骨髓来源细胞在肺癌发生及进展中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     肺癌是世界发病率最高的恶性肿瘤之一,且其发病率迅速上升,并已成为癌症致病死的主要原因之一。研究肺癌的发生和进展机制,对于提高其早期诊断率,减低其发病率和死亡率具有重要意义。
     目前有关肺癌的起源仍不清楚,不少的学者认为,由于干细胞存活时间较长,有更多的突变机会,因此更可能出现异常分化形成肿瘤干细胞,而肿瘤干细胞因其具有的多向分化潜能和自我更新能力使其成为肿瘤的种子。那么这些干细胞又来源何处?一般认为在肺和呼吸系统内存在一些固有的干细胞,在组织受损时参与受损组织的修复。但在组织受损严重时,固有干细胞数量得不到有效的补充,必需依靠外源性干细胞参与组织修复。已有报道BMDCs在肺损伤早期具有向损伤和炎症组织特异性趋化和修复肺损伤的潜能,在这个过程中BMDCs的生长调控和分化取决与组织的微环境,提示BMDCs可能是肺内干细胞的另一来源。在诱癌因素的作用下,具有干细胞特性的BMDCs也可能发生异常分化和增殖,进而参与肺癌的发生。目前对BMDCs可以成为实体癌起源的观点仍未达成一致,BMDCs在肺癌发生中的作用更是不清楚。
     BMDCs具有向损伤和炎症组织特异性趋化的特点,而肿瘤的内环境与损伤组织有不少相似之处,从机体的角度也可以说肿瘤本身就是一个“难以愈合的损伤”。因此,已经形成的肿瘤仍可能继续释放趋化因子吸引BMDCs,持续参与肿瘤生长的微环境。既然BMDCs能在不同环境中分泌多种活性因子,那么他们在肺癌中分泌哪些细胞因子,又具体发挥了哪些作用,仍然不清楚。
     目前利用BMDCs,尤其是BMSCs,作为组织损伤保护或基因治疗的细胞载体被认为是组织修复和抗癌领域大有希望的治疗策略。因此对BMDCs在参与组织异常转化和肿瘤进展中的风险评估显得尤为必要。
     在本课题中,我们首选建立了多种肺癌诱导动物模型和活体标记BMDCs的骨髓嵌合模型,并最终选定在GFP骨髓嵌合小鼠体内利用NDEA诱导肺癌形成作为最适宜的研究对象,探讨BMDCs参与肺上皮细胞修复和肺上皮转化(上皮化生、不典型增生和癌)过程中的角色。对已经形成的肿瘤,我们进一步探究BMDCs对肺癌增殖、转移等进展的具体作用。这些结果可能对肺癌发生和进展研究提供新的思路,为BMSCs作为临床治疗应用前的评估提供了重要的实验依据。
     研究内容
     一、诱导肺癌和骨髓嵌合鼠模型的建立及评价
     分别建立支气管灌注致癌物碘油诱导SD和Wistar大鼠肺癌模型,乌拉坦诱导KM小鼠肺肿瘤模型,N-亚硝基二乙胺诱导FVB小鼠肺肿瘤模型,苯并(α)芷诱导FVB小鼠肺肿瘤模型。比较各模型的成瘤时间、成瘤率、成瘤类型和各病变阶段转化时间。建立GFP-FVB/N骨髓嵌合FVB/N小鼠和性别错配骨髓嵌合Wistar大鼠模型,评估其骨髓移植后的骨髓重建、造血恢复、存活率和嵌合的骨髓细胞标记表达。选择最适宜作为进一步研究对象的动物模型。
     二、BMDCs参与肺癌形成的实验研究
     利用免疫组化和免疫荧光染色分析BMDCs在肺上皮损伤、化生、不典型增生到癌组织的定植和上皮分化属性,排除假阳性,进一步检测鳞癌中BMDCs的增殖活性和鳞癌标志。
     三、BMDCs中BMSCs在肺癌进展中作用的实验研究
     首先在裸鼠活体实验中观察BMSCs是否向肿瘤特异性趋化及对肿瘤生长、转移的影响。体外实验进一步探究,BMSCs具体通过哪些方式影响了肿瘤的生长、转移,并初步筛选起作用的主要影响因子。
     主要结果和结论
     1. NDEA诱导GFP-FVB/N骨髓嵌合FVB/N小鼠肺癌形成是最适宜作为研究对象的动物模型。
     GFP-FVB骨髓嵌合小鼠和Y-X Wistar骨髓嵌合大鼠均能度过极期,恢复造血功能,14天存活率达100%,并能长期存活至诱癌结束时间点,供体来源骨髓也能稳定嵌合。在此基础上NDEA诱导FVB小鼠和支气管灌注致癌物碘油诱导Wistar大鼠均能诱导稳定的、均一的、高比例的和可重复性的肺癌模型。从模型的可操作性和检测方法上考虑,NDEA诱导GFP-FVB/N骨髓嵌合FVB/N小鼠肺癌形成是最适宜作为研究对象的动物模型。
     2. BMDCs可分化为多种肺上皮细胞,促进肺修复。
     GFP-FVB/N小鼠骨髓移植后一月大量供体来源的GFP阳性BMDCs在肺内定植,部分定植的BMDCs参与构成肺泡腔,有的胞体伸展呈梭形,提示为Ⅰ型肺泡上皮细胞。免疫荧光双标显示,支气管腔内细胞表达GFP/PCK双阳性,提示供体来源的BMDCs分化为PCK阳性的支气管上皮细胞,参与放射性损伤后支气管上皮修复。肺泡内可见GFP/SPC双阳性细胞,供体来源的BMDCs可分化为Ⅱ型肺泡上皮细胞,进而补充Ⅰ型肺泡上皮细胞,从而参与放射性损伤后的肺泡修复。
     3.若损伤因素持续存在,BMDCs也会直接形成鳞状化生、不典型增生、甚至鳞癌细胞,并参与肺鳞癌的形成和生长。
     BMDCs在支气管上皮鳞状化生、不典型增生和鳞状细胞癌中的表达率逐渐升高,尤其是在癌组织内其比例明显升高和成群表达。免疫荧光双标显示,这些病变中的GFP阳性细胞多数也表达上皮细胞标记PCK阳性,癌巢中的GFP阳性细胞同时也表达鳞癌细胞标记P63。利用Y染色标记作为另一种独立的BMDCs标记检测BMDCs细胞的上皮细胞属性也证实了上述结果。提示BMDCs参与了肺鳞癌恶性转化的全过程。此外,发现这些GFP+/PCK+细胞部分同时表达Ki67,BMDCs来源的增殖细胞占肿瘤中所有增殖细胞的9.7±3.92%,提示供体来源的BMDCs不仅具备癌细胞的上皮表型,实际也部分参与了肿瘤的生长。多数BMDCs来源细胞表达XY单套染色体,提示直接分化可能是BMDCs形成上述细胞的主要机制,但细胞融合仍不能完全排除。
     4. BMSCs可能通过多途径促进肿瘤生长、迁移、侵袭,IL-6和PGE2可能是BMSCs影响肺癌细胞生长和转移的主要细胞因子。
     裸鼠活体移植实验证实标记的BMSCs能够向肺癌肿瘤特异性趋化,并在活体中呈现出促肺癌细胞生长成瘤和促肺癌细胞转移的特性。进一步发现,在有BMSCs的作用时,移植瘤血管密度更高,CD133阳性的肺癌细胞增殖能力更强,肺癌干细胞克隆球的数量增多、体积增大、其内CD133阳性细胞比例升高,提示BMSCs可能通过促肿瘤干细胞增殖和微血管形成而促进肿瘤生长。另一方面,在BMSCs作用下,肺癌细胞向划痕迁移的速度更快,肺癌细胞跨膜侵袭的能力更强,肺癌细胞形态变得更长更细,细胞间连接明显减少,E-cadherin蛋白表达明显降低,提示下调肺癌细胞E-cadherin、促进肺癌细胞的迁移、侵袭能力,可能是BMSCs促进肺癌转移的作用方式。单用BMSCs条件介质代替BMSCs共培养也能获得上述相同的结论,而BMSCs条件介质中含明显高浓度的IL-6,在作用肺癌细胞后促进肺癌细胞进一步分泌IL-6,PGE2在BMSCs与肺癌细胞相互作用后表达升高,提示旁分泌IL-6和PGE2可能是BMSCs影响肺癌细胞生长和转移的主要细胞因子。此外,BMDCs来源的CAFs也可能作为BMDCs参与肺癌进展的另一方式。
Background and Objective
     Lung cancer is is one of the highest incidence of malignancy in the world,and hasbecome one of the major causes of death due to cancer. It is important to explore themechanism of carcinogenesis and progression for improving the early diagnosis and reducingthe mortality of lung cancer.
