可见光光催化剂制备、表征及光催化效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境中的有机污染物(如酚类、卤代烃、芳烃及其衍生物、杂环化合物等)具有成份复杂、毒性大等特点,用传统的治理理技术很难处理。光催化氧化具有很强的氧化性,在有机污染物的降解中发挥着非常重要的作用。目前所研究的催化剂主要是TiO2,该催化剂的局限性在于其禁带较宽,在可见光照射下无光催化活性。同时由于其在光反应中电子和空穴复合率较高,催化效率较低,并且在实际应用中TiO2颗粒回收较难。
     论文以开发禁带宽度较窄的新型纳米可见光催化剂、TiO2改性、固载及磁负载研究为目标,设计并合成一系列新型可见光催化剂,并进行表征分析,研究催化剂表面结构和活性组元对降解有毒有机污染物效果的影响,并对其作用机理进行分析。主要研究内容和结论如下:
     (1)采用含铋前驱体合成禁带宽度较窄的新型纳米可见光催化剂钨酸铋和钒酸铋,并通过金属Ag表面修饰对钒酸铋表面改性以提高其光催化能力;采用溶胶-凝胶法制备MoS:纳米管表面修饰TiO2光催化剂,并将其负载于粉煤灰微珠,形成负载型TiO2光催化剂;以溶胶-凝胶法制备了TiO2/SrFe12O19、TiO2/SiO2/γ-Fe2O3纳米复合颗粒磁性光催化剂。
     (2)以空气中的O2作氧化剂,分别在紫外光和可见光下考察Ag-BiVO4的光催化活性以及对亚甲基蓝(MB)染料的降解效果。对比实验发现:Ag对BiVO4催化剂的修饰明显提高MB的降解率,最佳Ag掺杂量为3 wt%;经100℃热处理后得到的Ag-BiVO4光催化剂对MB的去除率最高,2 h后降解率可达95%以上;可见光条件下Ag-BiVO4降解MB的程度要比紫外光下的要深。同时考察了Bi2WO6催化刺对MB降解率的影响。结果表明:催化剂用量为0.2g/L,pH值为9.30,MB的初始浓度为10 mg/L时,对MB降解的效果最佳,4h后MB的降解率达到80%。
     (3)考察了Ti02复合MoS2及负载粉煤灰的负载量、催化剂用量、热处理温度等不同条件下催化剂的光催化活性。实验表明:在复合量为0.4 wt%,用量为0.02wt%,溶液初始浓度为15mg/L, pH为碱性条件,曝气量为1 L/min时可见光下复合MoS2纳米管TiO2光催化剂2h后MB的降解率达到最大,为70%;负载一次,热处理温度为500℃时,改性MoS2-负载粉煤灰的纳米Ti02对MB的降解率达80%。
     (4)纳米钙钛矿型TiO2包覆型磁性复合光催化剂TiO2/SrFe12O19,具有较好的可见光催化活性,且当铁氧体修饰量为20%,催化剂用量1.5g/L,MB初始浓度10mg/L以及溶液pH值6.8时,在可见光照射条件下,5h后MB的降解率达到95%以上。催化剂回收及重复实验表明:TiO2/SrFe12O19的每次回收率都在90%以上,而且回收后的催化剂的催化效率每次变化不大,在第5次使用时,5h后的降解率仍保持在90%左右,重现性较好。以y-Fe2O3为磁基体,制备了TiO2/SiO2/γ-Fe2O3,表征结果表明,TiO2/SiO2/γ-Fe2O3材料不但增强了对紫外光的吸收能力,更进一步拓宽了其在可见光区的光谱范围;磁性测试证明了该催化剂保留了γ-Fe2O3的顺磁性能,有利于提高其水相中的分散性,并能通过外加磁场有效地进行固液分离。在紫外光下TiO2/SiO2/γ-Fe2O3对MB的降解率最高达到98%以上,在可见光下达到65%;催化剂回收及重复实验表明:TiO2/SiO2/γ-Fe2O3具有较好循环重复使用性能,循环使用三次后,对MB的降解率保持在95%以上。经过两次的分离循环使用后,TiO2/SiO2/γ-Fe2O3催化剂的平均回收率为97%,说明该催化剂有良好的磁分离性能,是一种易于分离且光催化效果明显的磁载型光催化剂。
Organic pollutants in water environment (Such as phenols, halogenated hydrocarbons, aromatic hydrocarbons and their derivatives, heterocyclic compounds, etc.) with the characteristics of complicated composition, toxicity are difficult to treat by the traditional environmental controlling technology. Photocatalytic chemistry has a strong oxidbillity, so it plays a very important role in the degradation of organic pollutants. Current researches about catalyst are mainly TiO2.The limitations of the catalyst is its wide band gap, so it has no photocatalytic activity in the visible light. The photocatalytic efficiency is lower because of difficult separation of electron and holes. It is difficult to recycle this catalyst.
