℃和600℃条件下产生了斜方六面体的Bi_(0.775)Eu0.225O_(1.5),改变了催化剂的晶体结构。灼烧时间对掺杂Eu的Bi_2O_3催化剂样品的作用主要是促进晶体的形成;在不同灼烧温度及时间条件下制备的掺杂Eu的Bi_2O_3催化剂样品中,400℃灼烧5h条件下制备得到的催化剂样品带隙宽度最小,并且在550nm内光吸收性和光生电子和空穴的分离效率最高,光催化活性最好,因此确定最佳掺杂Eu的Bi_2O_3催化剂最佳灼烧过程为400℃灼烧5h。
     同样采用非晶态络合法制备掺杂Ce的Bi_2O_3催化剂,在掺杂量1:1时催化剂样品为四方晶系的Bi_2O_3和立方晶系的CeO_2。并且随着稀土掺杂量的增加,结晶度降低。不同掺杂浓度下制备的样品在550nm内都有较好的光吸收性,根据催化剂光催化甲基橙效果确定Ce的最佳掺杂比例为1:1。由于在600℃时产生单斜晶型的Bi_2O_3,其光催化性能不如四角的Bi_2O_3,并且在高温下会产生团聚现象。因而在400℃灼烧5h条件下制备的催化剂样品禁带宽度最小,为2.35eV,光生载流子的分离传输能力最好,光催化性能最高,反应1h时对甲基橙的降解率可以达到99%。因此确定最佳灼烧温度为400℃。
     通过比较不同稀土掺杂Bi_2O_3催化剂的性能,发现掺杂Ce的样品吸收边比掺杂Eu的样品有明显的红移,禁带宽度减小。掺杂Ce的样品光电压信号强度要高于掺杂Eu的样品,光生载流子的分离和传输能力更强。掺杂Ce的样品光照1h对甲基橙的降解效率就达到了99%,与之相比,掺杂Eu的样品反应2h的降解效果达到90%多。由此认为掺杂Ce的Bi_2O_3催化剂性能比掺杂Eu的催化剂好。
     利用自制Ce掺杂Bi_2O_3催化剂进行光催化降解甲基橙研究,在光照开始阶段,甲基橙未被完全矿化,反应生成了一系列有机中间产物,而从4h后开始中间产物被逐渐的降解,产生NO_3~-、SO_4~(2-)等矿化产物。催化剂对甲基橙有一定的吸附作用,但通过UV-Vis DRS并未检测到有光敏化的现象发生。自制Ce掺杂Bi_2O_3催化剂光催化降解亚甲基蓝降解途径与甲基橙不同,但反应速率相似,并且催化剂对亚甲基蓝的吸附性要强于甲基橙。反应结束后,在UV-Vis DRS结果中发现了在575-675nm范围出现新的吸收峰,推测吸附在催化剂表面的染料及中间产物促使催化剂产生了更多的活性位点,扩展了催化剂的吸光范围,存在光敏化作用。而由于催化剂对染料的降解作用,在反应12h后催化剂在575-675nm的吸收峰减弱。
     光催化反应速率随催化剂用量和光照强度的增加而增大,随反应物初始浓度增加而减小,通过相关影响因素分析,确定不同反应条件的反应速率方程式为ν=0.0113C_0~(-1.459)m~(1.3458)P~(0.3332)。此外,NaCl、NaNO_3和Na_2SO_4对光催化反应速率都有抑制作用,并且各离子的抑制作用都是随着浓度的增大而增强。
     综上所述,本论文通过非晶态络合法制备的掺杂Eu和Ce的Bi_2O_3催化剂,拓宽了催化剂的光响应范围,具有较高的光生载流子分离能力,在可见光下具有较好的光催化效果。通过对催化剂光降解污染物的途径及反应条件分析,得到反应速率方程,为催化剂的应用提供了理论依据。
Dye wastewater which contains azo, aromatic compounds and heavy metals isharmful to the human and ecological environment. It has high color degree, high CODand low biodegradability, resulting in high cost and low efficiency of dye wastewatertreatment. Therefore, how to develop a cost-effective technology for the treatment ofdye wastewater has been paid a lot of attention.