     The origin of lung cancer remains unclear. Many scholars believe that stem cells aremore likely to become cancer stem cells responsible for tumorigenesis, due to longer survivaltime with more chance of mutation. Then where do the stem cells come from? Generally,there are some intrinsic stem cells in the respiratory system responsible for tissue repair. Butwhen the damage is serious enough and intrinsic stem cells can not be an effectivesupplement, exogenous stem cells would participate in tissue repair. It has been reported thatBMDCs had potential of chemotaxis to the injury or inflammation, and contributed to therepair of injury at an early stage of lung injury, which suggestted that BMDCs may be anothersource of lung stem cells. It is reasonable to suppose that BMDCs with the characteristics ofstem cells in a continuous effect of cancer-inducing factors also might undergo aberrantdifferentiation and abnormal proliferation and involved in carcinogenesis. No agreement hasbeen reached as to BMDCs have a role in carcinogenesis of solid organs. The truecontribution of BMDCs in lung carcinogenesis remains to be determined.
     BMDCs exhibit specific chemotaxis towards the injury or inflammation. From anotherhand, it could be said that tumor is a kind of damage difficult to heal. Therefore, tumors couldcontinue to release chemokines and attract BMDCs to tumor microenvironment. BMDCshave ability to produce a variety of soluble factors in different environments.We also want toknow which are they produced in tumor microenvironment and what role do they play?
     The concept of using BMDCs, especially BMSCs, as gene vectors for targeted tumortherapy and supplement for tissue repair holds promise. However, as an important component of the tumor microenvironment, BMSCs play critical roles in regulating tumor progression.Understanding the function of BMSCs in tumor progression is necessary before BMSCs canbe used for clinical applications.
     In this study, the potential role of BMDCs in lung carcinogenesis was explored using anin vivo model of squamous cell carcinoma (SCC) induced by N-nitrosodiethylamine (NDEA).Green fluorescent protein (GFP)-labeled BMDCs from male donor mice were transplanted infemale recipient mice that were subsequently exposed to NDEA to identify BMDC-derivedlung epithelial cells and evaluate their participation in the various stages of lung epithelialtransformation (i.e., metaplasia, dysplasia, and carcinoma). We further explore the role ofBMDCs for lung cancer cell proliferation, migration and invasion. These results might havesignificant potential implications for both clinical cancer therapy and may provide insight intolung cancer formation and progress.Research contents
     Part I. Establishment and assessment of carcinogen-induced lung cancer model andbone marrow chimeric model
     SD and Wistar rats were treated with carcinogenic iodized oil by intra-trachea instillationto make lung cancer model. KM mice were treated with Urethane by intraperitoneal injection.FVB/NJ mice were treated with NDEA by Subcutaneous injection.And we tried to develop alung cancer model by B(α)P gavage. The average time to tumorigenesis, rates of tumorigenesis,tumor pathology and histologic type were compared. Bone marrow reconstitution, peripheralWBC counts, Survival rate and marker for BMDCs were analysed in bone marrow chimericmodel.An ideal model was confirmed.
     Part II. Study of BMDCs’ contribution to lung cancer formation in vivo
     Engraftment of BMDCs in lung tissue was determined using immunohistochemistry andFISH to detect GFP expression and fluorescence in situ hybridization to Y chromosomes.Epithelial differentiation, proliferative activity and a marker of SCC cells were detected withimmunefluorescent. False-positive recognition was analyzed combined with CD45+immunefluorescent staining.
     Part III. Study of BMDCs’ contribution to lung cancer progress
     In vivo, we traced specific chemotaxis of BMSCs towards lung tumor and assessed tumor growth and metastasis when interaction with BMSCs.In vitro, we investigated theeffect of BMSCs on proliferation, migration and invasion of lung cancer cells, and screen thepotential soluble factors suggestting molecular mechanism.The main results and conclusions
     1. NDEA-induced lung squamous cell carcinoma in GFP bone marrow chimericFVB/NJ mice could establish an ideal model.
     GFP-FVB chimeric FVB/NJ mice and Y-X chimeric Wistar rat all could recover fromlethal radiation damage and survive long time enough as induced lung cancer model. Bonemarrow reconstitution was observed and stable chimerism was analysised in the recipient.The lung cancer models induced with NDEA in FVB/NJ mice and with carcinogenic iodizedoil in Wistar rat were stable, uniform, high proportion and reproducible. Considering theoperation and testing methods, NDEA-induced lung squamous cell carcinoma in GFP bonemarrow chimeric FVB/NJ mice could establish an ideal model.
     2. BMDCs engrafted as different types of lung epithelial cells and contribute to lungrepair.
     After just4weeks post-transplantation, GFP+BMDCs was observed in the lung ofrecipient.Some spindle-shaped cells of them engrafted as pneumocytes in the alveoli. PCK+/GFP+cells were found in bronchi suggestted that BMDCs engrafted as bronchial epithelialcells to contribute to radiation damage repair in in bronchi.Besides, GFP+/SPC+cells werefound in the alveoli suggestted donor derived Type II alveolar cells as Transient amplifyingcell which also could regenerate type I pneumocytes.
     3. BMDCs induced by carcinogen could become metaplasia, dysplasia, andsquamous cell carcinoma cells, participate in lung SCC formation and partiallycontribute to tumor growth.
     BMDC appeared at three stages of lung SCC progression: metaplasia, dysplasia, andcarcinoma. There was a significantly higher proportion of GFP+cells within lung SCC thanwas found in metaplasia and dysplasia. GFP+BMDCs were also observed in clusters withinseveral SCC nests. Furthermore, most GFP+cells in SCC were PCK+epithelial cells, andsome exhibited proliferative activity as determined by Ki67staining, which suggested thatsome donor BMDCs differentiated into proliferating epithelial cells. Analysis of p63 expression, a marker of SCC cells, indicated that the presence of GFP+p63+cells in inner partsof the SCC. These findings strongly suggest that BMDC-derived lung epithelial cells couldparticipate in lung SCC formation and partially contribute to tumor growth. Most of the cellscontain XY suggestting monosomy, which suggestted differentiation was possible mechanismfor donor derived cells, but cell fusion could not be ruled out completely.
     4. BMSCs could promote lung tumor growth, migration and invasion throughmultiple pathways,and interacted with lung cancer cells possiblely through IL-6andPGE2.