     In this paper, new catalysts with high efficiency photocatalytic activity in the visible light, TiO2 modification and immobilization, magnetic carrier catalyst were studied. A series of new visible light catalysts were designed and synthesized. The catalytic activity of the degradation of toxic organic pollutants was tested. It was focused on the catalyst surface structure and the active component of the degradation activity of organic pollutants. And the principle was analyzed. The main research contents and results are as follows:
     (1) The new nano visible light photocatalysts, BiVO4 and Bi2WO6 were prepared with the Bi contained precursor. And the photocatalytic activity of BiVO4 was improved by the surface modification with Ag. The MoS2 NAno-tube mingled Nano-TiO2 micro-sphere catalyst and loaded fly ash micro-sphere photo-catalyst were prepared by sol-gel method.The new coated magnetic photocatalysts TiO2/SrFe12O19 and TiO2/SiO2/γ-Fe2O3 were prepared by sol-gel method.
     (2) The MB degradation by Ag-BiVO4 was examined under the UV irradiation and visible light irradiation using the O2 in the atmosphere. The compare experiments show that:The presence of Ag significantly enhanced the MB degradation and the optimal content of Ag was 3 wt%. It is confirmed that the calcination temperature on Ag-BiV04 is very important for the photocatalytic activity and the highest removal of MB was obtained by calcination at 100℃. The MB degradation is 95% after 2h. The UV-Vis spectral analysis showed that blue shift resulting from N-demethylation of MB occurred accompanied with oxidative degradation. On the same time, the MB degradation by Bi2WO6 was researched. The results demonstrated that the activity of catalyst which were prepared by hydrothermal process much better than prepared by solid-state reaction method. In the MB/ Bi2WO6 system, MB was effectively degraded by about 80% within 4 h, when the dosage of catalyst was 0.2 g/L, the initial concentration of MB was 10 mg /L and pH was 9.30.
     (3) The photocatalytic activity of the MoS2 NAno-tube mingled Nano-TiO2 micro-sphere catalyst and loaded fly ash micro-sphere photo-catalyst was examined in different conditions, such as loading volume, catalyst volume, temperature of the heat treatment, and so on. The experimental results show that:The MB degradation ratio is 70% after 2h while the loading volume is 0.4wt%, the catalyst volume is 0.02wt%, the original concentration is 15mg/L, pH>7, the aeration is 1L/min. The MB degradation ratio with TiO2 loaded fly ash micro-sphere photo-catalyst is 80% while it is loaded one time and prepared in 500℃
     (4) The catalysts, the ferrite coated by a layer of nano-anatase TiO2 (TiO2/SrFe12O19) still had excellent magnetic property and showed strong absorptive property under visible light irradiation. At the conditions of the doped content of barium ferrite of the photocatalyst, initial concentration of MB and pH value being 20 wt%,1.5 g·L-1,10 mg·L-1 and 6.8, respectively, the degradation of MB reached to above 95% in five hours under visible light. Furthermore, the degradation of using the two photocatalysts followed the first-order reaction kinetic model at different conditions in the reaction system. Finally, after magnetic separation of the catalysts for four times, the recovery rate of the catalyst was above 90%, the photocatalytic degradation rate of MB was around 90%. So the magnetic photocatalyst is very easy to recycle. The composite material of TiO2/SiO2/γ-Fe2O3 was synthesized via sol-gel technology, and theγ-Fe2O3 was the magnetic core. The characterization results indicate thatγ-Fe2O3 was red-brown, and the spectrum lines position of X-ray diffraction of TiO2 were in agreement with the standard spectrum of anatase TiO2. VSM results show that the composite has good magnetic property after loaded. The degradation of MB reached to above 98% under UV light, while the degradation is above 65% under visible light. After magnetic separation of the catalysts for two times, the recovery rate of this catalyst was above 97%. After magnetic separation of the catalysts for three times, the photocatalytic degradation rate of MB was around 95 %. Based on it s properties of high photocatalytic activity and easy separation and recovery, the photocatalyst will have a promising application.