     The semiconductor photocatalytic technique is an advanced oxidation technologyand can produce strong oxidizing active substances by energy excitation. So it canmake use of solar clean energy. Recently, many researches focus on the TiO_2asphotocatalyst. Due to band gap of TiO_2which results in low utilization of light energy,there is a limit of TiO_2application. Therefore, there is a need to develop a new type ofnarrow band gap and wide absorbance range of photocatalyst.
     In this study, the preparation of Bi_2O_3doped with Eu was conducted by amorphouscomplexation. Thr catalysts were made up of oxide by Bi (III) and Eu (III) and Ce(Ⅳ).The results indicated that the influence of doping ratio on the crystal structure wassignificant. The crystal structure of Bi_2O_3and Bi_(0.25)(Bi_(0.375)Eu_(0.375))O_(1.5)is quadrangularpolymorph and non-stoichiometric ratio of the cubic crystal with the doping ratio of1:8, respectively. High doping ratio with more Eu can induce the Bi_2O_3transformed toBi_(0.25)(Bi_(0.375)Eu_(0.375))O_(1.5). The Europium-doped Bi_2O_3catalyst can effectively adsorbthe visible light. The band gap of catalyst was2.75eV when the doping amount of thesample1:8and1:4. But the band gap of catalyst was increased with increasing dopingamount. The band gap of catalyst was3.3eV when the doping amount was1mol/mol.The separation ability of light-generated electron-hole was strongest when Eudoping ratio was1:4, resulting that the methyl orange degradation rate can reach97.6%.
     The crystallinity was increased with increasing temperature and agglomeration wasproduced. At500°C and600°C, the Bi_(0.775)Eu0.225O_(1.5)with structure of rhombichexahedron was formed. The band gap of catalyst prepared at400°C was minimumand its separation ability of light-generated electron-hole was strongest, illustratinggreat photocatalytic activity. Thus, the optimal preparation condition is temperature of400°C with5h calcinations.
     The structure of Bi_2O_3doped with Ce is tetragonal and transformed to cubic crystalwhen doping amount is1:1. The crystallinity decreased with increasing dopingamount. Samples prepared under different doping levels have better light absorptionat550nm. Based on the catalyst photocatalytic ability of methyl orange, the optimumdoping ratio was1:1. The monoclinic polymorph of Bi_2O_3was formed at600℃andits photocatalytic ability was less than cubic crystal of Bi_2O_3. High temperatures led toagglomeration. The band gap of samples prepared at400℃is2.35eV and effectiveseparation of photo-generated electron-hole pairs produced, resulting that highestphotocatalytic degradation of methyl orange achieved up to99%within1hour.
     Based on the characteristics of Bi_2O_3catalyst with different doped rare earths, itwas found that the absorption edge of Bi_2O_3doped with Ce was obviously red shiftedand the band gap decreased. Compared with Bi_2O_3doped with Eu, the Bi_2O_3dopedwith Ce had a high voltage signal, photo-generated carriers separation and transportcapabilities. The degradation of methyl orange by Bi_2O_3catalyst doped with Ce was99%within1hour, while the degradation of methyl orange by Bi_2O_3catalyst dopedwith Eu was90%within2hour. This suggested that the best photocatalyst is Bi_2O_3catalyst doped with Ce.
     During the photocatalytic degradation of methyl orange by Bi_2O_3catalyst dopedwith Ce, some intermediate products were produced within4hours. After that, mostof intermediate products were mineralized to NO_3~-、SO_4~(2-)and a few amounts ofintermediate products were still incompletely degraded. It was found that the catalysthad the adsorption capacity of methyl orange. But photosensitization phenomenonwas not detected by UV-Vis DRS.The photocatalytic degradation of methylene blueby Bi_2O_3catalyst doped with Ce was different with photocatalytic degradation of methyl orange, but similar to the reaction rate. The adsorption of methylene blue washigher than that of methyl orange. A new peak appeared in the range of575-675nm inthe UV-Vis DRS results. Adsorbed dyes and intermediates prompted catalyst producemore active sites and extend the scope of the absorbance of the catalyst. Thephotosensitizing effect existed. However, due to the degradation of fuel by catalyst,the absorption peak weakened at the575-675nm after12h reaction.