     In NOD mice, labeled BMSCs introduced into the tibia traffic to sites of growing lungtumor xenografts where they accelerated tumor growth and increasing tumor metastasis.Furthermore, the tumor co-injected with BMSCs have a much higher microvessel densityvalue. In CD133+cells isolated from both lung cancer cells, co-culture with BMSCs forsignificantly increased their proliferation. BMSCs also significantly increased lung cancersphere enriched in cancer stem cells(CSCs)formation and CD133+fractions in the sphere. Allthese suggestted that BMSCs contributed to tumor growth through CSCs proliferation andtumor vessel formation. On the other hand, faster migration and increased invasion of the lungcancer cells were promoted by BMSCs in scratch assays and in transmembrane invasion assay.The changed morphology, reduced intercellular junctions and decreased E-cadherin proteinwere observed in the lung cancer cells co-cultured with BMDCs. All these suggestted thatBMSCs contributed to tumor metastasis through cell migration, invasion and E-cadherinprotein. The effect of the BMSCs-conditioned medium containing the soluble factors wassimilar to the effect of co-cultured with BMDCs. IL-6levels was much higher in the cultureof BMSCs than that of lung cancer cells, and a further induction of IL-6in the co-culture.PGE2was significantly induced in the co-culture not in the single conditioned medium. IL-6and PGE2produced by BMDCs minght be the promising cytokine acting on lung cancercells.
引文
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002.CA Cancer J Clin.2005;55(2):74-108.
    2. M. Mimeault, R. Hauke, P. P. Mehta, et al. Recent advances in cancer stem/progenitor cellresearch; therapeutic implications for overcoming resistance to the most aggressivecancers J. Cell. Mol. Med.2007(11)5:981-1011.
    3. A Eramo, F Lotti, G Sette, et al. Identification and expansion of the tumorigenic lungcancer stem cell population. Cell Death and Differentiation.2007,1–11.
    4. JF Engelhardt, H Schlossberg, JR Yankaskas. Progenitor cells of the adult human airwayinvolved in submucosal gland development. Development (Cambridge, U.K.)1995;121:2031–2046.
    5. Evans MJ, Cabral-Anderson LJ, Freeman G. Role of the Clara cell in renewal of thebronchiolar epithelium. Lab Invest.1978Jun;38(6):648–653.
    6. Kyung U. Hong, Susan D. Reynolds, Simon Watkins, et al. In vivo differentiationpotential of tracheal basal cells: Evidence for multipotent and unipotent subpopulationsAm. J. Pathol.2004;164:577–588.
    7. Suratt B, Cool C, Serls A, et al. Hunlgn pulmonary chimerism after hematopoietic stemcell transplantation. Am J Respir Crit Care Med2003;168(3):318-322
    8. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,2002.CA Cancer J Clin.2005;55(2):74-108.
    9.石建光,刘勇,曹喜才。支气管肺癌动物模型的制作。介入放射学杂志。2002,11(3):227-229。
    10.鲁植艳,夏东,刘绚,刘骏方,陈洪雷,刘铭球.。改良型大鼠肺鳞癌发展模型的建立。武汉大学学报。2003,24(3):321-322。
    11.王菊勇郑展王青郭净陈灵.肺癌病证结合动物模型研究的思考.中华中医药学刊。2010,6期。
    12. Kim C F, Jackson E L, Woolfenden A E, Lawrence S, Babar I, Vogel S, Crowley D,Bronson R T, Jacks T. Identification of bronchioalveolar stem cells in normal lung andlung cancer. Cell.2005,121(6):824-835.
    13. IARC. Monographs on the Carcinogenic Risk of Chemicals to Man: Some Antithyroidand Related Sustances, Nitrofurans and Industrial Chemicals, International Agency forResearch on Cancer.1974,7:111-140.
    14. Salmon, A. and Zeise, L. Risks of Carcinogenesis from Urethane Exposure, Book.1991,1-231.
    15. Edwards, A.J.; Anderson, D.; Brinkworth, M.H.; Myers, B. and Parry, J.M. Teratog.Carcinog. Mutagen.1999,19(2):87-103.
    16. NTP. NTP Technical Report on the Toxicology and Carcinogenesis Studies Of Urethane,Ethanol, and Urethane/Ethanol in B6C3F1Mice. Technical Report Series.2003,510:7-134.
    17. Ghanayem, B.I. Inhibition of Urethane-Induced Carcinogenicity in Cyp2e1/inComparison to Cyp2e1+/+Mice.Toxicol. Sci.2007,95(2):331-339.
    18. Sotomayor, R.E. and Collins, T.F. Mutagenicity, metabolism, and DNA interactions ofurethane. Toxicol. Ind. Health.1990,6(1),71-108.
    19. NTP. Report on Carcinogens (9thed). National Toxicology Program, National Institute ofEnvironmental Health Sciences, National Institutes of Health.2000.
    20. Hoffmann D, Hecht SS. Nicotine-derived N-nitrosamines and tobacco-related cancer:current status and future directions. Cancer Res.1985,45(3):935-44.
    21. Wynder EL, Hoffmann D. Smoking and lung cancer: scientific challenges andopportunities. Cancer Res.1994,54(20):5284-95.
    22. Ribovich M.L., Miller J.A. Miller E.C. and Timmins L.G. Labeled1, N6-ethenoadenosineand3, N4-ethenocytidine in hepatic RNA of mice given [ethyl-1,2-3H or ethyl-1-14C]ethyl carbamate (urethan).1982,3(5):539-546.
    23. Fernando R.C., Nair J., Barbin A., Miller J.A. and Bartsch H. Detection of1,N6-ethenodeoxyadenosine and3,N4-ethenodeoxycytidine by immunoaffinity/32P-post-labelling in liver and lung DNA of mice treated with ethylcarbamate (urethane) or itsmetabolites.1996,17(8):1711-1718.
    24. Daniel R. Doerge, Mona I. Churchwell, Jia-Long Fang, and Frederick A. Beland.Quantification of etheno-DNA adducts using liquid chromatography, on-line sampleprocessing, and electrospray tandem mass spectrometry. Chem. Res. Toxicol.2000,13(12):1259-1264.
    25. Undi Hoffler, Darlene Dixon, Shyamal Peddada, Burhan I. Ghanayem. Inhibition ofurethane-induced genotoxicity and cell proliferation in CYP2E1-null mice.2005,572(1-2):58-72.
    26. Horio Y., Chen A., Rice P., Roth J. A., Malkinson A. M., and Schrump D.S. Ki-ras andp53mutations are early and late events, respectively, in urethane-induced pulmonarycarcinogenesis in A/J mice. Mol Carcinog.1996,17:217–23.
    27. Yamada Y., Yoshimi N., Sugie S., Suzui M., Matsunaga K., Kawabata K.,Hara A., andMori H. Beta-catenin (Ctnnb1) gene mutations in diethylnitrosamine (DEN)-induced livertumors in male F344rats. Jpn J Cancer Res.1999,90:824–28.
    28. Chen B, Liu L, Castonguay A, Maronpot RR, Anderson MW, You M. Dose-dependent rasmutation spectra in N-nitrosodiethylamine induced mouse liver tumors and4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced mouse lung tumors. Carcinogenesis.1993,14:1603-8.
    29. Harry V. Gelboin, and Rrichard Bates. Genetic Regulatory Mechanisms andCarcinogenesis. Clinnical Symposium on Carcinogenesis.1966,81(9):782-793.
    30. Sudha R. Kondraganti, Weiwu Jiang, Anil K. Jaiswal, and Bhagavatula Moorthy.Persistent Induction of Hepatic and Pulmonary Phase II Enzymes by3-Methylchol-anthrene in Rats. Toxicological Sciences.2008,102(2):337–344.
    31.刘登群.骨髓来源细胞在体内的多向分化潜能及其向小肠上皮细胞分化机制研究。论文。
    32. Macpherson H, Keir P, Webb S, Samuel K, Boyle S, Bickmore W, Forrester L, Dorin J.Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo. JCell Sci2005Jun1;118(Pt11):2441-50.