引文
[1]曹平,中祚飞.光催化纳米二氧化钛在净化领域中的应用进展[J].洁净与空调技术,2006,2.
    [21刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.
    [3]X. Chen, Samuel S. MaoTitanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107:2891-2959.
    [4]P. Salvador, M. L. Garciaconzalez, F. Munoz. Catalytic role of lattics in the photoassisted oxidation of water at (001) n-TiO2 rutile [J]. Phys.Chem.,1992,96(25):10349-10353.
    [5]R. F. Howe, M. Gratzel. EPR study of hydrated anatase under UV irradiation [J]. Phys. Chem, 1987,91:3906-3909.
    [6]范崇政,肖建平,丁延伟.纳米TiO2的制备与光催化反应研究进展[J].科学通报,2001,2(46):4-9.
    [7]苻春林,魏锡文.二氧化钛晶型转变研究进展[J].涂料工业,1999,2:28-30.
    [8]范崇,肖建平,丁延伟.纳米TiO2的制备与催化反应研究进展[J].科学通报,2001,46(4):265-273.
    [9]F. E. Osterloh, Inorganic Materials as Catalysts for Photochemical Splitting of Water[J]. Chem. Mater.2008,20,35-54
    [10]A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev.,2009,38,253-278
    [11]R W. Matthews, Photooxidation of organic impurities in water using thin film of titanium dioxide[J].J.Phys.Chem,1987,91:3328-3333.
    [12]Y. Zhang, John C. Crittenden. Fixed-Bed Photocatalysts for Solar Decontamination of Water.Environ[J].Sci.Technol.,1994,28:435-442.
    [13]M. Abdllah, G. K. C. Lew, R. W. Matthew. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J].Phys.Chem, 1990,94:6820-6825.
    [14]J. C. Crittenden, Y. Zhang, D. W. Hand. Solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts[J]. Wat Environ Res,1996,68:270-278.
    [15]D. M. Nikolaki, C. N. Zerva, J. Constantine. Philippopoulos, Photocatalytic oxidation of 1,3-dichloro-2-propanol aqueous solutions with modified TiO2 catalysts[J]. Appl. Catal. B: Environ.,2009,90:89-98.
    [16]H. Gerisher, A. Heller. The role of oxygen in photooxidation of organic molecules on semiconductor particles[J]. Phys. Chem,1991,95:5261-5267.
    [17]张元广,陈友存.纳米Ti02微球的制备及光催化性能研究[J].材料科学与工程学报,2003,21(1):60-63.
    [18]M. Marcia, F. Jardim. Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst[J]. Wat.Res.,1991,25 (7):823827.
    [19]K. Harada, T. Hisanaga, K. Tanaka, Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions[J].Wat.Res.,1990,24(11):1415-1417.
    [20]姚晓斌,马颖,姚建年.贵金属对TiO2悬浮液光照过程中H20形成的促进作用[J].感光科学与光化学,1999,17(2):159-163.
    [21]D. Lin, H.Wu, R. Zhang, W. Pan. Enhanced Photocatalysis of Electrospun Ag-ZnO Heterostructured Nanofibers[J]. Chem. Mater.2009,21:3479-3484.
    [22]K. Maeda, K. Domen. Photocatalytic Water Splitting:Recent Progress and Future Challenges[J]. J. Phys. Chem. Lett.2010,1:2655-2661
    [23]A. H. Zyoud, N. Zaatar, I. Saadeddin, C. Ali, D.Park, G. Campet, H. S. Hilal. CdS-sensitized TiO2 in phenazopyridine photo-degradation:Catalyst efficiency, stability and feasibility assessment[J]. J. Hazard. Mater.,2010,173:318-325.