     Photocatalytic reaction rate increased with the increasing amount of catalyst andlight intensity, while decreased with the increasing initial concentration of reactant.The reaction fitted to the first-order kinetics and their relationship can be expressed asν=0.0113C_0~(-1.459)m~(1.3458)P~(0.3332).The results showed that the reaction rate was inhibitedby Na_2SO_4, NaNO_3and NaCl, and the inhibitory effect of ions are enhanced withincreasing concentration.
     In general, the Bi_2O_3catalyst doped with Eu and Ce in this study had broad lightresponse range of the catalyst and high photo-generated carrier separation ability, andgood photocatalytic ability under visible light. Through the analysis of pathway andreaction condition in the photodegradation of pollutants, the relationship between thereaction rate and the different conditions was proposed in this study, aiming toprovide a theoretical basis for the application of the catalyst in future.
引文
[1]任南琪,周显娇,郭婉茜,等.染料废水处理技术研究进展[J/OL].化工学报,2012.
    [2]张红,李传运.染料废水处理技术的发展概况[J].辽宁城乡环境科技,2012,19(5):19-22.
    [3] MAHMOODI N M,SALEHI R,ARAMI M. Binary system dye removal fromcolored textile wastewater using activated carbon: Kinetic and isotherm studies [J].Desalination,2011,272(1-3):187-195.
    [4] WANG S,ZHU Z. Effects of acidic treatment of activated carbons on dyeadsorption [J]. Dyes and Pigments,2007,75(2):306-314.
    [5]谢治民,陈镇,戴友芝.海泡石复合吸附剂研制及处理染料废水性能研究[J].环境科学与技术,2009,32(2):130-133.
    [6] AVLONITIS S A,POULIOS I,SOTIRIOU D,et al. Simulated cotton dyeeffluents treatment and reuse by nanofiltration [J]. Desalination,2008,221(1-3):259-267.
    [7] FANG M,MISHIMA F,AKIYAMA Y,et al. Fundamental study on magneticseparation of organic dyes in wastewater [J]. Physica C: Superconductivity,2010,470(20):1827-1830.
    [8]王慧,周月霞,柏仕杰,等.染料废水生物法处理技术的研究进展[J].厦门大学学报(自然科学版),2008,47(S2):286-290.
    [9]胡俊生,任雪冬,马广韬,等.臭氧高级氧化技术处理酸性红B染料废水[J].沈阳建筑大学学报(自然科学版),2009,25(2):320-324.
    [10]樊毓新,周增炎.染料废水的处理方法现状与发展前景[J].环境保护,2002,30(9):22-24.
    [11]施帆君,孙世群,杨阳,等.微电解+Fenton试剂预处理染料废水工程实例研究[J].环境科学与管理,2009,34(11):93-96.
    [12] ARSLAN-ALATON I,GURSOY B H,SCHMIDT J-E. Advanced oxidation ofacid and reactive dyes: effect of Fenton treatment on aerobic, anoxic and anaerobicprocesses [J]. Dyes and Pigments,2008,78(2):117-130.
    [13]尹琳,陆现彩,艾飞. Ti-凹凸棒石催化剂对染料废水的臭氧氧化降解的影响[J].硅酸盐学报,2003,31(1):66-69.
    [14] SHI H,ZHANG T,AN T,et al. Enhancement of photocatalytic activity ofnano-scale TiO2particles co-doped by rare earth elements and heteropolyacids [J].Journal of Colloid and Interface Science,2012,380(1):121-127.
    [15]刘红. Bi2O3可见光催化降解黄药研究[D].武汉:武汉理工大学,2010.