    33. Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A.Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development2001Dec;128(24):5181-8.
    34. Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R,Krause DS. Radiation pneumonitis in mice: a severe injury model for pneumocyteengraftment from bone marrow. Exp Hematol2002Nov;30(11):1333-8.
    35. Wang Y, Song YT, Liu Q, Liu C, Wang LL, Liu Y, Zhou XY, Wu J, Wei H. Quantitativeanalysis of lentiviral transgene expression in mice over seven generations. Transgenic
    36. Malkinson AM. The genetic basis of susceptibility to lung tumors in mice. Toxicology.1989,54(3):241-71.
    37. Liu Dengqun, Wang Fengchao, Zou Zhongmin, Dong Shiwu, Shi Chunmeng, WangJunping, Ran Xinze and Su Yongping. Long-Term Repopulation Effects of Donor BMDCson Intestinal Epithelium. Digestive Diseases and Sciences.55(8):2182-2193.
    38.放射生物学研究中实验动物的选择和应用。生物谷。
    39. S. Janczewska, A. Ziolkowska, B. Interewicz, T. Majewski, W. L. Olszewski, B.Lukomska. Vascularized bone marrow transplanted in orthotopic hind-limb stimulateshematopoietic recovery in total-body-irradiated rats. Transpl Int.2000,13[Suppl1]:S541-S546.
    40. Ishida T, Inaba M, Hisha H, Sugiura K, Adachi Y, Nagata N, Ogawa R, Good RA, IkeharaS. Requirement of donor-derived stromal cells in bone marrow for successful allogeneicbone marrow transplantation. J Immunol.1994,152:3119-3127.
    41. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bonemarrowstem cells contribute to repair of the ischemically injured renal tubule. J ClinInvest.2003,112:42-49.
    42. Rookmaaker MB, Smits AM, Tolboom H, Van 't Wout K, Martens AC, GoldschmedingR,Joles JA, Van Zonneveld AJ, Grone HJ, Rabelink TJ. Bone-marrow-derived cellscontribute to glomerular endothelial repair in experimental glomerulonephritis. Am JPathol2003,163:553-562.
    43. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, NeutzelS,Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derivedstem cell. Cell.2001,105:369-377.
    44. Direkze NC, Forbes SJ, Brittan M, Hunt T, Jeffery R, Preston SL, PoulsomR,Hodivala-Dilke K, Alison MR, Wright NA. Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow transplanted mice. StemCells.2003,21:514-520.
    45. Okamoto R, Yajima T, Yamazaki M, Kanai T, Mukai M, Okamoto S, Ikeda Y, HibiT,Inazawa J, Watanabe M. Damaged epithelia regenerated by bone marrow-derived cellsin the human gastrointestinal tract. Nat Med.2002,8:1011-1017.
    46. Liu JF, Wang BW, Hung HF, Chang H, Shyu KG. Human mesenchymal stem cellsimprove myocardial performance in a splenectomized rat model of chronic myocardialinfarction. J Formos Med Assoc.2008,107:165-174.
    47. H. Macpherson, P. Keir, S. Webb, and J. Dorin et al.. Bone marrow-derived SP cells cancontribute to the respiratory tract of mice in vivo. J Cell Sci.2005,118:2441-50.
    48. D.N. Kotton, B.Y. Ma, and A. Fine et al. Bone marrow-derived cells as progenitors of lungalveolar epithelium. Development.2001,128:5181-8.
    49. N.D. Theise, O. Henegariu, and D.S. Krause et al., Radiation pneumonitis in mice: asevere injury model for pneumocyte engraftment from bone marrow. Exp Hematol.2002,30:1333-8.
    50. David J. Anderson, Fred H. Gage and Irving L. Weissman. Can stem cells cross lineageboundaries? Nature Medicine.2001,7:393-395.
    51. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, Bernasconi S,Saccani S, Nebuloni M, Vago L. Regulation of the chemokine receptor CXCR4byhypoxia. J Exp Med.2003,198:1391-1402.
    52. Zong ZW, Cheng TM, Su YP, Ran XZ, Li N, Ai GP, Xu H. Crucial role of SDF-1/CXCR4interaction in the recruitment of transplanted dermal multipotent cells to sublethallyirradiated bone marrow. J Radiat Res.2006,47:287-293.
    53. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M,FaganSC, Carroll JE, Conway SJ. SDF-1(CXCL12) is upregulated in the ischemic penumbrafollowing stroke: association with bone marrow cell homing to injury. J NeuropatholExp Neurol.2004,63:84-96.
    54. Mairi Macarthur, Georgina L. Hold, and Emad M. El-Omar.Inflammation and Cancer II.Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis ofgastrointestinal malignancy.American Journal of Physiology.2004,286(4):G515-G520.
    55. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet.2001,357(9255):539-45.
    56. Alberto Mantovani, Paola Allavena, Antonio Sica and Frances Balkwill. Cancer-relatedinflammation. Nature.2008,454:436-444.
    57. Guerra, C. et al. Chronic pancreatitis is essential for induction of pancreatic ductaladenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell.2007,11:291–302.
    58. Sparmann, A.&Bar-Sagi, D. Ras-induced interleukin-8expression plays a critical role intumor growth and angiogenesis. Cancer Cell.2004,6:447–458.
    59. Sumimoto, H., Imabayashi, F., Iwata, T.&Kawakami, Y. The BRAF–MAPK signalingpathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med.2006,203:1651–1656.
    60. Shchors, K. et al. The Myc-dependent angiogenic switch in tumors is mediated byinterleukin1β. Genes Dev.2006,20:2527–2538.
    61. Soucek, L. et al. Mast cells are required for angiogenesis and macroscopic expansion ofMyc-induced pancreatic islet tumors. Nature Med.2007,13:1211–1218.
    62. Wang TC, Fox JG.. Helicobacter pylori and gastric cancer: Koch's postulatesfulfilled?Gastroenterology.1998,115(3):780-3.
    63. Avital I, Moreira AL, Klimstra DS, et al (2007) Donor-derived human bone marrow cellscontribute to solid organ cancers developing after bone marrow transplantation. STEMCELLS25:2903-2909.
    64. Wagers AJ, Sherwood RI, Christensen JL, et al (2002) Little evidence for developmentalplasticity of adult hematopoietic stem cells. SCIENCE297:2256-2259.
    65. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr.Aspirin use and risk offatal cancer. Cancer Res.1993,53:1322–27.
    66. Langman MJ, Cheng KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugson overall risk of common cancer: casecontrol study in general practice research database.BMJ.2000,320:1642–46.
    67. Reddy BS, Rao CV, Seibert K. Evaluation of cyclooxygenase-2inhibitor for potentialchemopreventive properties in colon carcinogenesis. Cancer Res.1996,56:4566–69.
    68. Steinbach G, Lynch PM, Phillips RKS, et al. The effect of celecoxib a cyclooxygenase-2inhibitor, in familial adenomatous polyposis. N Engl J Med.2000,342:1946–52.
    69. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S,Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stemcell. Cell.2001,105(3):369-77.
    70. Jiang K, Li Q, Fan S.. Nanotechnology: spinning continuous carbon nanotube yarns.Nature.2002Oct24;419(6909):801.
    71. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleatemuscle stem cell to multinucleate muscle fiber in response to injury. Cell.2002Nov15;111(4):589-601.
    72. JF Engelhardt, H Schlossberg, JR Yankaskas.Progenitor cells of the adult human airwayinvolved in submucosal gland development. Development (Cambridge, U.K.)1995;121:2031–2046.
    73. Evans MJ, Cabral-Anderson LJ, Freeman G. Role of the Clara cell in renewal of thebronchiolar epithelium. Lab Invest.1978Jun;38(6):648–653.