    [24]L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid [J]. Appl. Catal. B: Environ.,2010,94:142-149
    [25]Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S. Kim. Highly Efficient Visible-Light-Induced Photocatalytic Activity of Nanostructured AgI/TiO2 Photocatalyst[J]. Langmuir 2008,24,8351-8357
    [26]H. Yan, H. Yang, TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation[J]. J. Alloys Compd.2011,509:L26-L29
    [27]X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, L. Chen, Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity[J]. Mater. Sci. Eng., B 2009,158: 40-47
    [28]J. Moser, S. Punchiheua, P. P. Infelta. Langmuir,1991,7(12):3012-3018.
    [29]T. Jesionowski, A. Przybylska, B. Kurc, F. Ciesielczyk. Hybrid pigments preparation via adsorption of C.I. Mordant Red 3 on both unmodified and aminosilane-functionalised silica supports[J]. Dyes and Pigments,2011,89:127-136
    [30]X. Wang, J. Jia, Y. Wang, Degradation of C.I. Reactive Red 2 through photocatalysis coupled with water jet cavitation[J]. J. Hazard. Mater.,2011,185:315-321.
    [31]江立文,李耀中,周岳溪等.负载型TiO2固定相光催化固定化技术研究[J].工业水处理,2000,20(9):8-10.
    [32]冷文华,成少安,刘鸿等.负载型TiO2光催化降解苯胺[J].环境科学学报,2000,20(4):449-503.
    [33]李先学, 陈彰旭, 沈高扬, 陈国强, 齐鹏昆.TiO2光催化降解染料废水的研究进展[J].染料与染色,2010,147:42-46.
    [34]C. Hu. Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes[J]. Appl. Catal. B:Environ.2001,30,277-285.
    [35]文学沫等.光催化法处理印染废水的研究[J].太阳能学报,1985,6(2):201-203.
    [36]王怡中等.不同类型染料化合物的太阳光降解研究[J].太阳能学报,1998,19(2):117-126.
    [37]孙尚梅等.TiO2膜太阳光催化氧化法处理毛纺染整废水[J].化工环保,2000,20(1):11-13.
    [38]曾庆福等.水溶性染料的光催化研究[J].染整技术,1999,21(2).
    [39]陈崧哲,张彭义,祝万鹏等.可见光响应光催化剂研究进展[J].化学进展,2004,16(4):613-619.
    [40]唐剑文,吴平霄,曾少雁等.二氧化钛可见光光催化剂研究进展[J].现代化工,2005,25(2):25-28.
    [41]陈水辉,彭峰,王红娟.具有可见光活性的光催化剂研究进展[J].现代化工,2004,7:24-28.
    [42]A. Fujishima, T. N. Rao, D. A. Tryk. Titanium D ioxide Photocatalysis[J]. J. Photochem. Photobiol. A.,2000,1(1):1-21.
    [43]赵文宽,牛晓宁,贺飞等TiO2/SiO2的制备及其对染料X-3B溶液降解的光催化活性[J].催化学报,2001,22(2):171-174.
    [44]袁进,吕永康,李裕,李军平.介孔磁性光催化剂的制备及其催化降解硝基苯[J].催化学报,2010,31:597-603.
    [45]O. K. Varghese, C. A. Grimes. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells:A review with examples using titania nanotube array photoanodes[J]. Solar Energy Mater. Solar Cells,2008,92:374-384
    [46]张峰,李庆霖,杨建军等.TiO2光催化剂的可见光敏化研究[J].催化学报,1999,20(3):329.
    [47]岳林海等.稀土元素掺杂二氧化钛催化剂光降解久效磷的研究[J].上海环境科学,1998,17(9):17.
    [48]于向阳,程继健,杜永娟.稀十元素掺杂对TiO2相组成和光催化性能的影响[J].玻璃与陶瓷,2000,28(2):15.
    [49]H. Nusbaumer, J. E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel. CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells[J]. J. Phys. Chem. B.2001,105(43):10461-10464.