    [16] BRASLAVSKY S E. Glossary of terms used in photochemistry,3rd edition(IUPAC Recommendations2006)[J]. Pure and Applied Chemistry,2007,79(3):293-465.
    [17]张喜.新型卤化氧铋BiOX (X=Cl、Br、I)光催化剂的合成、表征及催化性能研究[D].武汉:华中师范大学,2010.
    [18] Agatino Di Paola, Elisa Garcia-Lopez, Giuseppe Marci, et al. A survey ofphotocatalytic materials for environmental remediation[J]. Journal of HazardousMaterials,2012,211-212:3-29.
    [19]张彤,张悦炜,张世著,等.可见光响应型窄带隙半导体光催化材料的研究及应用进展[J].材料导报,2009,23(2):24-28.
    [20] LIU J,YANG R,LI S. Synthesis and photocatalytic activity of TiO2/V2O5composite catalyst doped with rare earth ions [J]. Journal of Rare Earths,2007,25(2):173-178.
    [21] LINSEBIGLER A L,LU G,YATES J T,et al. Photocatalysis on TiO2surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95735-758.
    [22] XIE H,SHEN D,WANG X,et al. Microwave hydrothermal synthesis andvisible-light photocatalytic activity of Bi2WO6nanoplates [J]. Materials Chemistryand Physics,2007,103(2-3):334-339.
    [23] MART NEZ-DE LA CRUZ A,OBREG N ALFARO S,L PEZ CU LLAR E,等. Photocatalytic properties of Bi2MoO6nanoparticles prepared by an amorphouscomplex precursor [J]. Catalysis Today,2007,129(1-2):194-199.
    [24] HU L,FLANDERS P M,MILLER P L,et al. Oxidation of sulfamethoxazole andrelated antimicrobial agents by TiO2photocatalysis [J]. Water Research,2007,41(12):2612-2626.
    [25] XIAO Q,ZHANG J,XIAO C,et al. Photocatalytic degradation of methyleneblue over Co3O4/Bi2WO6composite under visible light irradiation [J]. CatalysisCommunications,2008,9(6):1247-1253.
    [26] HE Z,SUN C,YANG S,et al. Photocatalytic degradation of rhodamine B byBi2WO6with electron accepting agent under microwave irradiation: mechanism andpathway [J]. Journal of Hazardous Materials,2009,162(2-3):1477-1486.
    [27] CHONG M N, JIN B, CHOW C W, et al. Recent developments inphotocatalytic water treatment technology: a review [J]. Water Research,2010,44(10):2997-3027.
    [28] ZHAO X, QU J, LIU H, et al. Photoelectrocatalytic degradation oftriazine-containing azo dyes at γ-Bi2MoO6film electrode under visible lightirradiation [J]. Environmental Science&Technology,2007,416802-6807.
    [29] McLintock I S,Ritchie M. Reactions on titanium dioxide; photo-adsorption andoxidation of ethylene and propylene[J]. Trans. Faraday Soc.1965,61:1007-1016.
    [30] Fujishima A,Honda K. Electrochemical Photolysis of Water at a SemicondutorEletrode [J]. Nature1972,238(5358):37-38.
    [31] Zheng Z K,Huang B B,Qin X Y,et al. Strategic Synthesis of Hierarchical TiO2Microspheres with Enhanced Photocatalytic Activity [J]. Chem. Eur. J,2010,16:11266–11270
    [32] Majid M, Samira S. Enhanced Self-cleaning, Antibacterial and UV ProtectionProperties of Nano TiO2Treated Textile through Enzymatic Pretreatment [J].Photochemistry and Photobiology,2011,87:877–883.
    [33] MAEDA K. Photocatalytic water splitting using semiconductor particles: historyand recent developments [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2011,12(4):237-268.
    [34] MAHMOOD M A, BARUAH S, ANAL A K, et al. Heterogeneousphotocatalysis for removal of microbes from water [J]. Environmental ChemistryLetters,2011,10(2):145-151.