    74. Kyung U. Hong, Susan D. Reynolds, Simon Watkins, et al. In vivo differentiationpotential of tracheal basal cells: Evidence for multipotent and unipotent subpopulationsAm. J. Pathol.2004;164:577–588.
    75. Grove JE, Bruscia E, Krause D. Plasticity of bone marrow-derived stem cells. StemCells.2004,22:478-500.
    76. Conde E, Angulo B, Redondo P, Toldos O, García-García E, Suárez-Gauthier A,Rubio-Viqueira B, Marrón C, García-Luján R, Sánchez-Céspedes M, López-Encuentra A,Paz-Ares L, López-Ríos F. The use of P63immunohistochemistry for the identification ofsquamous cell carcinoma of the lung. PLoS One.2010Aug17;5(8):e12209.
    77. Kaufmann O, Fietze E, Mengs J, et al (2001) Value of p63and cytokeratin5/6asimmunohistochemical markers for the differential diagnosis of poorly differentiated andundifferentiated carcinomas. AM J CLIN PATHOL116:823-830.
    78. Jean Marie Houghton, Calin Stoicov, Sachiyo Nomura, Arlin B. Rogers, Jane Carlson,Hanchen Li, Xun Cai, James G. Fox, James R. Goldenring, Timothy C. Wang. GastricCancer Originating from Bone Marrow–Derived Cells. Science.2004,306(5701):1568-1570.
    79. Satomi Ando, Riichiro Abe, Mikako Sasaki, Junko Murata, Daisuke Inokuma, and HiroshiShimizu. Bone Marrow-Derived Cells Are Not the Origin of the Cancer Stem Cells inUltraviolet-Induced Skin Cancer.The American Journal of Pathology.2009,174(2):595-601.
    80. Shinde Patil VR, Friedrich EB, Wolley AE, Gerszten RE, Allport JR, Weissleder R (2005)Bone marrow-derived lin(-)c-kit(+)Sca-1+stem cells do not contribute to vasculogenesisin Lewis lung carcinoma. NEOPLASIA7:234-240.
    81. Ishikawa H, Nakao K, Matsumoto K, et al (2004) Bone marrow engraftment in a rodentmodel of chemical carcinogenesis but no role in the histogenesis of hepatocellularcarcinoma. GUT53:884-889.
    82. Wurmser AE, Gage FH. Stem cells: cell fusion causes confusion. Nature.2002,416:485-487.
    83. Herzog EL, Krause DS. Engraftment of marrow-derived epithelial cells: the role offusion.Proc Am Thorac Soc.2006,3:691-695.
    84. Camargo FD, Finegold M, Goodell MA. Hematopoietic myelomonocytic cells are themajor source of hepatocyte fusion partners. J Clin Invest.2004,113(9):1266-70.
    85. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Single hematopoieticstem cells generate skeletal muscle through myeloid intermediates. Nat Med.2003,9(12):1520-7.
    86. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver bycell fusion. Nature.2003,422(6934):901-4.
    87. Medvinsky A, Smith A. Stem cells: Fusion brings down barriers. Nature.2003,422(6934):823-5.
    88. Pawelek JM, Chakraborty AK. Fusion of tumour cells with bone marrow-derived cells: aunifying explanation for metastasis. Nat Rev Cancer.2008,8(5):377-86.
    89. Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS. Lack of afusion requirement for development of bone marrow-derived epithelia. Science.2004,305(5680):90-3.
    90. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J,Fleischmann BK, Jacobsen SE. Bone marrow-derived hematopoietic cells generatecardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. NatMed.2004,10(5):494-501.
    91. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E,Finegold M, Olson S, Grompe M. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature.2003,422:897-901.
    92.刘登群.骨髓来源细胞在体内的多向分化潜能及其向小肠上皮细胞分化机制研究。论文。
    93.熊建文,肖化,张镇西。MTT法和CCK28法检测细胞活性之测试条件比较。激光生物学报。2007,16(5):559-562。
    94. WB操作规程。生物谷。
    95.3.S Liu, C Ginestier, SJ Ou, SG Clouthier, SH Patel.Breast cancer stem cells are regulatedby mesenchymal stem cells through cytokine networks.Cancer research.2011,71:614.
    96. Khakoo A.Y., Pati S., Anderson S.A., et al. Human mesenchymal stem cells exert potentantitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med.2006,203:1235–1247.
    97. Kucerova L., Altanerova V., Matuskova M., et al. Adipose Tissue-Derived HumanMesenchymal Stem Cells Mediated Prodrug Cancer Gene Therapy. Cancer Res.2007,67:6304–6313.
    98. Komarova S., Kawakami Y., Stoff-Khalili M.A., et al. Mesenchymal progenitor cells ascellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther.2006,5:755–766.
    99. Nakamizo A., Marini F., Amano T., et al. Human bone marrow-derived mesenchymal stemcells in the treatment of gliomas. Cancer Res.2005,65:3307–3318.
    100.刘超,黄源.炎症促发肿瘤转移的研究进展.中国肿瘤学杂志.2010,37(6).
    101. Raghu K., Michael Z.. Fibroblasts in cancer. Nat Rev Cancer.2006,6(5):392-401.
    102. Nagasawa T.. Microenvironmental niches in the bone marrow required for B-celldevelopment. Nat Rev Immunol.2006,6(2):107-116.
    103. Defalco E., Porcelli D., TorellaORELLA A.R.,et al. SDF-1involvement in endothelialphenotype and ischemia-induced recruitment of bonem arrowp rogenitorc ells.Blood.2004,104(12):3472-3482.
    104. Staller P., Sulitkova J., Lisztwan J., et al. Chemokine receptor CXCR4downregulated byvon Hippel-Lindau tumour suppressor p V HL. Nature.2003,425(6955):307-311.
    105. Darash-Yahana M., Pikarsky E., Abramovitch R., e t al. Role of high expression levelsof CXCR4in tumor growth, vascularization, and metastasis.FASEB J.2004,18(11):1240-1242.
    106. Lapteva N.,Yang A. G., Sanders D. E., et al. CXCR4knockdown by small interferingRNA abrogates breast tumor growth in vivo. Cancer Gene Ther.2005,12(1):84-89.
    107. Olaso E., Salado C., Egilegor E. et al. Proangiogenic role of tumor-activated hepaticstellate cells in experimental melanoma metastasis. H epatology.2003,37(3):674-685.
    108. Cornil I., Theodorescu D., Man S., et al. Fibroblast cell interactions with humanmelanoma cells affect tumor cell growth as a function of tumor progression. Proc NatlAcad Sci U S A.1991,88(14):6028-6032.
    109. Ronnov-Jessen L., Celis J. E., Vandeurs B., et al. A fibroblast-associated antigen:characterization in fibroblasts and immunoreactivity in smooth muscle differentiatedstromalc ells. J H istochem Cytochem.1992,40(4):475-486.
    110. MickeI P., Ostman A. Tumour-stroma interaction:cancer-associated fibroblastsas noveltargets in anti-cancer therapy? Lung Cancer.2004,45(2):S163-175.
    111. Petersen O. W., Nielsen H. L., Gudjonsson T., et al. Epithelial to mesenchymal transitionin human breast cancer can provide a nonmalignant stroma. Am J Pathol.2003,162(2):391-402.
    112. Chauhan H., Abraham A., Phillips J. R., et al. There is more than one kind ofmyofibroblast: analysis of CD34expression in benign, in situ, and invasive breastlesions.J Clin Pathol.2003,56(4):271-276.
    113. R nnov-Jessen L., Petersen O. W., Koteliansky V. E., Bissell M. J..The origin of themyofibroblasts in breast cancer. Recapitulation of tumor environment in cultureunravels diversity and implicates converted fibroblasts and recruited smooth musclecells.J Clin Invest.1995,95(2):859-873.