    [50]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境污染治理技术与设备,1997,5(3):1-10.
    [51]Y. Zheng, C. Chen, Y.Zhan, X.Lin, Q.Zheng, K.Wei, J. Zhu. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst:Correlation between Structure and Property[J]. J. Phys. Chem. C 2008,112,10773-10777
    [52]J. Bandara, K. Tennakone, J. Kiwi. Surface Mechanism of Molecular Recognition between Aminophenols and Iron Oxide Surfaces[J]. Appl. Catal. A:Gen.,2001,208:335-341.
    [53]N. Bensalah, A. Gadri, P. Canizares. Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes[J]. Enviro. Sci. Technol.,2005,39(18): 7234-7239.
    [54]李卫华,郝彦忠,王艳芹等.硫化镉/Ru(Ⅱ)配合物复合敏化ZnO纳米晶多孔膜电极的光电化学[J].北京大学学报(自然科学版),1999,35(4):446-452.
    [55]T. Abe, E. Suzuki, K. Nagoshi. Reply to the Comment on Electron Source in Photoinduced Hydrogen Production on Pt-Supported TiO2 Particles[J]. J. Phys. Chem. B.2001, 105(2):597-597.
    [56]Asahi R,Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-dopedtitanium oxides[J]. Science.2001,293:269-271.
    [57]Akihiko Hattori, Miwako Yamamoto, Hiroaki Tada, et al. A promoting effect of NH4F addition on the photocatalytic activity of Sol-gel TiO2 films[J]. Chemistry Letters.1998,8: 707-708.
    [58]H. Akihiko, T. Hiroaki. High photocatalytic activity of F-doped TiO2 film on glass[J]. J. Sol-Gel Sci. Tech.2001,22:47-52.
    [59]Y. Paz, Z. Luo, L. Rabenberg. Photooxidative self-cleaning transparent titanium dioxide films on glass[J]. J. Material. Res.1995,10(11):2842-2848.
    [60]Z. Wen, T.Liu. Hydrogen sensing characteristics and mechanism of nanosize TiO2 dope with metallic ions[J]. Physica B:Condensed Matter,2010,405:564-568
    [61]I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J]. Appl. Catal. B:Environ.2003,42: 187-201.
    [62]D. Jing, Y. J. Zhang, L. J Guo. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution[J]. Chem. Phys. Lett.2005,415:74-78.
    [63]H. M. Ankova, J. Krysa, J. Jirkovsky, G. Mailhot, M. Bolte. The influence of Fe(Ⅲ) speciation on supported TiO2 efficiency:example of monuron photocatalytic degradation[J]. Appl. Catal. B:Environ.2005,58:185-191.
    [64]H. Li, G. Liu, S. Chen, Q. Liu. Novel Fe doped mesoporous TiO2 microspheres: Ultrasonic-hydrothermal synthesis, characterization, and photocatalytic properties[J]. Physica E:Low-dimensional Systems and Nanostructures,2010,42:1844-1849
    [65]F. Fresno, C. Guillard, J. M. Coronado, J. M. Chovelon, D. Tudela, J. Soria, J. M. Herrmann. Photocatalytic degradation of a sulfonylurea herbicide over pure and tin-doped TiO2 photocatalysts[J]. J. Photochem. Photobiol.A,2005,173:13-20.
    [66]Y. Yang, X. Li, J. T. Chen, L. Y. Wang. Effect of doping mode on the photocatalytic activities of Mo/TiO2[J]. J. Photochem. Photobiol.A,2004,163:517-522.
    [67]C. Belver, R. Bellod, S. J. Stewart. Nitrogen-containing TiO2 photocatalysts Part 2: Photocatalytic behavior under sunlight excitation[J]. Appl. Catal. B:Environ.2006,65: 309-314.
    [68]M. C. Yang, T. S. Yang, M. S. Wong. Nitrogen-doped titanium oxide films as visible light photocatalyst byvapor deposition[J]. Thin Solid Films.2004,469:1-5.
    [69]M. Sathish, B. Viswanathan, R. P. Viswanath. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst[J]. Chem. Mater. 2005,17:6349-6353.