    [35] NEGISHI N,TAKEUCHI K,IBUSUKI T. Preparation of the TiO2thin filmphotocatalyst by the dip-coating process [J]. Journal of Sol-Gel Science andTechnology,1998,13691-694.
    [36] XU J,CHEN M,FU D. Study on highly visible light active Bi-doped TiO2composite hollow sphere [J]. Applied Surface Science,2011,257(17):7381-7386.
    [37]张爱勇,肖羽堂,高冠道,等.光催化法处理制药废水应用研究进展[J].工业用水与废水,2006,37(5):1-6.
    [38]郭佳,张渊明,杨骏,等.光催化氧化降解制药废水中头孢曲松钠的研究[J].生态科学,2008,27(6):446-451.
    [39] PAUL T,DODD M C,STRATHMANN T J. Photolytic and photocatalyticdecomposition of aqueous ciprofloxacin: transformation products and residualantibacterial activity [J]. Water Research,2010,44(10):3121-3132.
    [40]张乐观.组合光催化技术在水处理中的应用[J].化工进展,2006,25(9):1036-1040.
    [41]李园园.铋系光催化剂纳米—微米结构的制备、修饰及可见光催化性能研究[D].武汉:华中师范大学,2009.
    [42]张士成,姚文清,朱永法,等.可见光响应Bi2WO6薄膜的制备与光电化学性能[J].物理化学学报,2007,23(1):111-115.
    [43] SHANG M,WANG W,SUN S,et al. Bi2WO6nanocrystals with highphotocatalytic activities under visible light [J]. Journal of Chemical Physics,2008,11210407-10411.
    [44] GE L,LIU J. Efficient visible light-induced photocatalytic degradation of methylorange by QDs sensitized CdS-Bi2WO6[J]. Applied Catalysis B: Environmental,2011,105(3-4):289-297.
    [45] FINLAYSON A P,TSANEVA V N,LYONS L,et al. Evaluation ofBi-W-oxides for visible light photocatalysis [J]. Physica Status Solidi (A),2006,203(2):327-335.
    [46] KUBACKA A, FERNANDEZ-GARCIA M, COLON G. Advancednanoarchitectures for solar photocatalytic applications [J]. Chemical Reviews,2012,112(3):1555-1614.
    [47] CHENG H,HUANG B,WANG Z,et al. One-pot miniemulsion-mediated routeto BiOBr hollow microspheres with highly efficient photocatalytic activity [J].Chemistry-A European Journal,2011,17(29):8039-8043.
    [48] YE L,LIU J,GONG C,et al. Two different roles of metallic Ag onAg/AgX/BiOX (X=Cl, Br) visible light photocatalysts: surface plasmon resonanceand Z-scheme bridge [J]. ACS Catalysis,2012,2(8):1677-1683.
    [49]张秀芳. BiVO4纳米膜的制备,改性及可见光光电催化性能研究[D].大连:大连理工大学,2009.
    [50] YU J,ZHANG Y,KUDO A. Synthesis and photocatalytic performances ofBiVO4by ammonia co-precipitation process [J]. Journal of Solid State Chemistry,2009,182(2):223-228.
    [51]吴绍华,刘进,兰尧中. Bi2O3制备方法的研究现状及发展趋势[J].湿法冶金,2005,24(3):121-127.
    [52] LEI H,LI-PING L,TING-JIANG Y,et al. Synthesis, characterization andphotocatalytic activity of Bi2O3[J]. Journal of Structure Chemistry,2009,28(11):1458-1464.
    [53]石西昌,肖政伟,秦毅红.超细氧化铋制备研究[J].湖南有色金属,2003,19(4):15-16.
    [54]郑波,庞爱红,顾建胜.低温制备超细γ-Bi2O3粉末[J].高等学校化学学报,2005,26(4):628-630.
    [55]邹文,郝维昌,信心,等.不同晶型Bi2O3可见光光催化降解罗丹明B的研究[J].无机化学学报,2009,25(11):1971-1976.