    114. Sun B., Zhang S., Ni C., et al. Correlation between melanoma angiogenesis and themesenchymal stem cells and endothelial progenitor cells derived from bone marrow.Stem Cells Dev.2005,14:292–298.
    115. Roorda B. D., ter Elst A., Kamps W. A., de Bont E. S.. Bone marrow-derived cells andtumor growth: contribution of bone marrow-derived cells to tumor micro-environmentswith special focus on mesenchymal stem cells. Crit Rev Oncol Hematol.2009,69:187-198.
    116. Spaeth E. L., Dembinski J. L., Sasser A. K., Watson K., Klopp A., Hall B., Andreeff M.,Marini F.. Mesenchymal stem cell transition to tumor-associated fibroblasts contributesto fibrovascular network expansion and tumor progression. PLoS One.2009,4(4):e4992.
    117. Lin-Hung Wei, Min-Liang Kuo, Chi-An Chen, Chia-Hung Chou, Kuo-Bau Lai,Chien-Nan Lee and Chang-Yao Hsieh. Interleukin-6promotes cervical tumor growth byVEGF-dependent angiogenesis via a STAT3pathway. Oncogene.2003,22:1517–1527.
    118. Gupta D, Treon SP, Shima Y, Hideshima T, et al. Adherence of multiple myeloma cellsto bone marrow stromal cells upregulates vascular endothelial growth factor secretion:therapeutic applications. Leukemia.2001,15(12):1950-61.
    119. Maestroni G. J., Hertens E., Galli P.. Factor(s) from nonmacrophage bone marrowstromal cells inhibit Lewis lung carcinoma and B16melanoma growth in mice. CellMol Life Sci.1999,55:663–667.
    120. Ohlsson LB, Varas L, Kjellman C, et al. Mesenchymal progenitor cell-mediatedinhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol.2003,75:248–255.
    121. Nakamura K., Ito Y., Kawano Y., et al. Antitumor effect of genetically engineeredmesenchymal stem cells in a rat glioma model. Gene Ther.2004,11:1155–1164.
    122. Khakoo A. Y., Pati S., Anderson S. A., et al. Human mesenchymal stem cells exertpotent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med.2006,203:1235–1247.
    123. Djouad F., Plence P., Bony C., et al. Immunosuppressive effect of mesenchymal stemcells favors tumor growth in allogeneic animals. Blood.2003,102:3837–3844.
    124. Zhu W., Xu W., Jiang R., et al. Mesenchymal stem cells derived from bone marrowfavor tumor cell growth in vivo. Exp Mol Pathol.2006,80:267–274.
    125. Kyriakou C.A., Yong K.L., Benjamin R., et al. Human mesenchymal stem cells(hBMSCs) expressing truncated soluble vascular endothelial growth factor receptor(tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt’slymphoma in a murine model. J Gene Med.2006,8:253–264.
    126. Gunn W.G., Conley A., Deininger L., et al. A crosstalk between myeloma cells andmarrow stromal cells stimulates production of DKK1and interleukin-6: a potential rolein the development of lytic bone disease and tumor progression in multiple myeloma.Stem Cells.2006,24:986–991.
    127. Djouad F., Bony C., Apparailly F., et al. Earlier onset of syngeneic tumors in thepresence of mesenchymal stem cells. Transplantation.2006,82:1060–1066.
    128. Karnoub A. E., Dash A. B., Vo AP, et al. Mesenchymal stem cells within tumour stromapromote breast cancer metastasis. Nature.2007,449:557–563.
    129. Tian LLH, Yue W, Zhu F, Li S, Li W. Human mesenchymal stem cells play a dual roleon tumor cell growth in vitro and in vivo. J Cell Physiol2011;226:1860-7.
    130. Tian LLH, Chen Z, Yue W, Li S, Li W. Inhibition of lung cancer cell proliferationmediated by human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai)2011;43:143-8.
    131. Levina V., Marrangoni A., Wang T., Parikh S., Su Y., Herberman R., Lokshin A., GorelikE..Elimination of human lung cancer stem cells through targeting of the stem cellfactor-c-kit autocrine signaling loop. Cancer Res.2010,70:338-346.
    132. Qiu X, Wang Z, Li Y, Miao Y, Ren Y, Luan Y. Characterization of sphere-forming cellswith stem-like properties from the small cell lung cancer cell line H446. Cancer Lett2012;323:161-170.
    133. Qiu X, Wang Z, Li Y, Miao Y, Ren Y, Luan Y. Characterization of sphere-forming cellswith stem-like properties from the small cell lung cancer cell line H446. Cancer Lett2012;323:161-170.
    134. R Ramasamy, E W-F Lam, I Soeiro, V Tisato, D Bonnet and F Dazzi. Mesenchymalstem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumorgrowth. Leukemia.2007,21,304–310.
    135. Shotaro Iwamoto, Keichiro Mihara, James R. Downing, Ching-Hon Pui and DarioCampana. Mesenchymal cells regulate the response of acute lymphoblastic leukemiacells to asparaginase. J Clin Invest.2007,117(4):1049–1057.
    136. Bertolini G., Roz L., Perego P., Tortoreto M., Fontanella E., Gatti L., Pratesi G., FabbriA., Andriani F., Tinelli S., et al: Highly tumorigenic lung cancer CD133+cells displaystem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci.2009,106:16281-16286.
    137. Teng Y., Wang X., Wang Y., Ma D.. Wnt/beta-catenin signaling regulates cancer stemcells in lung cancer A549cells. Biochem Biophys Res Commun.2010,392:373-379.
    138. Wang B., Yang H., Huang Y. Z., Yan R. H., Liu F. J., Zhang J. N.. Biologiccharacteristics of the side population of human small cell lung cancer cell line H446.Chin J Cancer.2010,29:254-260.
    139. Singh S. K., Hawkins C., Clarke I. D., Squire J. A., Bayani J., Hide T., Henkelman R. M.,Cusimano M. D., Dirks P. B.. Identification of human brain tumour initiating cells.Nature.2004,432:396-401.
    140. Hermann P. C., Huber S. L., Herrler T., Aicher A., Ellwart J. W., Guba M., Bruns C. J.,Heeschen C.. Distinct populations of cancer stem cells determine tumor growth andmetastatic activity in human pancreatic cancer. Cell Stem Cell.2007,1:313-323.
    141. Eramo A., Lotti F., Sette G., Pilozzi E., Biffoni M., Di Virgilio A., Conticello C., Ruco L.,Peschle C., De Maria R.. Identification and expansion of the tumorigenic lung cancerstem cell population. Cell Death Differ.2008,15:504-514.
    142. Levina V., Marrangoni A. M., DeMarco R., Gorelik E., Lokshin A. E.. Drug-selectedhuman lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.PLoS One.2008,3:e3077.
    143. Miki J., Furusato B., Li H., Gu Y., Takahashi H., Egawa S., Sesterhenn I. A., McLeod D.G., Srivastava S., Rhim J. S.. Identification of putative stem cell markers, CD133andCXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derivedhuman prostate epithelial cell lines and in prostate cancer specimens. Cancer Res.2007,67:3153-3161.
    144. Bertolini G., Gatti L., Roz L.. The "stem" of chemoresistance. Cell Cycle.2010,9:628-629.
    145. Suling Liu,Christophe Ginestier,Sing J. Ou,Shawn G. Clouthier,Shivani H.Patel,Florence Monville, Hasan Korkaya, Amber Heath, Julie Dutcher, Celina G. Kleer,Younghun Jung, Gabriela Dontu, Russell Taichman, and Max S. Wicha. Breast CancerStem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks.Cancer Res.2011,71(2):614-624.