    [70]A. Kumar, N. Mathur. Photocatalytic degradation of aniline at the interface of TiO2 suspensions containing carbonate ions[J]. J. Colloid Interface Sci.2006,300:244-252.
    [71]X. Liu, X.Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation[J]. J.Hazard. Mater.,2008,152:48-55
    [72]T. Hattori, K. Sakurai, N. Koike, S. Miyano. Is the CD Exciton Chirality Method Applicable to Chiral 1,1'-Biphenanthryl Compounds[J]. J. Am. Chem. Soc.1998,120(35):9086-9087.
    [73]Y. Kawaguchi, A. Harada. An Electric Trap:A New Method for Entrapping Cyclodextrin in a Rotaxane Structure. [J]. J. Am. Chem. Soc.2000,122(15):3797-3798.
    [74]L. Zang, C. Lange, I. Abraham, S. Storck, W. F. Maier, H. Kisch. Amorphous Microporous Titania Modified with Platinum(IV) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification[J]. J. Phys. Chem. B.; (Article); 1998; 102(52):10765-10771.
    [75]C. Radhakrishnan, M. K. F. Lo, M. V. Warrier. M. A. Garcia-Garibay. Photocatalytic Reduction of an Azide-Terminated Self-Assembled Monolayer Using CdS Quantum Dots[J]. J. Phys. Chem. B. (Article) 2005,109(46):21602-21607.
    [76]Y. Guo, H. Zhang, Y. Wang, Z. L. Liao, G. D. Li, J. S. Chen. Controlled Growth and Photocatalytic Properties of CdS Nanocrystals Implanted in Layered Metal Hydroxide Matrixes. [J]. J. Phys. Chem. B. (Article) 2005,109(46):21602-21607.
    [77]I. Cesar, A. Kay, J. A. Martinez, M. Gratzel. Translucent Thin Film Fe2O3 Photoanodes for Efficient Water Splitting by Sunlight:Nanostructure-Directing Effect of Si-Doping[J]. J. Am. Chem. Soc.2006,128(14):4582-4583.
    [78]H. Xu, W. Wang, W. Zhu. Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties[J]. J. Phys. Chem. B. 2006,110(28):13829-13834.
    [79]K. R. Gopidas, J. K. Whitesell, M. A. Fox. Nanoparticle-Cored Dendrimers:Synthesis and Characterization[J]. J. Am. Chem. Soc.2003,125(21):6491-6502.
    [80]徐悦华,古国榜,陈小泉.复合纳米Fe2O3/TiO2的制备、表征及光催化活性[J].华南理工大学学报自然科学版,2001,29(11):76-80.
    [81]白树林,付希贤,王俊珍等. LaFeO3的光催化性[J].应用化学,2000,17(3):343-345.
    [82]J. Luan, Z.G. Zou, M. H. Lu. Growth, structural and photophysicalproperties of Bi2GaTa07[J]. J. Cryst. Growth.2004,273:241-247.
    [83]Z. G Zou, J. H. Ye, H. Arakawa. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNbO7 (M=Al3+,Ga3+ and In3+)[J]. Chem. Phys. Lett.2001,333: 57-62.
    [84]J. H. Wang, Z. G. Zou, J. H. Ye. Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M(M=In, Ga and Fe)TaO7 photocatalysts[J]. J. Phys. Chem. Solids.2005, 66:349-355.
    [85]J. Ye, Z.G. Zou, H, Arakawa, M, Oshikir, M, Shimoda, A, Matsushita, T. Shishido. Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4(M= V5+, Nb5+, Ta5+)[J]. J. Photochem. Photobiol. A.2002, 148:79-83.
    [86]Z. G. Zou, J. H. Ye, H. Arakawa. Photophysical and photocatalytic properties of InM04 (M= Nb5+, Ta5+) under visible light irradiation[J]. Mater. Res. Bull.2001,36:1185-1193.
    [87]Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts[J]. J. Photochem. Photobiol. A.2002,148:65-69.