    [56] CABOT A,MARSAL A,ARBIOL J,et al. Bi2O3as a selective sensing materialfor NO detection [J]. Sensors and Actuators B: Chemical,2004,99(1):74-89.
    [57] DRACHE M,ROUSSEL P,WIGNACOURT J-P. Structures and oxide mobilityin Bi-Ln-O materials:heritage of Bi2O3[J]. Chemical Reviews,2007,10780-96.
    [58]孙旭辉.可见光响应光催化剂Bi20TiO32的制备及分解水中有机物效能与机理[D].哈尔滨:哈尔滨工业大学,2010.
    [59]杨迎春,卢远刚,叶芝祥,等. La掺杂Bi2O3的制备、表征与可见光催化活性[J].化学学报,2012,70(11):1250-1256.
    [60] PENG D,YAO-GUO D,ZI-LI X. Effect of preparation methods of Bi2O3nanoparticles [J]. Chemical Research in Chinese University,2004,20(6):717-721.
    [61]马占营,姚秉华,何仰清,等.网状结构Bi2O3光催化剂的合成及其光催化性能[J].功能材料,2013,44(4):1-6.
    [62] ZHOU L,WANG W,XU H,et al. Bi2O3hierarchical nanostructures:controllable synthesis, growth mechanism, and their application in photocatalysis [J].Chemistry,2009,15(7):1776-1782.
    [63]满毅,宗瑞隆,朱永法. Bi2MoO6纳米薄膜的制备及其光电性能[J].物理化学学报,2007,23(11):1671-1676.
    [64]李二军,夏凯,代威力,等Bi2O3-MgO复合材料的制备_表征及其光催化性能研究[A], In2010年中西部地区无机化学化工学术研讨会[C],青海,2010.
    [65] TANG J,ZOU Z,YE J. Efficient photocatalysis on BaBiO3driven by visiblelight [J]. Journal of Physical Chemistry C,2007,11112779-12785.
    [66] LIN X,HUANG F,WANG W,et al. Methyl orange degradation over a novelBi-based photocatalyst Bi3SbO7: correlation of crystal structure to photocatalyticactivity [J]. Dyes and Pigments,2008,78(1):39-47.
    [67]王崇侠,宋庆平,张会,等.稀土离子(Sm3+,La3+)掺杂纳米TiO2光催化性能研究[J].安徽工程科技学院学报,2009,24(1):14-17.
    [68]许文苑.稀土掺杂纳米TiO2的制备、性能及机理研究[D].北京:中国矿业大学,2010.
    [69] KIM S,HWANG S-J,CHOI W. Visible light active platinum-ion-doped TiO2photocatalyst [J]. Journal of Physical Chemistry B,2005,10924260-24267.
    [70] CHOI J,PARK H,HOFFMANN M R. Effects of single metal-ion doping on thevisible-light photoreactivity of TiO2[J]. Journal of Physical Chemistry C,2010,114783-792.
    [71]王继业,李铭岫.稀土氧化物对WO3-Bi2O3催化剂性能的影响[J].精细石油化工,2003,20(5):36-38.
    [72]侯廷红.稀土掺杂纳米TiO2的结构和电子特性研究[D].四川:四川大学,2006.
    [73]于向阳,程继健,杨阳,等.稀土元素掺杂对TiO2光催化性能的影响[J].华东理工大学学报,2000,26(6):287-289.
    [74]水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16(5):459-493.
    [75]崔玉民,范少华,张颖.稀土掺杂TiO2纳米微粒的合成、表征及光催化活性[J].北京科技大学学报,2006,28(10):956-958.
    [76] Jing L Q,Sun X J,Xin B F,et al. The preparation and characterization of Ladoped TiO2nanoparticles and their photocatalytic activity [J]. Journal of Solid StateChemistry,2004,177(10):3375-3382.
    [77] LI L,YAN B. CeO2–Bi2O3nanocomposite: two step synthesis, microstructureand photocatalytic activity [J]. Journal of Non-Crystalline Solids,2009,355(13):776-779.