    146. Hirohashi S. Inactivation of E-cadherin-mediated cell adhesion system in human cancers.AEll J Pathol,1998,153(2):333339.
    147. Tamer T. Onder, Piyush B. Gupta, Sendurai A. Mani, Jing Yang, Eric S. Lander, andRobert A. Weinberg. Loss of E-Cadherin Promotes Metastasis via Multiple DownstreamTranscriptional Pathways. Cancer Res.2008,68:3645-53.
    148. Fierro F. A., Sierralta W. D., Epunan M. J., et al. Marrow-derived mesenchymal stemcells: role in epithelial tumor cell determination. Clin Exp Metastasis.2004,21:313–319.
    149. Grivennikov S., Karin E., Terzic J., Mucida D., Yu G. Y., Vallabhapurapu S., et al.IL-6and stat3are required for survival of intestinal epithelial cells and development ofcolitis-associated cancer. Cancer Cell.2009,15:103–13.
    150.58Sasser A. K,. Sullivan N. J., Studebaker A. W., et al. Interleukin-6is a potent growthfactor for ER-{alpha}-positive human breast cancer. Faseb J.2007,21(13):3763-70.
    151. Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K.,Huang, M., et al.Cyclooxygenase-2-dependent regulation of E-Cadherin: prostaglandin E2inducestranscriptional repressors ZEB1and snail in non-small cell lung cancer. CancerResearch.2006,66:5338–5345.
    152. Ohira, T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., et al..WNT7a induces E-cadherin in lung cancer cells. Proceedings of the National Academyof Sciences of the United States of America.2003,100:10429–10434.
    153. Karnoub A. E., Dash A. B., Vo A. P., et al. Mesenchymal stem cells within tumourstroma promote breast cancer metastasis. Nature.2007,449:557–563.
    1. Smith A. A glossary for stem-cell biology. Nature2006;441:1060.
    2. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineagecommitments, and transdifferentiations. Annu Rev Cell Dev Biol2001;17:387–403.
    3. Barrandon Y, Morgan JR, Mulligan RC, Green H. Restoration of growth potential inparaclones of human keratinocytes by a viral oncogene. Proc Natl Acad Sci USA1989;86:4102–4106.
    4. Pelengaris S, Littlewood T, Khan M, Elia G, Evan G. Reversible activation of c-Myc in skin:induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell1999;3:565–577.
    5. Owens DM, Watt FM. Contribution of stem cells and differentiated cells to epidermaltumours. Nat Rev Cancer2003;3:444–451.
    6. Passegue E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis:are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc NatlAcad Sci USA2003;100:11842–11849.
    7. Roskams T. Liver stem cells and their implication in hepatocellular andcholangiocarcinoma. Oncogene2006;25:3818–3822.
    8. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells.Nature2001;414:105–111.
    9. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP. Bcrp1gene expression isrequired for normal numbers of side population stem cells in mice, and confers relativeprotection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA2002;99:12339–12344.
    10. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-likecells in the C6glioma cell line. Proc Natl Acad Sci USA2004;101:781–786.
    11. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA,Brenner MK. A distinct“side population”of cells with high drug efflux capacity in humantumor cells. Proc Natl Acad Sci USA2004;101:14228–14233.
    12. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2transporter is an efficientHoechst33342efflux pump and is preferentially expressed by immature humanhematopoietic progenitors. Blood2002;99:507–512.
    13. Tallman MS. Treatment of relapsed or refractory acute promyelocytic leukemia. Best PractRes Clin Haematol.2007;20:57–65.
    14. Zhou GB, Zhang J, Wang ZY, Chen SJ, Chen Z.Treatment of acute promyelocyticleukaemia with alltrans retinoic acid and arsenic trioxide: a paradigm of synergisticmolecular targeting therapy. Philos Trans R Soc Lond B Biol Sci.2007;362:959–71.J.Cell. Mol. Med. Vol11, No5,2007.
    15. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukaemicstem cell classes that differ in self-renewal capacity. Nat Immunol.2004;5:738–43.
    16. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1(CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and invivo. Blood.1997;89:3104–12.
    17. Wulf GG,Wang RY, Kuehnle I,Weidner D, Marini F,Brenner MK, Andreeff M, GoodellMA. A leukaemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia.Blood.2001;98:1166–73.
    18. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2transporter is an efficientHoechst33342efflux pump and is preferentially expressed by immature humanhematopoietic progenitors. Blood.2002;99:507–12.
    19. Jamieson CH, Weissman IL, Passegue E. Chroni cversus acute myelogenous leukemia: aquestion of self-renewal. Cancer Cell.2004;6:531–3.
    20. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, ManzMG, Keating A, Sawyers CL, Weissman IL. Granulocyte-macrophage progenitors ascandidate leukaemic stem cells in blast-crisis CML. N Engl J Med.2004;351:657–67.
    21. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts.Annu Rev Med.2007;58:267–84.
    22. Martinez-Jaramillo G,Vela-Ojeda J, Sanchez-Valle E, Montesinos JJ,Mayani H. in vitrofunctional alterations in the hematopoietic system of adult patients with acutelymphoblastic leukemia. Leuk Res.2007;31:83–9.
    23. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M,Sanchez-Garcia I. A primitive hematopoietic cell is the target for the leukaemictransformation in human philadelphia-positive acute lymphoblastic leukemia. Blood.2000;95:1007–13.
    24. Nakagawa R, Soh JW, Michie AM. Subversion of protein kinase C alpha signaling inhematopoieticprogenitor cells results in the generation of a B-cellchronic lymphocyticleukemia-like population in vivo.Cancer Res.2006;66:527–34.
    25. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretoryprotein-expressing cells of the airway neuroepithelial body microenvironment include alabel-retaining subset and are critical for epithelial renewal after progenitor cell depletion.Am J Respir Cell Mol Biol2001;24:671–681.
    26. Benitah SA, Frye M, Glogauer M, Watt FM. Stem cell depletion through epidermaldeletion of Rac1. Science2005;309:933–935.
    27. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. Basal cells are a multipotentprogenitor capable of renewing the bronchial epithelium. Am J Pathol2004;164:577–588.
    28. Hong KU, Reynolds SD, Watkins S, Fuchs E, Stripp BR. In vivo differentiation potential oftracheal basal cells: evidence for multipotent and unipotent subpopulations. Am J PhysiolLung Cell Mol Physiol2004;286:L643–L649.
    29. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cellniches in the tracheal epithelium. Am J Respir Cell Mol Biol2001;24:662–670.
    30. Schoch KG, Lori A, Burns KA, Eldred T, Olsen JC, Randell SH. A subset of mouse trachealepithelial basal cells generates large colonies in vitro. Am J Physiol Lung Cell Mol Physiol2004;286:L631–L642.
    31. Barth PJ, Koch S, Muller B, Unterstab F, von Wichert P, Moll R. Proliferation and numberof Clara cell10-kDa protein (CC10)-reactive epithelial cells and basal cells in normal,hyperplastic and metaplastic bronchial mucosa. Virchows Arch2000;437:648–655.
    32. Murray JF, Nadel JA. Textbook of respiratory medicine,2nd ed. Philadelphia: W.B.Saunders;1994.
    33. Wikenheiser-Brokamp KA. Rb family proteins differentially regulate distinct cell lineagesduring epithelial development. Development2004;131:4299–4310.
    34. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of smallcell lung cancer by somatic inactivation of both Trp53and Rb1in a conditional mousemodel. Cancer Cell2003;4:181–189.
    35. Minna JD, Kurie JM, Jacks T. A big step in the study of small cell lung cancer. Cancer Cell2003;4:163–166.
    36. Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonaryairways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am JPathol2000;156:269–278.