    [88]Z. G. Zou, J. H. Ye, H. Arakawa. Substitution Effects of In3+ by Al3+ and Ga3+ on the Photocatalytic and Structural Properties of the Bi2InNbO7 Photocatalyst[J]. Solid State Communication.2001,119:471-475.
    [89]Z. G. Zou, J. H. Ye. Photocatalytic Water Splitting into H2 and O2 over R3TaO7 and R3Nb07 (R= Y, Yb, Gd, La):Effect of Crystal Structure on Photocatalytic Activity [J]. Chem. Phys. Lett.2001,343:303-308.
    [90]Z. G. Zou, J. Ye, H. Arakawa. Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4:Effects on Photocatalytic Activity[J]. J. Phys. Chem. B.2002, 106(51):13098-13101.
    [91]K. Sayama, A. Nomura, T. Arai, T. Sugita. Photoelectrochemical Decomposition of Water into H2 and O2 on Porous BiV04 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment [J]. J. Phys. Chem. B.2006,110:11352-11360.
    [92]H. Li, G. Liu, X. Duan. Monoclinic BiVO4 with regular morphologies:Hydrothermal synthesis, characterization and photocatalytic properties[J]. Mater. Chem. Phys.,2009,115: 9-13
    [93]M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin. Nanosized BiVO4 with high visible-light-induced photocatalytic activity:Ultrasonic-assisted synthesis and protective effect of surfactant[J]. J. Hazard. Mater.,2009,172:338-344
    [94]S. Kohtani, S. Makino, A. Kudo. Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator:Comparison between BiVO4 and TiO2 Photocatalysts[J]. Chem. Lett.2002,6:660-661.
    [95]L. Zhou, W. Z. Wang, S. W. Liu, L. S. Zhang, H. L. Xu, W. Zhu. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J]. J. Mol. Catal.2006,252:120-124.
    [96]T. Yang, D. Xia, G. Chen, Y. Chen. Influence of the surfactant and temperature on the morphology and physico-chemical properties of hydrothermally synthesized composite oxide BiVO4[J]. Mater. Chem. Phys.,2009,114:69-72
    [97]L. Zhang, W. Wang, J. Yang, Z. G. Chen, W. Zhang. Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst[J]. Appl. Catal. A:Gen.2006, 308:105-110.
    [98]Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo. Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation[J]. J. Phys. Chem. B.2006, 110:17790-17797.
    [99]C. H. He, M. Y. Gu. Photocatalytic activity of bismuth germanate Bi12GeO20 powders. Scripta Mater.2006,54:1221-1225.
    [100]C. H. He, M. Y. Gu. Preparation, characterization and photocatalytic properties of Bi12SiO20 powders[J]. Scripta Mater.2006,55:481-484.
    [101]X. P. Lin, F. Q. Huang, W. D. Wang, K. L. Zhang. A novel photocatalyst BiSbO4 for degradation of methylene blue[J]. Appl. Catal. A:Gen.2006,307:257-262.
    [102]J. Yu, B. Huang, Z. Wang, X. Qin, X. Zhang, P. Wang. Self-Template Synthesis of CdIn2O4 Hollow Spheres and Effects of Cd/In Molar Ratios on Its Morphologies[J]. Inorg. Chem., 2009,48:10548-10552
    [103]C. Zhang, Y. F. Zhu. Synthesis of Square Bi2WO6 Nanoplates as High-ActivityVisible-Light-Driven Photocatalysts[J]. Chem. Mater.2005,17:3537-3545.
    [104]H. B. Fu, C. S. Pan, W. Q. Yao. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6[J]. J.Solid State Chem. B.2005,109:22432-22439.
    [105]L. Zhang, K. H. Wong, Z. Chen, J. C. Yu, J. Zhao, C. Hu, C. Chan, P. Wong. AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components[J]. Appl. Catal. A:Gen.,2009,363:221-229
    [106]L. Zhang, W. Wang, M. Shang, S. Sun, J. Xu. Bi2WO6@carbon/Fe3O4 microspheres: Preparation, growth mechanism and application in water treatment[J]. J. Hazard. Mater., 2009,172:1193-1197
    [107]陈金媛,彭图治.磁性纳米TiO2/Fe3O4光催化复合材料的制备及性能[J].化学学报,2004,62(20):2093-2097.