    [78] XIE J,JIANG D,CHEN M,et al. Preparation and characterization ofmonodisperse Ce-doped TiO2microspheres with visible light photocatalytic activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,372(1-3):107-114.
    [79] WANG C,CAO L. Preparation, spectral characteristics and photocatalyticactivity of Eu3+-doped WO3nanoparticles [J]. Journal of Rare Earths,2011,29(8):727-731.
    [80]谢英娜,安胜利,袁春华. La/Pr共掺杂纳米TiO2粉体的光催化性能[J/OL].复合材料学报,2012.
    [81] SHAARI N,TAN S H,MOHAMED A R. Synthesis and characterization ofCNT/Ce-TiO2nanocomposite for phenol degradation [J]. Journal of Rare Earths,2012,30(7):651-658.
    [82] SHI H,ZHANG T,WANG H. Preparation and photocatalytic activity of La3+and Eu3+co-doped TiO2nanoparticles: photo-assisted degradation of methylene blue[J]. Journal of Rare Earths,2011,29(8):746-752.
    [83] FENG C,XU G,LIU X. Photocatalytic degradation of imidacloprid bycomposite catalysts H3PW12O40/La-TiO2[J]. Journal of Rare Earths,2013,31(1):44-48.
    [84] KUMAR S,SAHARE P D. Nd-doped ZnO as a multifunctional nanomaterial [J].Journal of Rare Earths,2012,30(8):761-768.
    [85]陈俊涛,李新军,杨莹,等. Sm掺杂对TiO2薄膜光催化性能的影响[J].催化学报,2004,25(5):397-402.
    [86] SHI Z,YANG X,YAO S. Photocatalytic activity of cerium-doped mesoporousTiO2coated Fe3O4magnetic composite under UV and visible light [J]. Journal of RareEarths,2012,30(4):355-360.
    [87] WANG Y,LU K,FENG C. Photocatalytic degradation of methyl orange bypolyoxometalates supported on yttrium-doped TiO2[J]. Journal of Rare Earths,2011,29(9):866-871.
    [88] LIN Y,PI P,ZHENG D,et al. Preparation and photocatalytic activity of laponitepillared by CeO2modified TiO2[J]. Journal of Rare Earths,2010,28(5):732-736.
    [89] FAN C,XUE P,SUN Y. Preparation of nano-TiO2doped with Cerium and itsphotocatalytic activity [J]. Journal of Rare Earths,2006,24(3):309-313.
    [90] MIANXIN S,LIANG B,TIANLIANG Z,et al. Surface ζ potential andphotocatalytic activity of rare earths doped TiO2[J]. Journal of Rare Earths,2008,26(5):693-699.
    [91]井立强,孙晓君,蔡伟民,等.掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J].化学学报,2003,61(8):1241-1245.
    [92]郑云,顾彦,汪淑廉,等.铕掺杂TiO2的制备及其可见光光催化性能研究[J].影像科学与光化学,2012,30(1):60-70.
    [93]王韵芳,樊彩梅,孙彦平. Gd3+掺杂SiO2/TiO2的制备及降解活性[J].硅酸盐学报,2011,39(9):1477-1482.
    [94] XIE Y,YUAN C. Characterization and photocatalysis of Eu3+–TiO2sol in thehydrosol reaction system [J]. Materials Research Bulletin,2004,39(4-5):533-543.
    [95] LIN J,YU J C. An investigation on photocatalytic activities of mixed TiO2-rareearth oxides for the oxidation of acetone in air [J]. Journal of Photochemistry andPhotobiology A: Chemistry,1998,11663-67.
    [96]赵秀峰,张志红,孟宪锋,等. B掺杂TiO2/AC光催化剂的制备及活性[J].分子催化,2003,17(4):292-296.
    [97] WANG W,LU C,SU M,et al. Synthesis, characterization, and nitrogenconcentration depended visible-light photoactivity of Nitrogen-doped TiO2nanosheets with dominant (001) facets [J]. Chinese Journal of Catalysis,2012,33(4-6):629-636.