    37. Miller LA, Wert SE, Whitsett JA. Immunolocalization of sonic hedgehog (Shh) indeveloping mouse lung. J Histochem Cytochem2001;49:1593–1604.
    38. Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehogsignalling within airway epithelial progenitors and in small-cell lung cancer. Nature2003;422:313–317.
    39. Collins BJ, Kleeberger W, Ball DW. Notch in lung development and lung cancer. SeminCancer Biol2004;14:357–364.
    40. Ball DW. Achaete-scute homolog-1and Notch in lung neuroendocrine development andcancer. Cancer Lett2004;204:159–169.
    41. Ball DW, Azzoli CG, Baylin SB, Chi D, Dou S, Donis-Keller H, Cumaraswamy A, BorgesM, Nelkin BD. Identification of a human achaete-scute homolog highly expressed inneuroendocrine tumors. Proc Natl Acad Sci USA1993;90:5648–5652.
    42. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, BronsonRT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer.Cell2005;121:823–835.
    43. Fisher GH, Wellen SL, Klimstra D, Lenczowski JM, Tichelaar JW, Lizak MJ, Whitsett JA,Koretsky A, Varmus HE. Induction and apoptotic regression of lung adenocarcinomas byregulation of a K-Ras transgene in the presence and absence of tumor suppressor genes.Genes Dev2001;15:3249–3262.
    44. Meuwissen R, Linn SC, van der Valk M, Mooi WJ, Berns A. Mouse model for lungtumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene.Oncogene2001;20:6551–6558.
    45. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, TuvesonDA. Analysis of lung tumor initiation and progression using conditional expression ofoncogenic K-ras. Genes Dev2001;15:3243–3248.
    46.46, Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA, Jacks T.Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature2001;410:1111–1116.
    47. Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V,Barbacid M. Tumor induction by an endogenous K-ras oncogene is highly dependent oncellular context. Cancer Cell2003;4:111–120.
    48. Kotton DN, Ma BY, Cardoso WV, Sanderson EA, Summer RS, Williams MC, Fine A.Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development2001;128:5181–5188.
    49. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S,Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stemcell. Cell2001;105:369–377.
    50. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, Suzuki T, Sasaki H.Bone marrow-derived cells contribute to lung regeneration after elastase-inducedpulmonary emphysema. FEBS Lett2004;556:249–252.
    51. Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ. Limited restoration of cystic fibrosislung epithelium in vivo with adult marrow–derived cells. Am J Respir Crit Care Med2005;173:171–179.
    52. Macpherson H, Keir P, Webb S, Samuel K, Boyle S, Bickmore W, Forrester L, Dorin J.Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo. J CellSci2005;118:2441–2450.
    53. Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson NA Jr, Spees JL, BertucciD, Peister A, Weiss DJ, et al. Adult stem cells from bone marrow stroma differentiate intoairway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA2005;102:186–191.
    54. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG.Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposureand ameliorates its fibrotic effects. Proc Natl Acad Sci USA2003;18:18.
    55. Abe S, Boyer C, Liu X, Wen FQ, Kobayashi T, Fang Q, Wang X, Hashimoto M, Sharp JG,Rennard SI. Cells derived from the circulation contribute to the repair of lung injury. Am JRespir Crit Care Med2004;170:1158–1163.
    56. Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numasaki M, Ueda S, Suzuki T, Sasaki H.Bone marrow-derived progenitor cells are important for lung repair afterlipopolysaccharide-induced lung injury. J Immunol2004;172:1266–1272.
    57. Theise N, Henegariu O, Grove J, Jagirdar J, Kao P, Crawford J, Badve S, Saxena R, KrauseD. Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment frombone marrow. Exp Hematol2002;30:1333–1338.
    58. Herzog E, Van Arnam J, Hu B, Krause D. Threshold of lung injury required for theappearance of marrow-derived lung epithelia. Stem Cells2006;24:1986–1992.
    59. Rojas, M, Xu, J, Woods, CR, et al Bone marrow-derived mesenchymal stem cells in repairof the injured lung. Am J Respir Cell Mol Biol2005;33,145-152.
    60. Ortiz, LA, Gambelli, F, McBride, C, et al Mesenchymal stem cell engraftment in lung isenhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc NatlAcad Sci U S A2003;100,8407-8411
    61. Hashimoto, N, Jin, H, Liu, T, et al Bone marrow-derived progenitor cells in pulmonaryfibrosis. J Clin Invest2004;113,243-252.
    62. Philips, RJ, Burdick, MD, Hong, K, et al Circulating fibrocytes traffic to the lungs inresponse to CXCL12and mediate fibrosis. J Clin Invest2004;114,438-446.
    63. Kleeberger W, Versmold A, Rothamel T, Glockner S, Bredt M, Haverich A, Lehmann U,Kreipe H. Increased chimerism of bronchial and alveolar epithelium in human lungallografts undergoing chronic injury. Am J Pathol2003;162:1487–1494.
    64. Spencer H, Rampling D, Aurora P, Bonnet D, Hart SL, Jaffe A. Transbronchial biopsiesprovide longitudinal evidence for epithelial chimerism in children following sexmismatched lung transplantation. Thorax2005;60:60–62.
    65. Suratt BT, Cool CD, Serls AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, WorthenGS. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am JRespir Crit Care Med2003;168:318–322.
    66. Bruscia E, Price J, Cheng E, Weiner S, Caputo C, Ferreira E, Egan ME, Krause DS.Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity inCFTR-null mice following bone marrow transplantation. PNAS2006;103:2965–2970.
    67. Li HC, Stoicoy C, Rogers AB, et al. Stem cells and cancer:Evidence for bone marrow stemcells in epithelial cancers.World J Gastroenterol2006;12:363.
    68. Lloyd Hutchinsona, Bjorn Stenstromb, Duan Chenc, Bilal Piperdid, Sara Leveye, StephenLylef, Timothy C. Wangg, JeanMarie Houghtone,f.. Human Barrett’s adenocarcinoma ofthe esophagus, associated myofibroblasts and endothelium can arise from bone marrowderived cells after allogeneic stem cell transplant..Stem Cells and Development. January2011,20(1):11-17.
    69. Kotton, DN, Fabian, AJ, Mulligan, RC Failure of bone marrow to reconstitute lungepithelium. Am J Respir Cell Mol Biol2005;33,328-334.
    70. Chang, JC, Summer, R, Sun, X, et al Evidence that bone marrow cells do not contribute tothe alveolar epithelium. Am J Respir Cell Mol Biol2005;33,335-342.
    71. Itzhak Avital, Andre L. Moreira, David S. Klimstra, Margaret Leversha, et al.Donor-Derived Human Bone Marrow Cells Contribute to Solid Organ Cancers Developing AfterBone Marrow Transplantation. STEM CELLS2007;25:2903–2909.
    72. Krause, DS. Engraftment of bone marrow-derived epithelial cells. Ann N Y Acad Sci2005;1044,117-124.
    73. Chtistopher R. Cogle, Dongtao Fu, Denizucar, Eeward W. Scott, et al.Bone MarrowContributes to Epithelial Cancers in Mice andHumans as Developmental Mimicry.STEMCELLS2007;25:1881–1887
    74. Antoine E. Karnoub, Ajeeta B. Dash, Annie P. Vo1, Andrew Sullivan, Mary W. Brooks,George W. Bell1, Andrea L. Richardson, Kornelia Polyak, Ross Tubo&Robert A.Weinberg. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis.Nature449,557-563
    75. Muehlberg F, Song YH, Krohn A, Pinilla S, Droll L, Leng X, Seidensticker M, Ricke J,Altman A, Devarajan E, Liu W, Arlinghaus R, et al.Tissue resident stem cells promotebreast cancer growth and metatasis. Carcinogenesis.2009Jan30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700