    [108]刘中林.苯酚光催化降解的盐效应及磁性光催化剂的制备与回收[D].北京:北京化工大学,2004.
    [109]D. Beydoun. Development of a novel magnetic photocatalyst[D].Sydney:Univ.of New South W ales,2000.
    [110]尹晓红,辛峰,张凤宝等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂的制备及光催化性能[J].精细化工,2006,23(1):58-61.
    [111]J. Q. Yu, A. Kudo. Hydrothermal Synthesis of Nanofibrous Bismuth Vanadate[J]. Chem. Lett.2005,34:850-851.
    [112]L. Zhou, W.Z. Wang, S.W. Liu, L.S. Zhang, H.L. Xu, W. Zhu. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst[J]. J. Mol. Catal.2006,252:120-124.
    [113]T. Sano, N. Negishi, D. Mas, K. Takeuchi. Photocatalytic Decomposition of N2O on Highly Dispersed Ag+ Ions on TiO2 Prepared by Photodeposition[J]. J. Catal.2000,194:71-79.
    [114]I.M. Arabatzis, T. Stergiopoulos, M.C. Bernard, D. Labou, S.G. Neophytides, P. Falaras. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange[J]. Appl. Catal. B:Environ.2003,42:187-201.
    [115]李钱陶Sol-Gel法制备Ag/SiO2(?)内米复合薄膜及其光学性能研究[D].武汉理工大学,2003,5.
    [116]J.R. Martinez, G. O. Zarzosa, O. D. Espinos. Low temperature devitrification of Ag/SiO2 and Ag (CuO)/SiO2 composites[J]. J. Non-Cryst. Solids,2001,282:317-320.
    [117]S. Tokunaga, H. Kato, A. Kudo. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties[J].Chem.Mater,2001,13: 4624-4628.
    [118]S. Kohtani, M. Tomohiro, K. Tokumura, R. Nakagaki. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts[J]. Appl. Catal. B:Environ.2005,58:265-272.
    [119]T. Takizawa, T. Watababe, K. Honda. Photocatalysis through excitation of adsorbates.2. A comparative study of Rhodamine B and methylene blue on cadmium sulfide[J]. J. Phys. Chem.,1978,82:1391-1396.
    [120]T.Y. Zhang, T. Oyama, S. Horikosh, H. Hidaka, J.C. Zhao, N. Serpone. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight[J]. Sol. Energy Mater. Sol. Cells.2002,73:287-303.
    [121]T.Y. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J.C. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation, J. Photoch. Photobio[J]. A.2001,140:163-172.
    [122]祁巧艳.孙剑辉.负载型纳米TiO2光催化降解罗丹明B动力学与机理研究[J].水资源保护,2006,2:56-60.
    [123]J. Tang, Z. Zou, J. Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible light irradiation, Angew. Chem. Int. Ed.,2004,43:4463-4465
    [124]J. C. Zhao, H. Octa, H. Hidaka. Photodegradation of surfactants X comparison of the photoo:cidation of thearomatic moieties in sodium do-decylbenzene sulphonate and in sodium phenyldodecyl sulphonate at TiO2-H2Ointerfaces[J]. JPPAC,1992,69:251-256.
    [125]高荣杰,王之昌.TiO2超微粒子的制备及相转位动力学[J].无机材料学报,1997,12(4):599-603.
    [126]余锡宾,王桂华,罗衍庆等.二氧化钛纳米微粒的制备与光催化活性[J].化学研究与应用,2000,12(1):14-19.
    [127]沈伟韧,赵文宽,贺飞等.TiO2光催化反应及其在废水处理中的应用[J].化学进展,1998,10(4),349-361.
    [128]Q. H. Zhang, L. Gao, J. K. Guo. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis [J].Applied Catalysis B,2000,26: 207-215.
    [129]S. C. Zhang, C. Zhang, Y. Man. Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties [J]. J Solid State Chem,2006,179:62-69.
    [130]黄雪锋,唐玉朝,桂和荣等.铁改性TiO2光催化性能研究进展[J].合肥工业大学学报,2006,29(9):1124-1127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700