    [98] GEORGIEVA J, VALOVA E, ARMYANOV S, et al. Bi-componentsemiconductor oxide photoanodes for the photoelectrocatalytic oxidation of organicsolutes and vapours: a short review with emphasis to TiO2-WO3photoanodes [J].Journal of Hazardous Materials,2012,211-21230-46.
    [99]王彦斌,祝钧,周磊.复合半导体纳米材料的研究与制备[J].化工新型材料,2005,33(11):11-13.
    [100]丁欣宇,景晓辉,汤艳峰,等.纳米TiO2-Bi2O3-La2O3复合材料的制备及光、电催化性能研究[J].精细化工,2008,25(6):532-535.
    [101]张音波,余煜棉,刘千钧.多相光催化降解染料废水的研究进展[J].工业水处理,2001,21(12):1-4.
    [102]王敏,刘琼,车寅生,等.溶胶-凝胶法制备Eu3+掺杂BiVO4及其可见光光催化性能[J].无机化学学报,2013,28(2):1-6.
    [103]李莉萍,魏诠,任孝林,等.(Sr,Ba)EuTiO3的高温高压合成剂XPS研究[J].高等学校化学学报,1994,15(8):1195-1198.
    [104] MERCIER F,ALLIOT C,BION L,et al. XPS study of Eu(III) coordinationcompounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy[J]. Journal of Electron Spectroscopy and Related Phenomena,2006,150(1):21-26.
    [105]桑丽霞,钟顺和,傅希贤,LaBO3(B=Fe,Co)中氧的迁移与光催化反应活性[J].高等学校化学学报,2003,24(2)320-323.
    [106]Jing L Q,Xu Z L,Sun X J, et al. The surface properties and photocatalyticactivities of ZnO ultrafine particles[J]. Applied Surface Science,180(2001):308-314.
    [107]吴树新,尹燕华,何菲,等.掺铜TiO2光催化剂光催化氧化还原性能的研究[J].感光科学与光化学,2005,23(5):333-339
    [108]梁新义,马智,白正辰,等,超声共沉淀法制备纳米结构LaNiO3及其性质[J].物理化学学报,2002,18(6):567-571
    [109]赵鹤玲,夏海平.Bi离子掺杂GeO2-Nb2O5-X玻璃的近红外宽带发光特性研究[J].光电子激光,2012,2(1):106-110.
    [110] Zhang L S, Wang W Z, Yang J, et al..Sonochemical synthesis of nanocrystalliteBi2O3as a visible-light-driven photocatalyst[J]. Applied Catalysis A: General308(2006)105–110
    [111]宋伟,窦伯生.丙烷氧化反应中多组分氧化物Bi-V–MO-O催化作用的红外光谱研究[J].应用化学,1996,13(5):58-60
    [112]卢远刚,杨迎春,叶芝祥,等.氮掺杂Bi2O3光催化剂的制备及其可见光催化性能[J].无机材料学报,2007,27(6):643-648
    [113] Wang C H, Shao C L, Wang L J, et al. Electrospinning preparation,characterization and photocatalytic properties of Bi2O3nanofibers[J]. Journal ofColloid and Interface Science333(2009):242–248.
    [114]屈宜春,井立强,林景升,等. Eu2O3修饰对纳米TiO2热稳定性及光催化活性的影响[J].分子催化,2009,23(4):357-361.
    [115]井立强,袁福龙,侯海鸽,等. ZnO纳米粒子的表面氧空位与其光致发光和光催化性能的关系[J].中国科学B辑化学2004,34(4):310一314.
    [116]罗丽珠.金属Ce表面氧化反应XPS研究[D].北京:中国工程物理研究院,2005
    [117] ARENAS M A, A A,DE DAMBORENEA J. X-ray photoelectronspectroscopy study of the corrosion behaviour of galvanised steel implanted with rareearths [J]. Corrosion Science,2004,46(4):1033-1049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700